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“Science is like a succession of closed doors that we 
open in stages of conquests” 
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Abstract 

Mural paintings are an ancient art form, with historic and cultural value, whose preservation is 

imperative. 

These artworks have suffered degradation, promoted by several agents, however, the 

contribution of the microorganisms on the paintings alteration has been undervalued. 

This work aimed the development of innovative strategies that allow to identify and 

characterise the role of the microorganisms in the degradation/deterioration of mural paintings. 

Complementary methodologies, including culture-dependent methods and molecular 

approaches were used, combining with microanalytical techniques to material characterisation. 

This enabled the development of novel analytical protocols for microbial population assessment. 

Following the characterisation of the microbial diversity, the metabolically active population 

were assessed by enzymatic markers and viability assays, in order to signalise the main 

biodeteriogenic agents involved in the biodeterioration of these heritage assets. 

Through simulation assays, using high cells density from the microbial isolates, complemented 

with in situ tests, it was possible to detect the presence of several alteration products namely 

oxalates, plattnerite and carotenoids, attributed to specific biodeteriogenic agents. Mitigation 

strategies, directed to the identified biodeteriogenic agents, were also developed. 
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Novas metodologias para Caracterização e Avaliação da Biodegradação de pinturas murais 

 
 

Resumo 

A pintura mural é uma ancestral forma de arte, com enorme valor histórico e cultural, cuja 

preservação é imperativa. 

Estas obras de arte têm sido alvo de degradação, provocada por diversos agentes, no entanto, 

a contribuição dos microrganismos para o processo de alteração das pinturas tem sido pouco 

valorizada.  

Este trabalho teve como objetivo o desenvolvimento de estratégias inovadoras que permitam 

identificar e caracterizar o papel dos microrganismos no processo de degradação/deterioração 

de pinturas murais.  

Metodologias complementares, incluindo métodos de cultura e abordagens moleculares, 

foram usadas em combinação com técnicas micro-analíticas de caracterização material, 

permitindo o desenvolvimento de protocolos analíticos inovadores para avaliação da população 

microbiológica. 

Após a caracterização da diversidade microbiológica avaliou-se a população metabolicamente 

ativa recorrendo a marcadores enzimáticos e testes de viabilidade celular para sinalizar os 

principais agentes biodeteriogénicos envolvidos na biodeterioração destes bens patrimoniais.  

Através de ensaios de simulação laboratorial, utilizando elevadas densidades celulares de 

isolados microbianos, complementadas com ensaios in situ, foi possível detetar a presença de 

diversos produtos de alteração nomeadamente oxalatos, platenerite e carotenoides, atribuídos a 

agentes biodeteriogénicos específicos. Foram ainda desenvolvidas estratégias de mitigação 

direcionadas para os agentes biodeteriogénicos identificados. 
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Aims and Methodology 

In general, the research of the phenomena that induce alterations in mural paintings has 

neglected the important contribution of the microorganisms for this process. However several 

mural paintings have many evidences of biological contamination, whose role is imperative to 

study and understand. 

 

The main goals of this PhD thesis comprise the full characterisation of the biological agents 

that colonise mural paintings, the identification of the biodeteriogenic agents involved in the 

biodegradation/biodeterioration processes that induce severe alterations in the paintings, and, the 

development of the mitigation strategies to eliminate and control the microbial proliferation in 

these important artworks.  

In this way, several mural paintings, set in completely different contexts and environments, 

were selected and a detailed study was carried out for each of them, in order to gather information 

about the agents that induce damages in the paintings.  

 

The methodology defined for this work intended:  

 

 To characterise the materials used in the mural paintings, like pigments and mortars, 

by multianalytical approaches, using non-invasive or -invasive and non-destructive 

techniques like -Raman, -FTIR, SEM-EDX; 

 To find and identify alteration products, in damaged paint areas, by Raman 

spectrometry and FTIR-ATR; 

 To characterise the biological agents present in mural paintings using complementary 

methodologies including culture-dependent methods and molecular approaches; 

 To assess the biological proliferation capacity in mortar microfragments, by SEM 

analysis; 

 To isolate the cultivable microorganisms to perform simulation assays; 

 To discriminate biological contamination levels by DGGE; 

 To signalise the main biodeteriogenic agents involved in the mural paintings alteration 

processes; 
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 To evaluate the presence of metabolic active cells by enzymatic monitorisation 

(arylsulphatase, dehydrogenase, β-glucosidase and phosphatase) and viability assays 

(MTT cell viability); 

 To understand the effect of microbial proliferation in the mural paintings decay; 

 To correlate the damages detected in mural paintings with the biological population 

present; 

 To evaluate the antimicrobial effect of selected commercial biocides against the 

biological population found in the paintings; 

 To test possible biocide effects in the paintings by mortar simulation assays; 

 To perform in situ biocides application; 

 To define strategies to eliminate biological contamination and avoid their recolonisation; 

 To develop methodologies that could be applied on other cultural assets. 
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1.1. Artworks degradation/deterioration   

1.1.1. Mural paintings: general concepts 

Mural paintings, also designated wall paintings and murals, are a very old artistic 

representation, dating back to prehistoric times by the rock paintings. They remaining until 

nowadays as a well-recognised form of art, widely used in walls and ceilings decoration (Mora et 

al., 1984; Botticelli, 1992). 

The earliest form of mural art was found in caves from the Paleolithic Era like the Lascaux 

Cave in the Dordogne region of France. This cave contains an impressive display of prehistoric 

art: the main cavern and several galleries connected to it were decorated with engraved, drawn, 

and painted figures of animals. The approximately 600 paintings were dated to the late 

Aurignacian period (15,000 to 13,000 B.C.) and were done with mineral pigments mixed with 

animal fat in various shades of yellow, red, brown and black (Ciferri, 1999). However, there are 

other examples of Paleolithic cave art throughout Europe like Cave of Altamira and Cave El 

Castillo in Northern Spain, and Cave of Escoural in Southern Portugal (Portillo and Gonzalez, 

2009). This was one of the key moments of the history of rock art, marked by the realistic detail 

in the animal figures and the combination of engraving and painting (Figure I-1). 

 
 

 

Figure I-1. Prehistoric art expressed in rock paintings present in several Caves of Lascaux - France (A), Altamira - 

Spain (B) and Escoural - Portugal (C) (Adapted from http://www.arte-coa.pt; http://whc.unesco.org/en/list/310 and 
http://arqnat.webnode.pt/patrimonio). 

 
 
Many other ancient murals have survived until today, for example in Egyptian 

tombs, the Minoan palaces in Crete, Greece and in Pompeii, Italy (Mora et al., 1984).  

 

http://www.arte-coa.pt/
http://whc.unesco.org/en/list/310
http://en.wikipedia.org/wiki/Minoan_civilization
http://en.wikipedia.org/wiki/Pompeii
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Figure I-2. Ancient mural painting registers of Egyptian tomb painting depicting grape cultivation (A), blue dolphins 

swimming above a doorway in the Minoan Palace of Knossos, Crete (B) and Villa of the Mysteries, Pompeii (C) 
(Adapted from http://guity-novin.blogspot.pt; http://www.shutterstock.com and http://www.art-and-archaeology.com). 

 
 

This artistic expression gained enough significance with Giotto, an Italian painter, in the 

thirteenth century and in Renaissance period and comes from to nowadays. There are several 

remarkable mural painting artistes like Michelangelo (Sistine Chapel, Italy), Raphael (Madonna, 

Italy) and Leonardo da Vinci (The Last Supper, Italy).  

Mural paintings refer to a painting that is executed on an architectural support which can be a 

natural rock, masonry of brick, stone, nogging or pug. These paintings are usually used to decorate 

walls, vaults, pillars and columns, ornamenting only a small part or all of the architectural surface 

(Garg et al., 1995).  

These artworks, are some of the oldest and most important cultural expressions of Mankind 

and play an important role for the understanding of Societies and civilisations. These cultural 

assets have high economic and cultural value and therefore, their degradation is a problem with 

social and economic impact, and hence hardly need any justification for their preservation (Garg 

et al., 1995).  

http://guity-novin.blogspot.pt/
http://www.shutterstock.com/
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The presence of mural paintings in Europe’s cultural heritage constitutes a unique richness to 

Mankind both for its quantity and quality of masterpieces of great intrinsic value (Calicchia and 

Cannelli, 2005). Portugal has a lot of mural paintings testimonies, distributed from north to south 

of the country.  In Southern Portugal, particularly in the Alentejo region, these artworks achieved 

great popularity and execution refinement between the late fifteenth and sixteenth century, so it 

is often known by the golden age of the Portuguese mural painting (de Sousa, 2003; Serrão, 

2010). This form of art is quite represented in religious buildings like convents, churches, 

hermitages and other public and private estates. 

 
 

1.1.2. Mural paintings: structure and techniques 

Mural paintings have a complex matrix constituted by pictorial support and chromatic layer 

(Figure I-3). Usually, the pictorial support consists of several layers, made of lime and sand of 

different particle size, that allow the efficient execution of the previous layer. The innermost layer, 

usually designated as arricio, in the field of conservation and restoration of mural painting, is a 

rougher layer which acts to even out any irregularities in the architectural support and create 

points of adhesion for the placement of one or more thin layers. The last layer, intonaco, intend 

to create a smooth surface for reception of paint. Thus, the chromatic layer is the visible part of 

the painting and it is formed by pigments and binders (Botticelli, 1992; Calicchia and Cannelli, 

2005).  

 

 

 

Figure I-3. Schematic representation of a mural painting: A- support, B- arricio, C- intonaco, D- Chromatic layer and E- 
crystals of calcium carbonate in case of a fresco technique (Adapted from Boticelli, 1992). 
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According to the execution technique, mural paintings can be classified as fresco and secco. 

In the case of fresco technique, the pigments are applied over a freshly wet mortar, in the 

beginning of the carbonation process (1). The pigments can be mixed with water or lime milk, and 

their fixation occurs during the formation of calcium carbonate matrix resulting from the reaction 

of calcium hydroxide, contained in the mortar, with carbon dioxide available in the atmosphere.  

 

Ca(OH)2 (aq) + CO2 (g)  CaCO3 (s) + H2O (g)         (1) 

 

A fresco technique can be divided in buon fresco or mezzo fresco, according to the moment 

that the pigments are applied in the mortar surface. In the case of mezzo fresco, the pigment is 

applied in an advanced carbonation stage of the mortar, while in the buon fresco the mortar is 

completely moist. Thus, this last variant allow paintings with high quality and durability. 

In the case of a secco technique, the pigments are mixed with a material that promotes their 

adherence (binders) to the pictorial support and after deposited on a dry mortar surface. This 

technique can be divided in tempera and oil, according to the binder used to apply the pigment. 

In the case of tempera the binder used can be an animal glue, vegetal gum or egg, while the oil 

variant uses siccative oils like linseed oil. 

Due to the organic nature of the binder, secco paintings are more susceptible to degradation 

and are in general more fragile and less durable than the fresco paintings (Botticelli, 1992). 

Given the wide range of organic and inorganic components that are present in these artworks, 

many different types of microorganisms may grow on these substrates, using them for their 

development (Ciferri, 1999). The microbial ability to proliferate in the mural paintings, provided in 

favourable environmental conditions, can promote serious damages. Mural paintings are 

important elements of Portuguese art, however a large number of these paintings has suffer 

detriment, fact that require urgent attention and efficient conservation policies (Moropoulou et al., 

2003). 

Therefore, it becomes imperative to take proper measures for the conservation of mural 

paintings as well as taking steps for the conservation of the historic buildings (Garg et al., 1995). 

 
 

1.2. Deterioration of mural paintings 

There are several parameters than can promote alterations in mural paintings like 

environmental factors, geological conditions of the ground, ageing, materials quality and their 

chemical composition (organic and inorganic nutrient sources), internal mechanical stress and 
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biological agents. Humidity, temperature, light, CO2 concentration, atmospheric pressure and pH 

are physical parameters that can strongly influence mural paintings decay (Garg et al., 1995; 

Ciferri, 1999; Heyrman and Swings, 2003; Pangallo et al., 2009b); (Nuhoglu et al., 2006; 

Capodicasa et al., 2010); (Altenburger et al., 1996a; Calicchia and Cannelli, 2005; Sanchez-Moral 

et al., 2005). 

Although several biotic and abiotic factors can induce degradation/deterioration in mural 

paintings, microorganisms are perhaps its main promoters (Rojas et al., 2009). 

According to this, living organisms trigger an undesirable process  

- biodegradation/biodeterioration - of the mural paintings, phenomenon which affects cultural 

heritage and economically important materials (Allsopp et al., 2004; Rojas et al., 2009; Sterflinger 

and Piñar, 2013b). 

The development of microorganisms on mural paintings may cause aesthetic and/or structural 

damages on these artworks (Figure I-4), such as pigments and mortars discolouration, stains and 

biofilms formation on the surfaces, efflorescence salts formation, exfoliation of paint layers, 

formation of paint blisters, cracking and disintegration of paint layers, and, degradation of binders 

resulting in detachment of the paint layer (Ciferri, 1999; Borrego et al., 2010; Capodicasa et al., 

2010; Pepe et al., 2011a). On the other hand, some organic coatings can also accelerate mural 

painting degradation because they alter inappropriately the substrates hydrophilicity. Therefore, 

humidity changes are more important in mural painting degradation/deterioration than 

temperature alterations (He et al., 2014). 

Particularly relevant are the microbial ability to produce biofilms, where digestive enzymes 

excreted by microorganisms, with high metabolic activity, are concentrated. The extracellular 

polymeric substances (EPS) content in a biofilm protects cell enzymes against desiccation and 

rehydration cycles, thus offering the organisms within the biofilm a distinct advantage over non-

embedded cells on external surfaces (Kemmling et al., 2004).  

It is believed that aesthetic damages occur earlier than structural damages and can precede 

serious corruption of the materials, being these damages strongly linked (Sarró et al., 2006; 

Santos et al., 2009). 
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Figure I-4. Main mural painting damages: stains appearance and biofilms formation (A, B), salt efflorescence formation 

(C), chromatic layer detachment (D), cracks and mortars detachment (E, F). 

 
 
The microbial flora present in mural paintings, may result from the successive colonisations by 

different microorganisms, and, each coloniser agent has different ways to compromise the 

structure and function of the substrates (Nugari et al., 1993b; Borrego et al., 2010). The natural 

porosity of the paintings and its constitution in organic and inorganic compounds makes their 

surfaces receptive to microbial spores and vegetative cells transported by airborne particles. 

These cells can adapt to this environment, grow and proliferate in these surfaces (Saarela et al., 

2004; Milanesi et al., 2009). Additionally, airborne particles like dirt, soot and other environmental 

contaminants contribute to the mural paintings alterations by supplying nutrients for microbial 

growth (Ciferri, 1999; Kemmling et al., 2004). 

In this way, to know the interaction of the microbial population with the physico-chemical 

properties of the materials, is considered central to understand the long term 

degradation/deterioration of the mural paintings (Ripka et al., 2006; Herrera and Videla, 2009; 

Wiktor et al., 2009).  
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1.2.1. Biological agents involved in artworks decay 

Involved in the mural paintings decay are a wide and diversified biological population like 

bacteria, fungi, algae, lichens and others microorganisms, which act in co-association inducing 

alterations in these artworks  (Capodicasa et al., 2010); (Jain et al., 2009; Wiktor et al., 2009). 

They can be quite diverse, being classified according to their nutritional requirements (Zastrow 

and Straube, 1991; Tolli and King, 2005): 

 Autotrophic and heterotrophic organisms assimilate inorganic or organic carbon sources, 

respectively; 

 Phototrophic and chemotrophic organisms get energy from sunlight or oxidation of 

organic or inorganic compounds, respectively; 

 Chemolithotrophic and chemoorganotrophic organisms use inorganic or organic reduced 

compounds, respectively. 

 
Cyanobacteria are photosynthetic microorganisms that can use CO2 as a carbon source for 

growth. Due to their peculiar ability to adapt to extremely low photon flux densities and to a variety 

of spectral emissions, cyanobacteria are the major organisms responsible for biofilm formation in 

artworks (Sanchez-Moral et al., 2005).   

Chemolithotrophic organisms are found only in prokaryotes and are widely distributed among 

Bacteria and Archaea and can life in the presence, as well as, in the absence of molecular oxygen. 

The spectrum of inorganic compounds that can be used as electron donors by chemolithotrophs 

is rather broad: hydrogen, ammonia, nitrite, sulfide, sulfur, hydrogen and Fe(II) ions.  

Among the microorganisms present in mural paintings, lichens play a minor role in their 

colonisation. Lichens represent the symbionts of fungi (mainly ascomycete) and algae (mainly 

green algae) or fungi and cyanobacteria (less common). Lichens are comparatively more resistant 

to extreme temperature and desiccation which allows them to flourish and grow in a wide variety 

of habitats some of them may be hostile to other forms of lives. They are among the pioneer 

organisms which inhabit the exposed stone surfaces. They have significant contribution in 

biogeophysical and biogeochemical deterioration of monumental stone (Dakal and Cameotra, 

2012a; Miller et al., 2012). In addition, algae and bryophytes, often abundant in the plasters and 

mortars, are considered less important in biodegradation/biodeterioration process. However they 

support the colonisation and development of allied heterotrophic population of bacteria and fungi 

(Gómez-Alarcón et al., 1995), which are the main biodeteriogens responsible for aesthetic and 

structural damages. 
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Bacteria are suggested by some authors as the first coloniser agent of these artworks, since 

they have reduced nutritional requirements and provide organic matter to the next colonizers 

(Garg et al., 1995; Rölleke et al., 1996a). These microorganisms are frequently associated to the 

formation of biofilms, promoting discolouration of the surfaces, due to their development or their 

metabolic activity that can produce pigmented compounds (Garg et al., 1995; Ciferri, 1999; 

Gorbushina and Petersen, 2000b; Milanesi et al., 2006; Guiamet et al., 2011). On the other hand, 

the growth of biological agents like fungi are identified as a determinant factor in the 

degradation/deterioration of the murals (Garg et al., 1995; Rölleke et al., 1996a).  

Fungi are ubiquitously present microorganisms representing the group of chemoheterotrophs, 

being metabolically more versatile than other biodeteriogens in the microbial kingdom. This 

versatility allows them to colonise a wide variety of substrates including wood, stone, metal, 

mortars, paintings and enhances their biodeterioration/biodegradation potential. Their ability to 

grow on a variety of substrates, tolerating extremes environmental conditions, establishing 

mutualistic association with cyanobacteria or algae, adopting various structural, morphological 

and metabolic strategies further enhances their versatility and adaptability (Dakal and Cameotra, 

2012a). These microorganisms are particularly dangerous because they show a significant 

tolerance to adverse environmental conditions. Their hyphae may have high level of proliferation 

in mortars and their spores, in a dormant state, are commonly present and available for 

germination. On the other hand, fungal-derived carboxylic acids (e.g., oxalic, citric, succinic, 

formic, malic, acetic, fumaric, glyoxylic, gluconic, and tartaric acids) can play a significant role in 

chemical attack (Wiktor et al., 2009; Fomina et al., 2010; Tran et al., 2012b). The destructive 

potential of these microorganisms is shown by mechanical and chemical processes, caused by 

mycelia penetration inside the mortar, resulting in loss of cohesion and detachment of the paint 

layer, as well as paint discolouration result of the products of their metabolism secreted in the 

surface (Altenburger et al., 1996a; Rölleke et al., 1996a; Berner et al., 1997; Herrera et al., 2004; 

Milanesi et al., 2006; Imperi et al., 2007a).; (Garg et al., 1995; Ciferri, 1999; Gorbushina and 

Petersen, 2000b; Milanesi et al., 2006; Guiamet et al., 2011). According to the literature, fungi of 

the genera Penicillium, Cladosporium, Alternaria, Aspergillus, Curvularia, Dreschlera, 

Chaetomium, Fusarium, Trichoderma, Gliomastix, Aureobasidium, are the most abundant in 

mural paintings colonisation (Garg et al., 1995; Gorbushina et al., 2004; Sterflinger, 2010).  

Besides that, phototrophic microorganisms like cyanobacteria are also associated to mural 

paintings colonisation, owning an important role in its decay (Altenburger et al., 1996b; Ariño and 

Saiz-Jimenez, 1996; Cappitelli et al., 2009; Tran et al., 2012a; Kusumi et al., 2013). These 

microorganisms have been reported to promote deterioration of the internal wall surfaces and 
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plasters where there is low light intensity, and, particularly, cyanobacteria are pointed to cause 

rosy discoloration in indoor environments (Cappitelli et al., 2009).  

These microorganisms as well as heterotrophic microorganisms can induce irreversible 

stainings and chromatic alterations (Rölleke et al., 1998a; Urzì and Realini, 1998; Gurtner et al., 

2000b; Piñar et al., 2001; Schabereiter-Gurtner et al., 2001b; Realini et al., 2005; Ripka et al., 

2006; Imperi et al., 2007b; Laiz et al., 2009; Piñar et al., 2009; Jurado et al., 2012; Ortega-Morales 

et al., 2013; Sterflinger and Piñar, 2013b), due to their ability to produce pigmented compounds 

(Warscheid and Braams, 2000; Polo et al., 2010). An example of these coloured compounds are 

carotenoids, often responsible by the yellow, orange and red stains that appear in the artworks 

(Aksu and Eren, 2005; Tinoi et al., 2005; Abdel-Haliem et al., 2013; Olivares et al., 2013).  

On the other hand, mural paintings are often affected by black stains that can be caused mainly 

by the secretion of metabolites or the pigmentation of fungi, especially melanins. Fungi like 

Cladosporium, Acremonium or Gliomastix have been implicated in the 

biodegradation/biodeterioration of mural paintings (Nugari et al., 1993a; Orial and Mertz, 2006; 

Kiyuna et al., 2011). 

Thus, some of the fundamental challenges for the mural paintings 

biodegradation/biodeterioration interpretation are:  

 To characterise the biological population present in the mural paintings; 

 To understand the role of each microorganism in the biodegradation/biodeterioration 

process; 

 To identify the main biodeteriogenic agents; 

 To understand the relationship between microorganisms and their interactions with 

each other and with their environment - population dynamics. 

 

 

 

1.3. Biological agents characterisation 

1.3.1. Culture dependent methods 

Although the involvement of microorganisms in the degradation process is well known, the 

specific role of the different groups and species that compose the microbial communities is not 

yet well understood, because methodologies tend to identify only easily cultivable and omit slow 

growing and uncultivable microorganisms. The identification of the microbial diversity present in 

cultural heritage is a crucial step to develop and apply correct conservation and mitigation 

methodologies and to prevent further contaminations (Ramírez et al., 2005). 
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The traditional way to identify the microbial diversity is based on the cultivation of 

microorganisms in specific nutrient media, but, only a small portion, typically far less than 1% of 

organisms can be cultivated by standard techniques and the cultivable microorganisms 

underrepresent the microbial diversity present in the Earth (González and Saiz-Jiménez, 2005). 

A wide variety of culture media, both solid and liquid, can be used for this purpose based on the 

type of microorganisms that proliferate in the mural paintings. Despite the limitations inherent of 

this approach, culture based techniques and development of new culture media is still encouraged 

due to the advantage of having pure cultures isolated to carry out physiological and metabolic 

studies (Dakal and Arora, 2012).However, to understand the phenomena that promotes the 

degradation of mural paintings it is crucial the deeper knowledge of the microbial population that 

colonise these artworks. In this way, techniques based on nucleic acids allow the differentiation 

of microorganisms within complex microbial communities or the identification of isolated 

microorganisms (Portillo and Gonzalez, 2009). 

According to this, DNA sequencing approaches are very useful to phylogenetic identification, 

and have been applied in several areas, being useful in artworks to analyse the microbial diversity 

(Rölleke et al., 1996b; Rölleke et al., 1998b; Saiz-Jimenez and Laiz, 2000; Schabereiter-Gurtner 

et al., 2001b; Saarela et al., 2004; Carmona et al., 2006; Cappitelli et al., 2009; Olivares et al., 

2013). 

Thus sequencing small subunits (SSU) ribosomal DNA genes like 16S and 18S, universally 

present in all prokaryotes and eukaryotes, respectively, provide an efficient mean to identify 

microorganisms from cultural assets. These ribosomal sequences possess variable and highly 

conserved regions, which are used as phylogenetic markers to identify and distinguish between 

microorganisms on all phylogenetic levels (Hill et al., 2000; Kennedy and Clipson, 2003; Dakal 

and Arora, 2012). 

On the other hand, sequencing of the internal transcribed spacer (ITS) region, located between 

18S and 5.3S rDNA, is also a diagnostic tool for identifying fungi. This region is very variable in 

sequence composition and also vary in length between species, and thus can be used to profile 

the number of ribotypes present in a community (Kennedy and Clipson, 2003; Anderson and 

Cairney, 2004; Dakal and Arora, 2012). 

In the case of yeast characterisation, sequencing the D1/D2 domain of 26S/28S rDNA region 

has been used to identify these microorganisms from different sources. This approach is rapid 

and precise compared with the physiological method for the yeast identification, and has also 

been applied to study the phylogeny of different yeast groups and species-level differentiation 
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(Lachance et al., 2003; Couto et al., 2005; Dagar et al., 2011; Kiyuna et al., 2012; Lv et al., 2013; 

Hesham et al., 2014; Selbmann et al., 2014).  

The DNA sequence analysis can be accomplished using BLAST server of NCBI 

(www.ncbi.nlm.nih.gov) using Blastn program which is specifically designed for comparing query 

nucleotide sequence with nucleotide sequences in database (Burgess et al., 2010).  

Other nucleic acid approaches can be applied to detect uncultivable microorganisms and to 

identify microbial isolates with more efficiency, since the DNA is common to all organisms and 

may give further information. On the other hand, molecular techniques that circumvent the need 

for isolation and cultivation are highly desirable for in-depth characterisation of microbial 

communities present in mural paintings. 

 
 
 

1.3.2. Molecular approaches for microbial characterisation 

The ongoing advances in genomics and sequencing technologies are allowing a new era of 

microbial community analyses using culture-independent approaches which complement the 

information obtained by culture-dependent methods (Figure I-5). A multiplicity of molecular 

methods based on the analysis of nucleic acids, proteins, and lipids have been developed to 

describe and characterise the phylogenetic and functional diversity of microorganisms, and, can 

be highly effective for mural paintings invasive species monitoring.  Thus, molecular approaches 

such as genetic fingerprinting, metagenomics, metaproteomics, metatranscriptomics and 

proteogenomics are crucial for the full identification of the microbial diversity present in mural 

paintings and understanding their interactions with biotic and abiotic factors (Rastogi and Sani, 

2011).  

 

 



 
State of the Art 

16 
 

 

Figure I-5. Multianalytical approaches to characterise biological agents present in mural paintings. 

 
 

In general, molecular strategies include polymerase chain reaction (PCR), where total 

DNA/RNA extracted is used as a template for the characterisation of microorganisms. Generally, 

the PCR product produced, reflects a mixture of microbial gene signatures from all organisms 

present in a sample and can generate a profile of microbial communities based on the direct 

analysis of PCR products by fingerprinting techniques, using several molecular markers (Muyzer 

et al., 1993; Rastogi and Sani, 2011). Molecular markers are DNA sequences which show 

polymorphisms (heritable DNA sequence differences) between individuals genetically related. 

These approaches are widely applied for studies of population genetics, mapping and similarity 

analysis and even genetic distance. Therefore, according to these molecular markers, there are 

several techniques based on genetic fingerprinting, that can be used to microbial diversity 
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characterisation, such as: Restriction Fragment Length Polymorphism (RFLP), Random Amplified 

Polymorphic DNA (RAPD), Amplified Fragment Length Polymorphism (AFLP), Microsatellite 

polymorphism or Simple Sequence Repeat (SSR), Single-Strand Conformation Polymorphism 

(SSCP), Simple Sequence Length Polymorphism (SSLP), Denaturing/Temperature Gradient Gel 

Electrophoresis (DGGE/TGGE) and others. These genetic fingerprinting techniques, based on 

direct analysis of PCR products, generate a profile of microbial communities, are rapid and allow 

simultaneous analyses of multiple samples. Fingerprinting approaches have been devised to 

demonstrate an effect on microbial communities or differences between microbial communities 

but do not provide direct taxonomic identification, being sometimes necessary sequencing 

techniques (Muyzer et al., 1993; Rastogi and Sani, 2011).  

Between several fingerprinting techniques, Restriction Fragment Length Polymorphism 

(RFLP) is one example of them, based on a difference in homologous DNA sequences that can 

be detected by the presence of fragments of different lengths after digestion with 

specific restriction endonucleases. RFLP, as a molecular marker, is specific to a single 

clone/restriction enzyme combination. RFLP analysis exploits polymorphisms in restriction 

enzyme recognition sites on PCR amplicons to generate DNA fragments of varying sizes. 

Sequence variation is visualised in the form of peaks on an electropherogram (Lott et al., 2014). 

Although now largely obsolete due to the rise of inexpensive DNA sequencing technologies, RFLP 

analysis was the first DNA profiling technique inexpensive enough to see widespread application. 

RFLP analysis was an important tool of genome mapping and localisation of genes in areas like  

biology, medicine and food science (Lin and Hwang, 2007; Pourahmad and Richards, 2013; Sarin 

et al., 2013). 

Random Amplified Polymorphic DNA (RAPD) is a powerful fingerprinting technique that 

involves the amplification of random segments of genomic DNA by short arbitrary primer of about 

10 nucleotides that binds to random sections of the genome. The amplification of these 

sequences results in different banding patterns between strains (Lynch and Milligan, 1994; 

Burgess et al., 2010). The PCR amplicons generated are separated on agarose or polyacrylamide 

gel depending on the genetic complexity of the microbial communities, and, a phylogenetic tree 

is drawn by the UPGMA cluster program, to make the correlations between samples. This 

technique is highly dependent on the experimental conditions (e.g., annealing temperature, MgCl2 

concentration), the quality and quantity of template DNA and primers used. Thus, several primers 

and reaction conditions need to be evaluated to compare the relatedness between microbial 

communities and obtain the most discriminating patterns between species or strains. The 

advantages of RAPD profiling are that it requires no sequence information, and, it is quicker and 

http://www.ncbi.nlm.nih.gov/projects/genome/probe/doc/Glossary.shtml#re
http://en.wikipedia.org/wiki/DNA_profiling
http://en.wikipedia.org/wiki/Genome_mapping
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easier in comparison with other profiling methods, such as denaturing gradient gel electrophoresis 

(DGGE), detecting differences between closely related species, needing only small quantities of 

DNA for assays (Burgess et al., 2010; Ben Salem et al., 2014). 

This fingerprinting technique is used to study the microbial diversity or variability and their 

ecological distribution. RAPD is a very convenient and cost effective method employed for 

bacterial identification and variability estimation. The PCR based method of gene typing based 

on genomic polymorphism is a recent approach which is widely used for the assessment of inter- 

and intraspecific genetic variation and uses a single short random oligonucleotide primer. The 

RAPD technology is well suited to DNA fingerprinting although it suffered from a certain lack of 

reproducibility due to mismatch annealing (Saxena et al., 2014). 

In the case of fingerprinting techniques application in cultural assets like mural paintings, stone 

and others, RAPD methodology seems to be the most used to characterise and distinguish isolate 

microorganisms and communities (Zanardini et al., 1997; Gorbushina et al., 2004; Ripka et al., 

2006; Suihko et al., 2007). 

Amplified Fragment Length Polymorphism is other DNA fingerprinting technique that detects 

genomic restriction fragments and resembles in that respect the RFLP technique, with the major 

difference that PCR amplification instead of Southern hybridisation is used for detection of 

restriction fragments (Vos et al., 1995). This technique is based on the selective PCR amplification 

of restriction fragments from total digestion of genomic DNA, by two restriction enzymes. It 

involves two amplification steps: a low-level or pre-selective amplification, followed by a more 

selective amplification, which generates a set of fragments that can be used as the discriminatory 

marker set for a particular sample. The amplified fragments are separated by gel electrophoresis 

and visualised through autoradiography or fluorescence methodologies, or via automated 

capillary sequencing instruments (Hookey et al., 1999; Lazzi et al., 2009).   

AFLP can simultaneously screen many different DNA regions distributed randomly throughout 

the genome and generates many genome wide polymorphic markers with no prior sequence 

information, and showed more discriminatory power than RAPD, RFLP and microsatellites, due 

to its higher reproducibility, resolution, and sensitivity. This technique has become widely used 

for the identification of genetic variation in strains or closely related species of plants, fungi, 

animals and bacteria (Lazzi et al., 2009; Thakur et al., 2014). 

 

Between the several existing electrophoretic techniques, denaturing gradient gel 

electrophoresis (DGGE) and/or temperature gradient gel electrophoresis (TGGE) have been used 

to characterise the microbial diversity in different ecosystems. DGGE has been used to determine 

http://en.wikipedia.org/wiki/Autoradiography
http://en.wikipedia.org/wiki/Fluorescence
http://en.wikipedia.org/wiki/RAPD
http://en.wikipedia.org/wiki/Microsatellite_(genetics)


Chapter I 

19 
 

and identify the genetic diversity of the microbial communities present in mural paintings, 

representing a powerful tool for monitoring the biological population in these artworks and also 

other cultural assets (Rölleke et al., 1996a; Gurtner et al., 2000a; Möhlenhoff et al., 2001).  

These techniques separate amplified rDNA (ribosomal DNA) fragments of similar length (200-

700 bp) but with different sequences, according to their melting properties. Whereas DGGE uses 

denaturing chemicals such as formamide and urea, a temperature gradient is applied in TGGE 

(Muyzer et al., 1993; Rölleke et al., 1996a; Rantsiou et al., 2005; Justé et al., 2008; Malik et al., 

2008). 

DGGE technique has the advantage of directly profiling microbial populations present in 

specific ecosystems by separating PCR products originated from universal primers, on the basis 

of the melting domain of the DNA molecules (Muyzer et al., 1993; Rantsiou et al., 2005; Justé et 

al., 2008). 

The detection of microorganisms is mainly based on the small subunit ribosomal DNA genes, 

16S rDNA for prokaryotes and 18S rDNA for eukaryotes. Ribosomal DNA is the most commonly 

employed target for PCR amplification prior to DGGE because they are present in every 

organisms and they contain variable and highly conserved regions which allow to distinguish 

between organisms on all phylogenetic levels (Heyrman and Swings, 2003; Ercolini, 2004; 

González and Saiz-Jiménez, 2005). 

Double-strand DNA fragments (Figure I-6) are subjected to an increasing denaturing 

environment as they encounter increasing concentrations of the denaturing agents and partially 

melt in discrete regions called ‘‘melting domains”, and, depends on the hydrogen bonds formed 

between the GC and AT base pairings and the attractions between neighbouring bases of the 

same strand. GC pairs are much more stable to denaturation than AT pairs. This technique uses 

a chemical gradient of urea and formamide created within an acrylamide gel. Usually, the PCR 

products applied in a DGGE gel are obtained by PCR amplification using a GC-rich tail at the 5’-

end of one primer, generally composed by about 40 bases like 5'-CGC CCG CCG CGC GCG 

GCG GGC GGG GCG GGG GCA CGG GGG G and it will be continued by the priming sequence 

complementary to the target DNA to be amplified. This GC rich tail is highly resistant to chemical 

denaturation (Ercolini, 2004; Gonzalez and Saiz-Jimenez, 2004).  
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Figure I-6. Illustrative scheme of Denaturing Gradient Gel Electrophoresis process. This technique uses a gradient of 

urea and formamide in a polyacrylamid gel to separate the PCR products. Through this gradient the double stranded 
PCR products melt depending on their GC content (Based on Gorbushina et al., 2004; Ripka et al., 2006). 

 
 

The technique benefits from the facility to analyse and compare numerous samples on a single 

gel and allows a rapid and simultaneous comparison between samples, which is useful to get 

information about the diversity and distribution of the population by the different sampling places. 

The accuracy of the comparison, however, is heavily dependent upon the inclusion of suitable 

internal standards and assumes that the resolution and quality of the gels have been 

standardised. This parameter is particularly crucial where comparison between several different 

gels is required as a result of large sample numbers. Thus, the reproducibility between gels has 

been highlighted as one of the main pitfalls of DGGE. In addition to the previously described, it is 

possible to obtain more information about the microbial diversity by gel-based community profiling 

techniques, excising and sequencing individual DGGE bands, thereby obtaining taxonomic 

information for interesting members of the community via database searches and/or phylogenetic 

analysis (Anderson and Cairney, 2004).  

DNA sequencing is a basic and essential tool in molecular biology and applied biosciences, 

allowing analyses ranging from single nucleotide polymorphism (SNP) identification to whole 

genome sequencing. This approach, to characterise several DGGE bands are high time 

consuming and sometimes the difference between nucleotide sequences are insufficient to 

produce separate bands, conducting to mix DNA and consequently to an inappropriate DNA for 
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sequencing and identification. Thus it is necessary the application of high-throughput techniques 

that allow a full characterisation of the microbial population present on mural paintings 

(Gharizadeh et al., 2006). 

In addition to fingerprinting techniques, there are other molecular approaches that can be 

exploited to improve the understanding of the biological agents involved in the alteration 

phenomena of mural paintings. 

 

Real-time PCR or quantitative PCR (q-PCR) has been used in microbial investigations to 

measure the abundance and expression of taxonomic and functional gene markers. Unlike 

traditional PCR, which relies on end-point detection of amplified genes, this technique uses either 

intercalating fluorescent dyes such as SYBR Green or fluorescent probes (TaqMan) to measure 

the accumulation of amplicons in real time during each cycle of the PCR. Software records the 

increase in amplicon concentration during the early exponential phase of amplification which 

enables the quantification of genes (or transcripts) when they are proportional to the starting 

template concentration. When real-time PCR is coupled with a preceding reverse transcription 

(RT) reaction, it can be used to quantify gene expression (Rastogi and Sani, 2011). This technique 

is highly sensitive, accurate and allows the simultaneous analysis on the same samples, 

monitoring functional genes involved in metabolic or catabolic pathways, microbial ecology 

distribution systems. It can also be applied to study changes in expression of particular genes in 

response to environmental conditions alteration, disinfection treatment, wastewater treatment 

systems and cultural assets (Kim et al., 2013; Martin-Sanchez et al., 2013; Douterelo et al., 2014). 

 

Fluorescence In Situ Hybridisation (FISH) is a molecular diagnostic technique and has been 

used for localisation of specific nucleic acid sequence in natural context, enabling in situ 

phylogenetic identification and enumeration of individual microbial cells by whole cell hybridisation 

with oligonucleotide probes (Dakal and Arora, 2012). The oligonucleotide probes used in FISH 

are generally between 15 and 30 nucleotides long and covalently linked at the 5’ end to a single 

fluorescent dye molecule that allows detection of probe bound to cellular rRNA by epifluorescence 

microscopy. Common fluorophors include fluorescein, tetramethylrhodamine, Texas red and, 

increasingly, carbocyanine dyes like Cy3 or Cy5. The intensity of fluorescent signals is correlated 

to cellular rDNA contents and growth rates, which provide insight into the metabolic state of the 

cells (Amann et al., 2001; Polo et al., 2010). 
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FISH technique is very powerful, rapid and straightforward and has the advantage to detect 

microorganisms across all phylogenetic levels. FISH probes can be generated without prior 

isolation of the microorganism (Hill et al., 2000). 

This methodology was used to follow the dynamics of bacterial populations in agricultural soils, 

aquatic systems, wastewater, and more recently in artworks (Amann et al., 2001; Baskar et al., 

2006), and is a promising approach to identify fungal contamination diversity on mortar samples 

(González et al., 2014; Vieira et al., 2014). 

 
 

1.3.3. Next generation DNA sequencing 

Recent developments in new sequencing chemistries, bioinformatics and automated 

instruments have revolutionised the knowledge of microbial diversity. Nowadays, there are five 

Next Generation Sequencing (NGS) platforms, including the Roche/454 FLX, the Illumina/Solexa 

Genome Analyzer and the Applied Biosystems (ABI) SOLiD Analyzer are currently dominating 

the market. The other two platforms, the Polonator G.007 and the Helicos HeliScope, have just 

recently been introduced and are not widely used (England and Pettersson, 2005; Mardis, 2008; 

Shendure and Ji, 2008; Zhang et al., 2011). 

Pyrosequencing technology is a novel DNA sequencing method based on the sequencing-by-

synthesis principle. This technology was developed at the Royal Institute of Technology (KTH – 

university in Stockholm, Sweden), and is the first alternative to the conventional Sanger method 

for de novo DNA sequencing. This bioluminometric real-time DNA sequencing technique employs 

a cascade of four enzymatic reactions producing sequence peak signals. It has the potential 

advantages of accuracy, flexibility, parallel processing and can be easily automated (Ahmadian 

et al., 2006b; Gharizadeh et al., 2006; Gong et al., 2010b; Fakruddin et al., 2012). 

The next generation sequencing technology, pyrosequencing, allows high-throughput 

sequencing and has revolutionised the study of microbial diversity. This methodology is currently 

used in multidisciplinary fields in academic, clinical and industrial settings, particularly to identify 

mammal species, to study microbial diversity in soils, freshwater, human guts, wastewater 

treatment facilities and others (Karlsson and Holmlund, 2007; Roesch et al., 2007; Jones et al., 

2009; Roh et al., 2009; Nam et al., 2011; Ye and Zhang, 2011). 

In addition to the broad range of applications listed, this technology has also been used in 

Single Nucleotide Polymorphism (SNP) genotyping, de novo mutation detection, gene 

identification and microbial genotyping (Ahmadian et al., 2006b; Gharizadeh et al., 2006; 

Fakruddin et al., 2012). 
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Pyrosequencing technology is a non-electrophoretic real-time ssDNA sequencing method 

based on the detection of released pyrophosphate during nucleotide incorporation in the DNA-

strand (Figure I-7). The DNA synthesis is catalysed by four kinetically well-balanced enzymes: 

DNA polymerase (E.C. 2.7.7.7), ATP Sulfurylase (E.C. 2.7.7.4), Luciferase (E.C. 1.13.12.7) and 

Apyrase (E.C. 3.6.1.5) (Ronaghi, 2001; Ahmadian et al., 2006a; Trama et al., 2007; Petrosino et 

al., 2009; Fakruddin et al., 2012; Leite et al., 2012).  

 
 

 

Figure I-7. Schematic representation of 454 Pyrosequencing technology (Adapted from England and Pettersson, 

2005). 

 

 

The first reaction involved in pyrosequencing is the DNA polymerisation and occurs in the 

presence of DNA polymerase and complementary nucleotide (A, C, G or T) which are 

incorporated into the single-stranded DNA (ssDNA) sample leads to generation of pyrophosphate 

(PPi) in a quantity equimolar to the number of incorporated nucleotides (Gong et al., 2010b). 

 

(DNA)n + dNTP  (DNA)n+1 + PPi (Polymerase) 

 

The inorganic pyrophosphate (PPi) released, works as substrate for ATP Sulfurylase, which 

produces ATP. 

 

PPi + APS  ATP + SO4
2- (ATP Sulfurylase) 
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Thereafter, ATP is converted by luciferase for producing bioluminescence which is proportional 

to the amount of DNA and the number of the incorporated nucleotides. 

 

Luciferase + D-luciferin + ATP  Luciferase-luciferin- AMP + PPi 

Luciferase-luciferin-AMP + O2  Luciferase + oxyluceferin + AMP + CO2 + light 

 

The unincorporated nucleotides and the generated ATP are degraded by Apyrase allowing 

iterative addition of next nucleotide dispensation. 

 

ATP  AMP + 2Pi (Apyrase) 

dNTP  dNMP + 2Pi (Apyrase) 

 

This degradation between base additions is crucial for synchronized DNA synthesis asserting 

that the light signal detected when adding a certain nucleotide only arises from incorporation of 

that specific nucleotide (Ronaghi, 2001; Ronaghi and Elahi, 2002; Ahmadian et al., 2006a; 

Petrosino et al., 2009; Gong et al., 2010a; Siqueira et al., 2012). 

The generated light is observed as a peak signal in the pyrogram (corresponding to 

electropherogram in dideoxy sequencing) proportional to the number of nucleotides incorporated 

(a triple dGTP incorporation generates a triple higher peak) (Fakruddin et al., 2012). 

This methodology was applied for the first time on mural paintings studies in 2014 (Rosado et 

al., 2014d) and revolutionised the knowledge of the microorganisms that colonise these artworks. 

 
 

1.4. Biochemical markers 

 Apart from the characterisation of the microbial population that colonise mural paintings, it is 

crucial to understand the role of each microorganism in the biodegradation/biodeterioration 

process, in order to identify the main biodeteriogenic agents. 

Biodeteriogenic organisms have the ability to use a substrate to sustain their growth and 

reproduction, producing alterations (Sequeira et al., 2012).  

The microbial population present in mural paintings consists of a very broad range of 

organisms in different physiological states: active, dead or in a dormant state. The active 

microorganisms are involved in the ongoing utilisation of substrates and associated biochemical 

transformations. The living microorganisms in a dormant state does not contribute to ongoing 

processes currently but can contribute under altered circumstances. Dead microbial biomass act 

as an additional pool of available substrate but do not contribute actively to any biochemical 
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process. However, only active microorganisms are involved in the ongoing processes and 

consequently, all processes should be related to the mass of active (Blagodatskaya and 

Kuzyakov, 2013). 

In this way, the signalisation of the active biological population is crucial for the identification 

of the biodeteriogenic agents involved in the mural paintings destruction. 

 
 

1.4.1. Cell viability assessment 

One of the earliest methods for assessing cell viability was trypan blue dye exclusion assay, 

which is still widely used today. It is based on the principle that viable cells have an intact cell 

membrane which can therefore exclude the trypan blue dye. Dead cells take up trypan blue, and 

appear blue, as their membrane is no longer able to control the passage of macromolecules. The 

assay requires the cells to be in a single cell suspension and they are then visualised and counted 

under a microscope using a Neubauer chamber of a defined volume (Stoddart, 2011). 

There are yet other dyes that give information about the presence of active or inactive cells. 

They can bind to the cell components such as nucleic acids (acridine orange, SYBR Green I, 4,6-

diamidino-2-phenylindole), proteins (fluorescein iso-thiocyanate) or polysaccharides of cell walls 

(phenol aniline blue, 5-4,6-dichlorotriazinyl aminofluoroscein) and can cross intact cell 

membranes. Another group of dyes binding to the nucleic acids (propidium iodide and ethidium 

bromide) are unable to penetrate membranes and cannot stain living cells. These dyes are 

commonly used to identify dead membrane-destructed cells (Blagodatskaya and Kuzyakov, 

2013). 

A variety of tetrazolium compounds have been used to detect viable cells. The most commonly 

used compounds include: MTT, XTT, MTS and WST-1, however MTT is the best known metabolic 

dye. These compounds fall into two basic categories: 1) MTT which is positively charged and 

readily penetrates viable eukaryotic cells and 2) those such as MTS, XTT, and WST-1 which are 

negatively charged and do not readily penetrate cells. The latter class (MTS, XTT, WST-1) is 

typically used with an intermediate electron acceptor that can transfer electrons from the 

cytoplasm or plasma membrane to facilitate the reduction of the tetrazolium into the colored 

formazan product (Roehm et al., 1991; Roslev and King, 1993; Goodwin et al., 1995; Knight and 

Dancis, 2006).  

These assays were usually applied to evaluate cytotoxicity or in cell proliferation assays, which 

are widely used in immunology, toxicology and cellular biology (Barltrop and Owen, 1991; Cory 

et al., 1991).  
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MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay relies on the ability 

of living cells to reduce this tetrazolium salt into an insoluble blue/purple formazan crystals, which 

after solubilisation can be quantified spectrofotometrically. The formazan generated is 

proportional to the living cells present in the sample (Mosmann, 1983; Freimoser et al., 1999; 

Mota et al., 2012). 

XTT [(2, 3-Bis-(2-Methoxy-4-Nitro-5-Sulfophenyl)-2H-Tetrazolium-5-Carboxanilide] is used to 

assess cell viability as a function of redox potential. Actively respiring cells convert the water-

soluble XTT to a water-soluble, orange coloured formazan product. Unlike MTT, XTT does not 

require solubilisation prior to quantitation, thereby reducing the assay time in many viability assay 

protocols. Moreover, the sensitivity of the XTT reduction assay is reported to be similar to or better 

than that of the MTT reduction assay (Knight and Dancis, 2006). 

Other chromogenic assays that involve the biological reduction by viable cells of the 

tetrazolium compound is MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-

sulfophenyl)-2H-tetrazolium]. The MTS assay reagent is composed of MTS and the electron 

coupling agent phenazine methosulfate (PMS). The formazan product of MTS reduction is soluble 

in tissue culture medium. This reaction only takes place when mitochondrial reductase enzymes 

are active, and therefore the conversion can be directly related to the viability of cells in culture 

(Malich et al., 1997; Soman et al., 2009; Willems et al., 2011).  

A tetrazolim salt WST-1 [2-(4-Iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-

tetrazolium] produces a highly water soluble formazan upon metabolically active cells, allowing a 

direct and user-friendly colorimetric measurement of cell viability and proliferation (Lin et al., 

2012). 

 
 

1.4.2. Enzymatic systems 

Microorganisms play a central role in the decomposition and mineralisation of the materials 

due to their metabolic activity. However, their activity depends on the physical properties of the 

materials where the microorganisms are, the organic matter content and the mechanism of action 

of each agent (Jastrzębska and Kucharski, 2007). 

The enzymes produced by microorganisms, convert large molecules into low molecular 

moieties, which then can be assimilated by other organisms, and are generally regarded as a 

rate-limiting step in the decomposition and nutrient cycling. Their monitorisation has been used in 

soil, water and wastewater quality assessment (Bergstrom et al., 2000; Pozo et al., 2003; Klose 
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and Ajwa, 2004; Jastrzębska and Kucharski, 2007; Floch et al., 2009; García-Ruiz et al., 2009; 

Kang et al., 2009; Antunes et al., 2011; Balestri et al., 2013). 

Enzymes like arylsulphatase, dehydrogenase, β-glucosidase and phosphatase can constitute 

important biomarkers to assess the physiological features of the microbial communities and to 

evaluate their biodegradative and biodeteriorative potential.  

β-Glucosidase, phosphatase and arylsulphatase enzymes, hydrolyse and catalyse specific 

reactions involved in the biogeochemical transformations of carbon (C), phosphorus (P) and 

sulphur (S). The enzymes β-glucosidase (EC 3.2.1.21) catalyse the hydrolysis of cellobiose, and 

thus plays a major role in the initial phases of the decomposition of organic C compounds. 

Arylsulfatases (EC 3.1.6.1) are exoenzymes involved in the sulphur cycling that hydrolyze sulfate 

esters with an aromatic moiety (phenol esters of sulfuric acid). Phosphatases (EC 3.1.3.2) 

catalyse the hydrolysis of a variety of organic phosphomonoesters and are therefore important in 

organic P compounds mineralisation. These enzymes regenerate inorganic nutrients from organic 

materials and have been reported as the rate-limiting step in the nutrient cycling process. On the 

other hand, organic phosphorus (P) must be mineralized into inorganic orthophosphate (PO4
3-) 

ions to be assimilated by many organisms. Only enzymes produced by plants and/or 

microorganisms are able to hydrolyse organic P into phosphates. Dehydrogenases (EC 1.1.) are 

intracellular enzymes used as an indicator of microbial respiration rate and gives information 

about the active microbial community in a particular environment and can be considered an 

accurate measure of the microbial oxidative activity (Taylor et al., 2002; Pozo et al., 2003; Klose 

and Ajwa, 2004; Kang et al., 2009; Stege et al., 2009).  

The enzymatic monitorisation provides numerous information about the metabolism of the 

microbial communities, however these approaches can be limited by several parameters like pH, 

temperature, enzyme and substrate concentration, hindering the understanding of the real 

metabolic activity. 

Thus, in order to avoid these limitations, alternative methodologies must be taken into account, 

once that, understanding how the microorganisms act in the mural paintings decay and if they are 

metabolically active or not, are central goals on the biodegradation/biodeterioration artworks 

process. One of the alternatives to overcome this difficulties is based on the nucleic acid analysis. 

Through DNA it is possible to get information about the presence of biological agents, once DNA 

is universally present in both active and inactive microorganisms. However, RNA studies provide 

more valuable information than DNA in revealing active microbial communities versus dormant 

microbial cells. This is due to the fact that rRNA and mRNA are indicators of functionally active 

microbial cells (Rastogi and Sani, 2011; Blagodatskaya and Kuzyakov, 2013). Thus, community 
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profiling based on direct RNA extraction reflects the metabolically active microorganisms 

(Anderson and Parkin, 2007), which can be further correlated with the damages observed in the 

surfaces. 

 
 

1.4.3. Biomarkers profiling by MALDI-TOF 

Matrix-assisted laser desorption ionization/time-of-flight (MALDI-TOF) mass spectrometry is 

known as an extremely sensitive analytical tool for characterising different types of biological 

compounds including proteins, peptides and lipids, but also microorganism identification as well 

as DNA sequence analysis (Kirpekar et al., 1998; Fenselau and Demirev, 2001; Gut, 2004; Seng 

et al., 2009; Wieser et al., 2012; Cho et al., 2013). 

In recent years procedures have often been developed that use mass spectrometry for the 

direct determination of protein in a complex mixture of biological origin. In particular, the 

application of MALDI mass spectrometry permits to obtain biomarker profiles directly from 

unfractionated microorganisms like viruses, bacteria and fungal cells and spores. This approach 

enables to detect, characterise and identify peptides and proteins from intact microorganisms and 

is applied in biotechnology, cell biology and pharmaceutical research. For example, protein 

expression profiles from bacterial and eukaryotic cells and cell-free extracts could be rapidly 

obtained by MALDI-TOF-MS analysis. In the case of mass spectrometry of DNA, the process is 

more complex than protein analysis due to the formation of sodium and potassium adducts which 

complicate mass spectra interpretation. Thus, the introduction of 3-hydroxy-picolinic acid as a 

matrix for DNA together with extensive washing procedures made oligonucleotide analysis 

possible (Marvin et al., 2003). 

In practice, a microbial sample is mixed with a matrix on a conductive metal plate. The mixture 

can be deposited on the metal support or alternatively the microbial sample is deposited and dried 

out on the support before the addition of the matrix. After the crystallisation of the matrix and the 

compound, the target on the metal plate is introduced in the mass spectrometer where it is 

bombarded with brief laser pulses from usually a nitrogen laser. The matrix absorbs energy from 

the laser leading the desorption of the analytes that are then vaporised and ionised in the gas 

phase. This matrix assisted desorption and ionisation of the analytes leads to the formation of 

predominantly singly charged sample ions. The desorbed and ionised molecules are first 

accelerated through an electrostatic field and are then ejected through a metal flight tube that is 

subjected to a vacuum until they reach a detector, with smaller ions traveling faster than larger 

ions. The TOF required to reach the detector is dependent on the mass (m) and charge (z) of the 
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bioanalyte and is proportional to the square root of m/z. Thus, bioanalytes with different m/z that 

composed a complex sample are separated according to their TOF and create a mass spectrum 

that is characterised by both the m/z and the intensity of the ions, which is the number of ions of 

a particular m/z that struck the detector (Croxatto et al., 2012). 

All of these methodologies are useful to identify the microorganisms present in the mural 

paintings and to assess their role in the alterations induced in the mural paintings. However other 

approaches more easily applicable by non-specialists are necessary to be developed, in order to 

be applied in Conservation-Intervention practice to increase the protection and preservation of 

our heritage assets. 

 
 

1.5. Mitigation strategies 

The microbial flora present in artworks, like mural paintings, is wide diversified and result from 

the successive colonisations by different microorganisms. Its biological attack occurs at 

favourable temperature and relative humidity conditions for the development of microorganisms, 

and, each coloniser agent has different ways to compromise the aspect, structure and stability of 

paintings and consequently the building where these are present. Therefore, it becomes 

imperative to take proper measures for the conservation of mural paintings as well as taking steps 

for the conservation of the historic buildings (Nugari et al., 1993b; Garg et al., 1995; Borrego et 

al., 2010)  

Microbial growth and propagation on material surfaces can be controlled by physical and 

chemical manipulations of the material and by creation of artificial environments. As a control 

measure, lowering humidity is a very effective way to slow down the growth of microorganisms 

on surfaces in an enclosed environment and prevention against potential contamination will 

prolong the life time of the objects. However this procedure is not possible for all cultural heritage 

artworks, being more suitable under museum conditions, where art pieces should be carefully 

protected environmentally and the numbers of visitors should also be controlled to maintain a 

relatively constant temperature and humidity, in order to decrease contamination factors (Gu, 

2003). 

In the case of built artworks, the removal process of the microbial population must be carefully 

evaluated in order to promote an efficient elimination process, avoiding material destruction and 

ensuring that the biological recolinisation does not occur for a long period of time. 

Thus, to control the biodegradation/biodeterioration process, different approaches can be 

used, as such as: indirect control by altering environmental conditions, mechanical removal of 
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biodeteriogens, chemical treatment with biocides and by physical eradication methods (Scheerer 

et al., 2009). 

 

 

1.5.1. Physical treatments 

The application of irradiation treatment for microbial elimination and cultural heritage artefacts 

protection has been used in several studies. 

Gamma-irradiation can have several advantages for the conservation of objects of cultural 

heritage. It is highly penetrating and therefore very efficient in killing microbial communities 

colonizing these objects. Furthermore, this technique is of use to conservators as it is not 

producing hazardous traces for paintings, it does not cause the formation of secondary 

radioactivity nor the formation of toxic residues and it is cost attractive. The required dose of 

gamma irradiation depends on the contamination level, the microbial diversity and its capacity for 

irradiation resistance. Nevertheless, gamma irradiation is not suitable for large paintings and it 

does not have a long-lasting effect. Beyond this limitation, a major problem in using gamma 

irradiation to eliminate colonising microorganisms is the possible deterioration of the object to 

preserve. The colour stability might be affected as chemical and physical properties of pigments 

may be changed due to gamma irradiation (Katušin-Ražem et al., 2009; Scheerer et al., 2009; 

Abdel-Haliem et al., 2013). 

The use of UV-C irradiation is an alternative to chemical products because this process does 

not generate pollution phenomena and the physical support remains unaltered. UV-C irradiation 

is harmful to living organisms due to its short wavelength, which confers highly energetic photons 

and germicidal properties upon these organisms, compromising the viability and metabolic activity 

of the microorganisms (Borderie et al., 2014). 

Titanium dioxide is a photo-catalytic nanoparticle with antibacterial and antifungal abilities due 

to the production of reactive redox species (hydroxyl radicals, superoxide anions and hydrogen 

peroxide) which induce damages in the cell membrane and can inactivate a wide range of 

organisms like bacteria, viruses, fungi and algae. Titanium dioxide was proposed for preventing 

biodeterioration of mortars in cultural heritage buildings. In Palácio Nacional da Pena (Sintra, 

Portugal) treatments showed the biocidal and preventing biodeterioration properties of titanium 

dioxide against lichens and other phototropic microorganisms. However, despite these good 

indications it is necessary to take into account risks to humans as well as for the paint materials, 
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in the case of mural paintings, because these particles are not as well studied neither their effect 

(De Filpo et al., 2013). 

 
 

1.5.2. Biocides treatment 

Biocides are commonly applied in repairing, cleaning and maintenance of artworks. Their 

application aims to prevent and/or control microbial growth. In this way, biocides can be applied 

before conservation-intervention process to eliminate microorganisms already present, and, after 

the intervention as preventive effect to slow down the re-colonisation of restored surfaces 

(Blazquez et al., 2000; Warscheid and Braams, 2000; Ascaso et al., 2002; Gu, 2003; Domenech-

Carbo et al., 2006; Urzì and De Leo, 2007; Moreau et al., 2008; Fonseca et al., 2010; Gaylarde 

et al., 2011; de los Ríos et al., 2012; Maxim et al., 2012; Pinna et al., 2012a; Speranza et al., 

2012; De Filpo et al., 2013). 

 After a conservation-intervention process the spectrum of compounds is increased and the 

microbial proliferation can be promoted (Ciferri, 1999; Pinna et al., 2012b). Thus, to try to delay 

their recurrence a biocide treatment should be performed to ensure the durability of the artwork. 

Biocides are chemical compounds that have ability to control biological growth/act against 

biological agents. The requirements for a good biocide are: 

 High effectiveness against biodeteriogens; 

 Absence of interference with the constituent materials; 

 Low toxicity to human health; 

 Low risk of environmental pollution. 

 

The commercial biocides available are mainly alcohols, aldehydes, organic acids, carbon acid 

esters, phenols and their derivatives, halogenated compounds, metals and metal-organic 

substances, among others. Compounds like quaternary ammonium salts, metals and metal 

organic substances and heterocyclic organic products, have been widely applied for the control 

of microbial growth on artworks. Among the products currently used, quaternary ammonium salts 

are a group of substances widely applied in artworks treatment due to its broad-spectrum action 

and low toxicity. The antimicrobial effect of quaternary ammonium compounds is probably based 

on the inactivation of proteins and enzymes and the detrimental impact on the microbial cell 

membrane. Their effectiveness is dependent on their chemical structure, such as the presence of 

an aromatic ring structure and the respective length of the four radicals. These compounds affect 
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a broad microbial spectrum ranging from bacteria, fungi to algae and lichens (Warscheid and 

Braams, 2000; Sequeira et al., 2012).  

 
 

Table I-1. Biocides used in mural paintings treatment. 

Biocide Classe/ Active principle Action form Ref. 

Igran 500FW Triazines/Terbutryn 
Photosynthesis inhibition; 

affects electron transport 

(Rosado et al., 

2014a) 

New Des Sulphonamines/Streptamine H 
Inhibitor of cell division of 

prokaryotic cells 

(Blazquez et al., 

2000; Domenech-

Carbo et al., 

2006; Gazzano et 

al., 2013) 

PreventolPN 
Chlorophenols/ 

Pentaclorophenolate 

Oxidation affects the 

oxidative phosphorylation 

(Blazquez et al., 

2000; Maxim et 

al., 2012) 

PreventolR80 

Ammonium quaternary 

compounds/ Benzalkonium 

chloride 

Affect active transport 

and destabilizes the 

membrane integrity 

(Blazquez et al., 

2000; Ascaso et 

al., 2002; Nugari 

et al., 2009) 

Wikamol Murosol Organometallics/ Tributyltin oxide Inhibitor of Metabolism 
(Rosado et al., 

2014a) 

 
 

Despite the well-established biocides efficiency, some studies have suggested that the 

combined application of hydrophobic compounds and biocides is more effective against microbial 

recolonisation than single biocide application. The application can be done in a single step when 

the water-repellent and the biocide are mixed together, or in two steps when the biocide is applied 

before or after the water-repellent (Urzì and De Leo, 2007; Pinna et al., 2012b). 

 

 

1.5.3. Natural alternatives 

Due to the limitations related with the use of chemical compounds, natural products represent 

a huge potential source of compounds with antimicrobial properties, which can be an useful and 

advantageous alternative for the chemical products.  

Natural substances with antimicrobial action have been identified from a very wide range of 

sources, including plants, microorganisms and animals. In this way, several strains of Bacillus 

subtilis and Bacillus amyloliquefaciens have been referred to produce lipopeptides. In response 
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to nutritional stress, a variety of processes are activated by Bacillus strains, including sporulation, 

synthesis of extracellular degradative enzymes and antibiotic production (Klich et al., 1991; 

Dieckmann et al., 2001; Caldeira et al., 2006, 2007; Caldeira et al., 2008). Many strains are known 

to suppress fungal growth in vitro due to the production of antifungal antibiotics (Hiradate et al., 

2002; Yu et al., 2002) especially the nonribosomally synthesized cyclic lipopetides surfactin, iturin 

and fengycin. Bioactive peptides show a great potential for biotechnological applications. These 

compounds, made of amino acids and a fatty acid, are easily biodegradable. The synthesis of 

lipopeptide compounds are common in nature because the mechanism behind its production is 

directly related to defence to stress situations, like sporulation, and because these compounds 

can bring benefits to the individual. They also act as surfactants, being molecules with a low 

molecular weight capable of changing the physical and chemical properties of interphases. In the 

nature, these lipopeptides increase the surface area from non-soluble hydrophobic growth 

substrates and the solubility of hydrophobic substances improving their biologic availability, and 

participate in the adherence and detachment of microorganisms from surfaces (Stein, 2005; 

Thasana et al., 2010; Caldeira et al., 2011a; Velho et al., 2011). 

Recent studies have shown that there is a strong relation between the molecular structure and 

their antifungal properties; in general more carbon atoms in the fatty acid chain enhances the 

antifungal and hemolytic activity, as it seems to increase interactions with biological membranes 

(Akpa et al., 2001; Etchegaray et al., 2008). These amphiphilic cyclic biosurfactants have many 

advantages over other biocides: low toxicity, high biodegradability and environmentally friendly 

characteristics (Caldeira et al., 2011b). Preliminary studies with lipoptides resulting from Bacillus 

sp. metabolism revealed inhibitory effect against biodeteriogenic fungal strains isolated from 

mural paintings (Silva et al., 2014), suggesting them as potential products to be applied in 

remediation and preventive strategies to protect microbial attack of artworks. 

In this context, lichen secondary metabolites (LSM) have also been suggested as potential 

natural antimicrobial compound, because their chemical simplicity makes their synthesis 

potentially easy in the laboratory. LSM are a group of more than 800 compounds, which include 

aliphatic, cycloaliphatic, aromatic and terpenic components, synthesised by lichen-forming fungi.  

Many of these compounds are well known for having allelopathic effects on bryophytes and 

vascular plants. Antibiotic, antiviral and anti-proliferative functions have been also recognised, 

suggesting their potential use for therapeutic applications. The antimicrobial activity of LSM has 

been assessed against a wide set of bacteria and filamentous fungi, mainly of medical interest. 

Some of these LSM compounds like usnic acid, norstictic acid and parietin were tested on stone 

materials, showing that lichen secondary metabolites as allelopathic agents against rock dwelling 
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microorganisms and as potential natural sources for their control on stone materials in restoration 

and conservation program (Gazzano et al., 2013). 

Another alternative is based on the antibiotics production by several microorganisms. There 

are several studies that report this application. For example, the antibiotic 6 Penthyl α Pyrone 

phenol, produced by Trichoderma harzianum, was applied as a successful technique for 

elimination of Aspergillus niger and Aspergillus flavus from mural paintings. This compound is 

non-toxic, non-expensive, practical, durable, and does not reveal deteriorative effect on the 

colours of the paintings (Helmi et al., 2011). 

 

 

 Thus, understanding the biodegradation/biodeterioration processes requires a well-defined 

intervention plan (Figure I-8) that focuses aspects from the characterisation of the materials used, 

biological agents, as well as remediation strategies to prolong the longevity of the artworks. 

 
 

 

Figure I-8. Strategic plan to provide a complete diagnostic of the main problems that affect the integrity of the paintings, 

encompassing micro-analytical approaches, culture dependent methods, molecular approaches, biochemical markers 
and mitigation strategies.  
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 According to this, to study the alteration phenomena that promote damages in mural paintings, 

it is essential to know the materials applied, being fundamental the application of micro-analytical 

methods, which must be non-invasive or micro-invasive and non-destructive. There are several 

procedures with the advantage to be applied in situ or need only microsamples for analysis.  

Studies on mural paintings materials have involved a large number of different instrumental 

analytical techniques (Stuart, 2007) including optical and scanning electron microscopy (Ortega-

Avilés et al., 2001; Sánchez del Río et al., 2004; Barilaro et al., 2005; Baraldi et al., 2006), infrared 

spectroscopy (Barilaro et al., 2005; Salvadó et al., 2005; Baraldi et al., 2006; Hernanz et al., 

2006), Raman spectroscopy (Edwards et al., 1999; Smith and Barbet, 1999; Wang et al., 2004; 

Hernanz et al., 2006), X-ray fluorescence (XRF) spectroscopy (Aloupi et al., 2000; Ortega-Avilés 

et al., 2001; Gil et al., 2008), X-ray diffraction (Barilaro et al., 2005; Salvadó et al., 2005; Baraldi 

et al., 2006; Hernanz et al., 2006) and seldom synchrotron advanced techniques (Ortega-Avilés 

et al., 2001; Pagès-Camagna et al., 2006). Particularly promising is the development of non-

destructive techniques such as in situ XRF (Ferrero et al., 2002; Uda, 2004; Gil et al., 2008) and 

in situ Raman (Perardi et al., 2000; Vandenabeele et al., 2000; Pérez-Alonso et al., 2006), which 

has recently enabled the in situ study to avoid sampling the mural paintings.  

 These techniques provide information about the material composition, biological contamination 

presence and characterisation, and, identification of alteration products, useful data to 

complement the biochemical and microbiological population dynamics. 

 Table I-2 compare different complementary methodologies, used in this work, emphasizing the 

advantages and disadvantages of multianalytical approaches, combining culture dependent 

methods, DNA approaches and microanalytic techniques. 
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Table I-2. Multianalytical approaches to characterise mural paintings alterations, combining 
culture dependent methods, molecular approaches, analytical methods and biochemical markers. 

Methods Advantages Disadvantages 

Culture dependent 
methods 

 Provide high cells density, useful to in 
vitro assays 

 Sequencing is needed for 
identification  
 Some microorganisms are 
not cultivable 
 Incomplete screening 

DGGE 

 Use metagenomic DNA 
 Information about the dynamics of the 
populations 
 Useful to compare microbial 
contamination between different 
places/samples 

 Sequencing of bands 
 Incomplete screening 
 Do not allow obtain cells 

Pyrosequencing 

 Powerful novel technique in 
biodegradation studies of artworks 
 Full characterisation of the microbial  
population 
 Large number of samples can be 
analysed in a short time 

 Expensive 
 Do not allow obtain cells 

Raman 
microspectrometry 

 No sample preparation is required 
 Non-destructive method 
 High sensitivity 
 Rapid screening for detect microbial 
presence 

 Sample heating by the laser 
radiation can destroy the 
sample 
 Incomplete screening 
 Do not allow obtain cells 
 

FTIR-ATR 

 No sample preparation is required 
 High reproducibility 
 Easy-to-use, fast, and versatile 
technique 
 Solids, pastes, gels, liquids and 
powders can be analysed 
 Rapid screening for detect microbial 
presence 

 Samples could be destroyed 
by the pressure 
 Incomplete screening 
 Do not allow obtain cells 
 

SEM and 
SEM-EDX 

 Image with high magnification and 
resolution 
 Elemental composition of the materials 
allowing their localisation in the samples 
 Detect proliferation of the 
microorganisms in the samples 

 Coating samples with gold 
or carbon destroy them 
 Do not allow obtain cells 
 

Dehydrogenase 

 Detect cell viability of the microbial 
population 
 Cell viability could be correlated with 
contamination levels 
 Biochemical marker function 

 Destructive 
 Time-consuming 
 Do not allow obtain cells 
 

  (Rosado et al., 2014b) 
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The rationale behind this PhD research project has been the development of integrated studies 

that combine the characterisation of mural painting materials and the assessment of the extrinsic 

causes and mechanisms of degradation, using novel techniques and implementing new analytical 

protocols for mural paintings biodegradation assessment. The research was developed in close 

collaboration with conservator-restorers and heritage researcher with the aim to develop tools 

and tackle some of their needs and questions. Several historical mural paintings were selected 

as case studies under the framework of this PhD, which represent different research scenarios 

and conditions. 

 

This PhD thesis is organised into six chapters; an introductory chapter, four chapters dedicated 

to the results and discussion, being most of them published in scientific papers, and a final chapter 

presenting the main conclusions obtained during this research. 

Chapter I describes general aspects related to mural paintings constitution and cultural 

importance, giving an overview about the phenomena that affect mural paintings, exploiting the 

significant importance of microorganisms in the decay of this artworks, presenting several 

methodologies for their identification and different approaches to control their development, based 

on an extensive bibliographical research. 

In Chapter II are presented multianalytical approaches to identify the alteration causes of mural 

paintings decay, using non- and micro-invasive and non-destructive methodologies. 

Chapter III presents a combined application of culture dependent methods and molecular 

approaches to characterise the microbial population thriving in the paintings, using novel and 

innovative approaches. 

Chapter IV is focused on the monitorisation of biological systems, to signalise the main 

biodeteriogenic agents involved in in the decay of mural paintings. 

Chapter V describes the development of mitigation strategies to be applied in mural paintings, 

to eliminate and control microbial proliferation, in order to promote the rehabilitation and 

enrichment of these artworks. 

Final considerations and future perspectives are presented in Chapter VI, emphasising the 

advantages of the strategies outlined.  

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER II

The role of microorganisms 
in the mural paintings 
pathologies



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Some results of this chapter were published in the following scientific papers: 
 

Rosado T, Gil M, Mirão J, Candeias A and Caldeira AT (2013) Oxalate biofilm formation in mural paintings due to 
microorganisms - a comprehensive study, International Biodeterioration & Biodegradation 85:1-7. 
 
Rosado T, Reis A, Candeias A, Mirão J, Vandenabeele P and Caldeira AT (2014) Pink! Why not? On the unusual colour 
of Évora Cathedral, International Biodeterioration & Biodegradation 94:121-127. 
 
Rosado T, Mirão J, Candeias A and Caldeira AT (2014) Characterizing Microbial Diversity and Damage in Mural 
Paintings, Microscopy and Microanalysis, 1-6 (doi:10.1017/S1431927614013439). 
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1. Overview 

Three different cases alteration of mural paintings and mortars, with pronounced aesthetic and 

structural damages, were analysed in order to identify the causes that alter the artworks that will 

be presented. 

This investigation revealed a strong relationship between the microbiological proliferation and 

the damaged areas, evidencing the important role of the microorganisms in the 

degradation/deterioration process. 

The formation of oxalates, lead pigments oxidation and carotenoids development noticeably 

contribute to murals and/or mortars alteration, and are correlated in this study with the presence 

of biodeteriorative microorganisms. These alterations, attributed to metabolic activity of microbial 

cells, promote polychromy degradation of specific pigments, efflorescence’s appearance and 

biofilms formation, culminating in some cases, in structural damages, affecting mortars integrity. 

The study of the mechanisms underlying the microbiological attack of mural paintings has been 

explored to understand as much as possible the proliferative ability and biodeteriorative capacity 

of microorganisms.  

The biodeterioration/biodegradation study is an important issue for the conservation of cultural 

heritage that needs urgent answers to their rehabilitation. In this way, the role of microorganisms 

in surfaces alteration will be exploited.  
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2. Introduction 

The biodeterioration/biodegradation of historic monuments occurs as a consequence of 

chromatic alterations, stains appearance, biofilms formation, secretion and deposition of organic 

and inorganic compounds promoting salt encrustation and efflorescence formation, physical 

intrusion/penetration of microorganisms inducing cracks and detachment of some fragments 

(Rojas et al., 2009; Dakal and Cameotra, 2012b). These alterations promote serious aesthetic 

and structural problems that need to be signalised and characterised to fully understand the 

degradation/deterioration process (Capodicasa et al., 2010; Pepe et al., 2011a).  

Microorganisms play a geoactive role in the biosphere because they can initiate, support and 

accelerate some geochemical and geophysical reactions which lead to biodeterioration of 

artworks. Among the numerous microorganisms involved in this process, filamentous fungi, 

yeasts, bacteria, algae and lichens constitute the commonly microbiological agents present in 

artworks, whose development is supported by favourable temperature, relative humidity 

conditions and nutrients availability (Nugari et al., 1993b; Garg et al., 1995; Ciferri, 1999; Heyrman 

and Swings, 2003; Pangallo et al., 2009b; Borrego et al., 2010). Thus, to give an overview about 

the microflora involved in the biodeterioration/biodegradation processes, it is necessary to use 

different approaches in order to characterise the coloniser population, to assess their 

physiological/biological potential and to identify the alterations caused in the materials.  

Some authors suggest bacteria as the first agents in the colonisation of mural paintings, 

because they have reduced nutritional needs, providing organic matter to the next colonisers. 

Bacterial growth is frequently associated to the formation of biofilms, promoting discolouration of 

the pigments. On the other hand, the growth of biological agents such as fungi is identified as a 

determinant factor in the degradation of the murals (Garg et al., 1995; Rölleke et al., 1996a). Their 

proliferation is enhanced in situations of high humidity and temperature (Garg et al., 1995; 

Gorbushina et al., 2004; Sterflinger, 2010). Their development in mural paintings can induce 

discolouration and deterioration of the surfaces, leading to stains appearance that alter the colour 

of the paint layer, and, on the other hand, hyphae penetration may lead to fragments detachment 

(Garg et al., 1995; Ciferri, 1999; Gorbushina and Petersen, 2000b; Milanesi et al., 2006; Guiamet 

et al., 2011). 

Among the several chromatic alterations involved in the degradation/deterioration of artworks, 

pigments oxidation is one of the problems that affects drastically painted areas. 

 Pigments like red lead and lead white have been widely employed in paintings since Antiquity. 

Admixtures of lead white and red pigments like red lead, vermillion and red ochre for example, 
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were employed on paintings to produce flesh tones/carnations. However, some pigments like lead 

white (2PbCO3·PbOH2) and red lead (Pb3O4) can suffer alterations, associated to darkening 

and/or whitening processes (Petushkova and Lyalikova, 1986; Aze et al., 2006; Aze et al., 2008; 

Kotulanová et al., 2009a). The transformation of these pigments can be due to natural aging, light 

interaction or promoted by several environmental parameters where humidity play an important 

role in the activation of chemical processes, as well as in the support of microbial development, 

which may generate colour alterations of lead based pigments (Giovannoni et al., 1990). 

 In the case of the whitening process, compounds like hydrocerussite (2PbCO3.Pb(OH)2) 

cerussite (PbCO3) and anglesite (PbSO4) can appear in artworks as pigment degradation 

products, whereas plattnerite (PbO2) and galena (PbS), a black/brown product are found in 

darkening areas (Smith et al., 2001; Aze et al., 2008; Kotulanová et al., 2009a). 

 Black galena production can be caused by the reaction of lead based compounds with sulphur-

containing compounds and gases. Another mechanism for the darkening of lead-based pigments 

is their oxidation to the black-brown mineral plattnerite (Kotulanová et al., 2009a). Nevertheless, 

in mural paintings, the darkening phenomenon has been mainly attributed to the plattnerite 

formation (Smith et al., 2001; Smith and Clark, 2002). This degradation product can result of the 

red lead or lead white oxidation, wherein the alteration of lead oxidation state of Pb2+ to Pb4+ 

promotes the chromatic alteration of these pigments (Aze et al., 2006). Plattnerite formation was 

also attributed to the metabolic activity of microorganisms (Petushkova and Lyalikova, 1986; 

Giovannoni et al., 1990; Qingping et al., 1999; Smith et al., 2001; Aze et al., 2008).  

 Another phenomenon that promotes mural paintings decay is associated to oxalates formation. 

There are two possible sources, chemical and biological, for the formation of oxalates onto the 

surface of the painting. According to the second hypothesis, microorganisms such as bacteria, 

fungi, algae and lichens have been identified as the main responsible for their formation (Çaliskan, 

2000; Cariati et al., 2000; Edwards et al., 2000; Rampazzi, 2004). In fact, the metabolism of these 

microorganisms excrete oxalic acid (H2C2O4),  which can react with the calcite (CaCO3) present 

in the painting giving rise to calcium oxalate (CaC2O4) formation, in different states of hydration 

like whewellite (CaC2O4.H2O) and weddellite (CaC2O4.2H2O), very insoluble compounds, leading 

to the formation of efflorescence and consequent deterioration of the paintings (Švarcová et al., 

2009; Guggiari et al., 2011). Calcium oxalates formation can also occur as a defence mechanism 

of the microorganisms in situation with excess of calcium, to prevent the toxicity for the cell (Pinna, 

1993). 

In addition to the degradation/deterioration problems already described, mortars discolouration 

is also an alteration that affect the integrity of the artworks. These alterations are mainly 
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associated to phototrophic microorganisms such as cyanobacteria and algae, owning an 

important role in the mortars decay (Altenburger et al., 1996b; Ariño and Saiz-Jimenez, 1996; 

Cappitelli et al., 2009; Tran et al., 2012a; Kusumi et al., 2013). These microorganisms have been 

reported to promote deterioration of the internal wall surfaces and plasters where there is low light 

intensity, and, particularly, cyanobacteria are pointed to cause rosy discoloration in indoor 

environments (Cappitelli et al., 2009). Nevertheless, these microorganisms and others can induce 

irreversible stainings and chromatic alterations (Rölleke et al., 1998a; Urzì and Realini, 1998; 

Gurtner et al., 2000b; Piñar et al., 2001; Schabereiter-Gurtner et al., 2001b; Realini et al., 2005; 

Ripka et al., 2006; Imperi et al., 2007b; Laiz et al., 2009; Piñar et al., 2009; Jurado et al., 2012; 

Ortega-Morales et al., 2013; Sterflinger and Piñar, 2013a), due to their ability to produce 

pigmented compounds (Warscheid and Braams, 2000; Polo et al., 2010). An example of these 

coloured compounds are carotenoids, that are tetraterpenoids - highly unsaturated isoprene 

derivatives - chiefly synthesised by filamentous fungi and yeasts but also by some species of 

bacteria, algae and lichens. Carotenoids are the most widely distributed class of dyes in nature, 

displaying yellow, orange, and red colour (Aksu and Eren, 2005; Tinoi et al., 2005). The main 

function of the carotenoids is harvesting the energy of light, protection of living organisms against 

oxidative damage by quenching photosensitizers, interacting with singlet oxygen and scavenging 

peroxy radicals, thus preventing the accumulation of harmful oxygen species, and in stabilisation 

of certain pigment-protein complexes (Davis, 1991; Sandmann et al., 1999).  

To understand some alteration phenomena that induce serious damages in artworks, putting 

in question their durability, three different cases were selected for study. Each case is inserted in 

a different context: one church with regular religious ceremonies celebration, the Santa Clara 

Church, a convent (Nossa Senhora da Saudação Convent) with low luminosity, high humidity 

conditions, closed to visitors, both with mural paintings, and the Évora Cathedral, one of the most 

emblematic monuments of Évora, with a lot of visitants along the year.  

 The criteria for selection of these artworks were: alteration status, degradation levels and 

chromatic alterations. Three different problems were studied: 

a) Darkening of carnation areas - Santa Clara Church 

b) Chromatic alterations of green areas - Nossa Senhora da Saudação Convent 

c) Mortars discolouration (pink stains) - Évora Cathedral 
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2.1. Santa Clara Church 

Santa Clara church was built at the end of 16th century in Sabugueiro (Arraiolos, Southern 

Portugal), with decorative campaigns that extended during the 17th and 18th centuries, classified 

as Monument of Public Interest in 2001. It is one of the Mannerist exemplars of the region, 

evidenced by the classic simplicity of the late-sixteenth-century. The inside has a single nave 

covered with sixteenth century mural paintings, composed by 18 panels. The several paintings 

present in the church are essentially representations of themes of Marian life and worship of the 

Lusitanian, as well as: Annunciation, Crib, Adoration of the Kings and representation of several 

Saints (A.A.V.V., 1978). 

 
 

 

Figure II-1. Santa Clara church in Sabugueiro, Portugal (A) and general view of the ceiling mural paintings (B). 

 
 

2.2. Nossa Senhora da Saudação Convent 

The Low Choir of the extinct Dominican Convent of Nossa Senhora da Saudação, founded 

during D. Manuel I reign inside the medieval castle of Montemor-o-Novo (Alentejo, Southern 

Portugal) have a set of mural paintings, with  good artistic quality. These paintings are among the 

most important mural paintings cycles from the first quarter of the 17th century in Évora 

Archiepiscopate, and are attributed to José de Escovar, an easel and mural painter with Spanish 

ancestry, one of the most laborious and active painters working in Évora. Covering the vault and 

the walls there are 17 painted scenes which includes catechetical passages from Jesus Christ 
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and other Saints iconography. These paintings have survived with structural damages to the 1755 

earthquake that have completely destroyed the town of Lisbon and have escaped in the 20th 

century to vandalism during the years that the convent was abandoned (Gil et al., 2014). Hidden 

by darkness for at least sixty years, these murals show severe paint losses in some of the scenes 

mainly due to salts formation and also chromatic alterations that affect green areas.  

 

 

 

Figure II-2. General view of Nossa Senhora da Saudação Convent, Montemor-o-Novo, Portugal (A), cloister (B) and 

Low Choir of the Convent (C). 
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2.3. Évora Cathedral 

Évora Cathedral or Santa Maria Church is one of the most emblematic monuments in Évora, 

Southern Portugal, a monumental town classified by UNESCO as World Heritage. This monument 

is the biggest Portuguese Cathedral and has a Romanic-Gothic style or Gothic with Cistercian 

and Medicant influences. Its construction dates back to the 13th century and was inspired by the 

model of Lisbon’s Cathedral and other foreign cathedrals.  

This monument has suffered several conservation-restoration interventions through the ages, 

without, however, any type of previous knowledge about the type of mortars and materials used. 

Recent works (Adriano et al., 2009; Silva et al., 2010) focused on the material characterisation of 

the renders, have shown that the inner walls of the Cathedral are composed of dolomitic aerial 

lime mortars with siliceous aggregates similar in composition to the granodiorites of Évora’s region 

with crushed ceramics as additives which can be dated back to a 16th century documented 

rehabilitation intervention. These works, however, were unable to detect any pigment and hence 

to explain the pink colour that covers the majority of the inner walls surface.  

 
 

 

Figure II-3. General view of the façade (A), lateral (B) and indoor of Évora Cathedral, Évora, Portugal. 
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Thus, according to the different alteration problems reported, it was considered imperative to 

perform a full study in order to identify the phenomena that promote these damages in the mural 

paintings and mortars, combining analytical methodologies for the material characterisation of the 

surface layers and microbiological approaches to evaluate the contamination levels and correlate 

them with the chromatic alteration detected. This information together with the alteration products 

characterisation has proven to be a good indicative to identify the biodeteriogenic agents 

responsible for the decay of these artworks. 

 
 
 

3. Experimental Section 

3.1. Sampling process 

 The sampling process was carried out using micro- and non-invasive methods (Annexe C), 

following the requirements for conservation purposes, minimising the structural and aesthetical 

impact of the paintings, collecting the minimum amount of sample required for the different assays 

and sufficient to ensure the representativeness of the areas in analysis. Three different artworks 

visibly altered were analysed: Santa Clara Church, Nossa Senhora da Saudação Convent and 

Évora Cathedral. 

Microsamples were collected in areas with different alteration signs, using sterile cotton swabs 

placed in suspension of transport MRD medium (Maximum Recovery Diluent, Merck)/NaCl 0.85% 

solution for microbiological experiments, and with sterile scalpels and microtubes for mortar 

microfragments (100 mg) analyses, whose scheme collection for each case is represented in the 

figure II-4, figure II-13 and figure II-18. Samples were conserved at 4ºC until utilisation. 

 
 

3.2. Evaluation of microbial contamination in mortars 

In order to assess the degree of deterioration of the support and the type of colonising 

microorganisms, samples were used as such or coated with Au-Pd (Balzers Union SCD 030) 

during 30 s, and observed in a HITACHI S-3700N variable pressure scanning electron microscope 

(VP-SEM) with accelerating voltage of 18-20 kV. Microanalysis of the selected samples were 

performed using the same microscope coupled with a Bruker XFlash 5010 energy dispersive X-

ray spectrometer to allow microstructural characterisation of the mortars and elemental 

composition (point analysis and 2D mapping). EDX analyses were performed at 20 kV. 
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3.3. Isolation and characterisation of microbial population 

 Samples collected with sterile cotton swabs were mechanically shaken for 1h and inoculated 

(100 µL), under aseptic conditions, in different culture media (Annexe A), specific to each 

microorganism like: NA (Nutrient Agar) for bacteria, MEA (Malt Extract Agar) and CRB (Cook 

Rose Bengal) for filamentous fungi, and, YEPD (Yeast Extract Peptone Dextrose Agar), for 

yeasts. The cultures were incubated at 30ºC for 24-48 h for the development of bacteria, and for 

4-5 days at 28ºC for fungal growth. To detect slow growing microbial population, plates stayed in 

incubation at the same temperature for longer period of time. Each different colony observed was 

picked up to obtain pure cultures, incubated at the temperatures previously mentioned, 

subsequently stored at 4ºC and periodically peaked to maintain the cultures active.  

 
 

3.4. Characterisation of microbial isolates 

The microbial isolates obtained were characterised based on the macroscopic features of the 

colonies (texture and colour) and micro-morphology of the hyphae and reproductive structures (in 

the case of spore isolates). The preparations made for fungal isolates were stained with 

methylene blue, observed with a 20x and 50x objective with an optical microscope Leica DM 

2500P and digitally recorded by a Leica DFC290HD camera. The bacterial isolates were carried 

out with Gram staining and observed in the same optical microscope with a 100x objective lens. 

Identification was performed by sequencing 16S rDNA or ITS region for bacterial or fungi isolates, 

by outsourcing service. The genomic DNA extraction was carried out by using a kit (NucleoSpin 

DNA Extraction kit - Macherey-Nagel, Düren, Germany). For bacteria, 16S rDNA was amplified 

using the primers 5’-ACG GGT GAG TAA CAC GTG-3’ and 5’-GCT CCG TCA GAC TTT CGT-3’ 

or 5’-AGA GTT TGA TCC TGG CTC AG-3’ and 5’- GAC GGG CGG TGT GTA CAA-3’. 

For fungi,  the region containing partial portions of the small subunit (18S), both internal 

transcribed spacers (ITS) and the 5.8S of the rDNA repeat unit was amplified using the 

oligonucleotides primers ITS5 (5’-GGAAGTAAAAGTCGTAACAAGG-3’) and ITS4 

(5’TCCTCCGCTTATTGATATGC-3’). 

PCR reactions were carried out on initial denaturing at 95ºC for 3 min followed by 30 cycles at 

92ºC for 30 s, 55ºC for 30 s, and 72ºC for 1 min. The reaction was completed with 10 min 

extension at 72ºC. PCR products were analysed by agarose gel (1%) electrophoresis, purified 

with the NucleoSpin Extract II Kit (Macherey-Nagel) and sequenced by capillary electrophoresis 

using the ABI PRISM 3730 xl sequencer (Applied Biosystems) with the Kit BDT v1.1 (Applied 

Biosystems). 
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The nucleotide sequences were aligned with those retrieved from the GenBank (NCBI) 

databases for the homology analysis using the BLASTN 2.2.25+ program. 

 
 

3.5. Alteration status assessment  

To investigate the alteration products formed in the deteriorated paint areas, microanalyses 

were performed on the mortar microfragments. 

Raman spectra were acquired in a HORIBA Xplora Raman microscope, coupled to external 

power laser sources for specimen radiation: 638 nm (He-Ne) and 785 nm (diode laser). Samples 

irradiation was performed using a filter 10-50% to prevent any thermal damage of the sample. 

Ordinary acquisition time was of the order of 10-20 s with 5 cm-1 of spectral resolution. The back-

scattered light is collected by the objective (10x or 50x), and then captured by a CCD (Charge 

Coupled Device) detector.  

Some samples, those having compounds with a low Raman scattering, were also analysed by 

FTIR spectroscopy using a (Bruker ALPHA) equipped with the attenuated total reflection (ATR - 

QuickSnap) set up coupled with crystal diamond. To obtain a good signal-to-noise ratio, 128 

scans were accumulated for each spectrum at a spectral resolution of 4 cm-1, between 4000 and 

375 cm-1. Spectral analysis was performed with OPUS 6.0 software. 

 
 

3.6. In vitro simulations assays 

3.6.1. Green areas chromatic alteration by microbial communities of Nossa 

Senhora da Saudação Convent 

To study the influence of metabolic activity of microorganisms on the green areas alteration a 

combinatory strategy was used: 

a) Development of laboratorial cultures with high density of cells corresponding to mixed 

cultures of active cultivable microorganisms present in degraded green areas of the 

paintings; 

b) Development of laboratorial cultures with high density of cells corresponding to pure 

cultures, using isolated microorganisms; 

c) Simulation of the influence of these cultures on real sterilised microsamples. 

 

Mixed cultures were performed using cotton swabs/microfragments collected in degraded 

green areas of the Low Choir paintings of the Convent of Nossa Senhora da Saudação. These 
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samples were used to inoculate 50 mL cultures (Malt Extract and Nutrient Broth liquid culture 

medium) for fungal and bacterial population development. Cultures were incubated at 28ºC (for 

fungi) or 30ºC (for bacteria) in an orbital shaker at 150 rpm (Heidolph unimax 1010), during 7 

days. Pure cultures were performed under the same conditions, using the different isolated strains 

(Bacillus sp., Cladosporium sp., Penicillium sp., Nectria sp.) to inoculate the liquid cultures. 

 These cultures were analysed by Raman microscopy to detect the presence of oxalates in the 

metabolic pool. Then, 10 µL of these cultures were applied on sterilised microfragments of mortar 

(around 20 mg) and incubated during two weeks at 30ºC. After this period the potential for biofilm 

production and the proliferation on the mortar was evaluated by SEM. 

 
 

3.6.2. Mortars alteration of the Évora Cathedral 

The predominant isolated microorganism colonies, Rhodotorula sp. yeast, exhibited a strong 

pink/dark orange colour that was further investigated to establish the effect of their growth on the 

mortars, by different sets of experiments: 

- insertion of original historical mortar on sterilised liquid culture media under controlled 

conditions for microbial population analysis; 

- liquid cultures of isolated Rhodotorula sp. yeast for production of metabolic compounds. 

 

Mortar microfragments (0.1 g) were inoculated in 50 mL culture media (Malt Extract and 

Nutrient Broth liquid culture medium) for fungal and bacterial population development. Cultures 

were incubated at 28ºC (for fungi) or 30ºC (for bacteria) in an orbital shaker at 150 rpm (Heidolph 

unimax 1010), during 14 days. In the case of Rhodotorula liquid cultures, fresh yeast slant was 

washed with 2 mL of NaCl 0.85% solution and the suspension was inoculated in the same 

conditions mentioned above. 

These cultures were analysed by Raman microscopy and FTIR-ATR (see section 3.5. 

Alteration status assessment) to detect the presence of carotenoids in the metabolic pool. 

Standard samples were prepared by mixing weighed amounts of commercial β-carotene 

(Sigma-Aldrich, 95%) with pulverised sterile mortar from Évora Cathedral (16, 58, 122 and 212 

mg β-carotene g-1 mortar). These mixtures were analysed by Raman spectroscopy (see section 

3.5.Alteration status assessment) to evaluate the Raman accuracy on the detection of carotenoids 

in complex samples like mortars. The analyses were complemented with FTIR-ATR 

measurements. 
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4. Results and Discussion 

The identification of the agents that promote degradation/deterioration of the mural paintings 

involves a detailed study, using different techniques, requiring sometimes the prior isolation of the 

microorganisms that proliferate in these artworks. Thus, the strategy adopted to identify the 

pathology, that promotes alteration in the artwork, defines the type of analysis to be performed. 

Therefore, the collection of samples is an extremely important step, where the careful observation 

of the paintings allows us to get an idea about the areas possibly affected and the type of changes 

that are occurring.  

The main problems detected in the mural paintings studied are related with colour alterations 

due to pigment changes or surfaces modifications, salt efflorescences formation, cracks 

appearance in the walls, and, in some cases detachment of fragments. In this way, the 

identification of the alteration products that promote the modification of the surfaces and the 

signalisation of the main parameters involved in this event, it is crucial to understand and diagnose 

the problem, in order to allow the conservation and preservation of artworks. 

 
 

4.1. Darkening of carnation areas - Santa Clara Church 

The Santa Clara church has a set of mural paintings covering the vault, where it is possible to 

observe a wide range of religious scenes paintings, but unfortunately, they have suffered 

degradation/deterioration due to darkening of some figures represented, and salt efflorescences 

appearance. These alterations affect mainly carnations areas like faces, arms, hands and feet, 

where it was possible to observe black spots that cover some of the mentioned areas, or, in some 

cases affect all the carnation areas. In addition to the blackening process that affect the carnation 

areas, it was also detected the presence of salt efflorescences. Nevertheless, salt efflorescences 

were also detected in other areas, particularly in the blue areas of the painting. 

The eighteen panels represented in this church report several biblical episodes, and for this 

work, only two panels were selected, the Annunciation (Panel 1) and the Apparition of the Virgin 

to D. Fuas Roupinho (Panel 2). These panels were selected due to the presence of evident 

alteration signs. Throughout the text, each one of these panels will be designated by SCP1 (Santa 

Clara Panel 1) and SCP2 (Santa Clara Panel 2), following up the respective number of the 

sampling area (Figure II-4). The sampling points are represented in Figure II-4.  
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Figure II-4. Santa Clara church panels with representative scheme of sampling process. (A) Panel 1 (SCP1) – 
Annunciation, (B) Panel 2 (SCP2) – Apparition of the Virgin to D. Fuas Roupinho. 
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Therefore, it is crucial to identify the phenomena that induced these alterations in the mural 

paintings, and, if it is associated to microorganisms presence, in order to give useful information 

for a possible intervention-restoration process to avoid the dissemination of the problem. 

In order to find answers to this problem, multianalytical protocol was developed. 

The first approach focuses on the mortars observation and material characterisation, important 

component to the knowledge of the original constituents of the paintings, followed by the 

identification of alteration products and investigation about the presence of biological 

contamination. Thus, samples with different alteration status were selected for these analyses: 

a) Chromatic layers in the flesh tones that suffer darkening process 

b) Areas with efflorescence salts 

 
 

4.1.1. Mortar microfragments analysis 

Several mortars microfragments from altered areas (carnations and blue zones) were used as 

such and mounted into a stratigraphic section for optical microscopy observation (Table II-1).  

The microscopic analysis performed on samples from flesh tones areas (SCP1_5 and 

SCP2_13) allows the observation of white and red pigment particles. This result indicates that the 

carnations hue and colour were obtained by the mixture of two different pigments (compounds 

identification in the section 4.1.2. Alteration products identification). On the other hand, these 

samples from flesh tones/carnations, that present darkening and also salt efflorescences, show, 

in addition to the white and red pigments already observed, small black particles in the upper 

layer of the paint surface. These particles seem to be associated with the alterations induced in 

the paintings, whereby analyses in these specific areas were performed.  

In the case of blue areas (SCP2_10), the pigment particles seem to be stable, without visible 

changes, however efflorescence salts are observed in these zones, as it was also detected in the 

carnation areas (Annexe C1). 
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Table II-1. Optical microscopy observations of mortar microfragments and respective cross section from different altered areas of the 
painting. 

 

Sample identification 

SCP1_5 SCP2_13 SCP2_10 

Sample 

location 

 

   

Mortar 

microfragment 

   

Cross section 
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After optical microscopy observation of the most altered areas, it was necessary to 

characterise the chemical composition of the samples, in order to knowledge the materials used 

and understand the alterations suffered.  

Thus, through chemical analyses by SEM-EDX, the elemental composition of the pigments 

was obtained. Microchemistry analysis on the chromatic layers of the mortar microfragment 

SCP1_5 sample (Figure II-5, A-D) allowed the identification of lead (Pb), as the main element in 

the paint surface, which may indicate the presence of lead based compounds, fact that was 

confirmed by Raman analysis (section 4.1.2. Alteration products identification). It was also 

detected iron (Fe), calcium (Ca) and magnesium (Mg) in this sample, as it is shown in the Figure 

II-5. 

 
 

 

Figure II-5.  Analysis of mortar microfragment SCP1_5 from Panel 1 of the Santa Clara church (A), by SEM observation 

in back-scattered mode (B) and EDX 2D elemental maps (C) with individual element distribution of calcium (Ca), lead 
(Pb) and iron (Fe) within mortar, and, EDX spectrum (D). 

 
 

Other sample from a darkened area (SCP2_7) was analysed, as cross section, in order to 

obtain information about the chromatic layers, but also the mortar composition (Figure II-6, A-D). 

The elemental composition is similar to the previous one, when calcium was mainly located in the 

mortar layer, together with magnesium, while lead is only present in the chromatic layer, 

suggesting the presence of a lead compounds, as had already been observed. 

The calcium (Ca) and magnesium (Mg) detected in the mortar layers, can be indicative of a 

dolomitic lime mortar. 
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Figure II-6.  Analysis of mortar microfragment SCP2_7 from Panel 2 of the Santa Clara church (A), by SEM observation 

in back-scattered mode (B) and EDX 2D elemental maps (C) with individual element distribution of calcium (Ca), lead 
(Pb) and magnesium (Fe) within mortar, and, EDX spectrum (D). 

 
 The presence of lead in the chromatic layers of these paintings is common in all the carnation 

areas analysed. This colouration, according to the results, was obtained by a mixture of red and 

white pigments, which can be lead based compounds. Therefore, standard lead compounds like 

lead white (Figure II-7 A) and red lead (Figure II-7 B) were analysed by SEM, and, the results 

evidence similarities in the morphological aspect of the standard grain particles with the mortar 

microfragment samples (Figure II-7 D-F), being possible to observe the presence of these two 

pigments in the paint areas (Figure II-7 E,F). 
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Figure II-7. SEM micrograph of lead based compounds standards like lead white (A), red lead (B) and a mixture of 

these two compounds (C), and, mortar microfragments from altered areas: SCP1_5 (D), SCP1_8 (E) and SCP2_7 (F). 

 
 
Apart from the chromatic alterations, samples from salt efflorescence areas (SCP1_11) were 

also analysed, revealing in their constitution calcium (Ca), magnesium (Mg), silicon (Si) and 

aluminium (Al), elements that are part of the mortar layer (Figure II-8). These salt efflorescences 

were detected in the surface of the pictorial support, fact that can be indicative of the dissolution 

and surface recrystallisation of the mortars binder. 
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Figure II-8. Analysis of mortar microfragment SCP1_11 from Panel 1 of the Santa Clara church (A), by SEM observation 

in back-scattered mode (B) and EDX 2D elemental maps (C) with individual element distribution of calcium (Ca), 
magnesium (Mg), silicon (Si) and aluminium (Al) within salt efflorescence, and, EDX spectrum (D). 

 
 

Salt efflorescences are frequently found in artworks with porous nature like mural paintings 

and stone monuments, promoting their degradation/deterioration. These porous materials are 

suitable for salt solution migration to the surface, where crystallisation can occur and consequent 

alteration of the paint layers. In this way, due to pigments sensitivity to moisture, alkalinity and air 

pollution, some of them, such as azurite, smalt, cinnabar, lead white and red lead can suffer this 

process, causing alteration on the wall paintings (Dei et al., 1998; Kotulanová et al., 2009b).  

In accordance with the foregoing, these efflorescence salts were also detected in areas with 

carnations blackening, as it is possible observe in Figure II-9 by the microchemical analysis 

performed. Thus, in the mortar microfragment, SCP2_8 from Panel 2, it is possible to observe 

calcium and magnesium particles (Figure II-9B) in the surface of the chromatic layer, which is 

mainly composed by lead. The presence of these elements in the paint surface are probably from 

the mortar, which promote the efflorescence appearance, altering the paintings. Besides that, it 

is possible to observe several voids/empty spaces between the pigment particles (Figure II-9C), 

suggesting the degradation of the binder used in the painting. This fact can be promoted by 

microorganisms that use the organic material for their development. 
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Figure II-9. Analysis of mortar microfragment SCP2_8 from Panel 2 of the Santa Clara church (A), by SEM observation 

in back-scattered mode (B, C) and, EDX spectrum (D). 

 
 
 
 

4.1.2. Alteration products identification 

In order to identify possible alteration products, a Raman comparative study of carnation areas 

with and without alterations due to black spots was performed. 

Through Raman analysis of the microfragments it was possible to identify, in areas without 

alteration, the presence of bands characteristics of lead compounds like lead white (288, 356, 

369, 435, 607, 961, 1047, 1088 and 1126 cm-1) and red lead (117, 149, 227, 316, 392, 485 and 

546 cm-1), by the comparison of the standard pigments analysed (Figure II-10, A-B), whose 

combined use allows the flesh tones tonality, as previously reported.  
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Figure II-10. Raman spectra of lead white (A) and red lead (B) standards. 

 
 
In microfragments from chromatic layers in the flesh tones/carnations that suffer darkening 

process were detected characteristic bands of plattnerite (PbO2) by the presence of 405, 523 and 

676 cm-1 bands (Figure II-11A-C). The formation of this compound could be associated to lead 

based pigments oxidation, like lead white and red lead. The presence of these compounds in 

mortars was confirmed due to the detection of some Raman signature of these pigments (Figure 

II-11). 

In addition, in the black spots that affect a broad area of the paintings, specifically in the 

carnation zones, were identified characteristic signals of plattnerite. This alteration product was 

detected in all the microfragments analysed, evidencing that the presence of this compound is 

responsible for the darkening process in the flesh tones of the painting. In fact, PbO2 resulting 

from the oxidation of lead pigments, wherein the alteration of lead oxidation state of Pb2+ to Pb4+ 

is already related to promote chromatic alteration of these pigments (Qingping et al., 1999; Aze 

et al., 2006; Kotulanová et al., 2009b). In Santa Clara Church the oxidation of lead based 

compounds affect a broad area of the paintings, causing a pronounced darkening on the 

carnations in the majority of the figures represented. 
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Figure II-11. Raman analyses of several altered areas of Santa Clara Church affected by darkening process SCP1_9 

(A), SCP2_13 (B), SCP2_1 (C) and with salt efflorescences formation SCP1_11 (D).  
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In addition, Raman analysis of the darkened carnation show also characteristic bands of 

organic material like carbohydrates and proteins (1319 and 1554 cm-1, C-H, C-C and C=O 

stretching vibrations) (Rampazzi, 2004; Jehlicka et al., 2007; Jehlicka et al., 2010; Edwards et al., 

2011), which is compatible with microbial contaminations (Figure II-11A, B). 

Areas with salts efflorescence formation were also analysed by Raman spectroscopy (Figure 

II-11D), and the results suggest the presence of anhydrite (calcium sulphate - CaSO4). This salt 

may have been formed due to the available calcium present in the mortars through the reaction 

of calcium carbonate with atmospheric sulphur dioxide (SO2) (Prasad et al., 2001).  

 
 

4.1.3. Microbiological contamination assessment 

Conversion of lead based compounds into black mineral plattnerite is normally attributed to the 

exposure to an alkaline environment or warm situations. According to some authors, fungi are 

able to dissolve Pb3O4, causing the accumulation of Pb2+ ions and leading the subsequent 

recrystallization of Pb4+ ions into plattnerite (Fomina et al., 2005). 

To evaluate the microbial proliferation, mortar microfragments were analysed by scanning 

electron microscopy. The micrographs obtained, revealed the presence of microbial 

contamination in all the areas analysed (Figure II-12) in opposition to areas without alteration 

signs, where the presence of microorganisms was nearly absent. In the case of angel arm 

darkening (SCP1_10), a micellar structure of filamentous fungi was observed, covering all the 

microfragment surface (Figure II-12 SCP1_10, A-D). These microorganisms were also observed 

in the black spots of the angel face (SCP2_1), however in a lower extension (Figure II-12, 

SCP2_1, A-D) than in the SCP1_10 sample. The angel hand (SCP2_13) was also affected by the 

darkening process and in this area it is possible to observe filamentous fungi proliferation (Figure 

II-12, SCP2_13, C) but also yeast cells covering all the sample surface (Figure II-12, SCP2_13, 

D). Microbial contamination was also identified in the areas with salts efflorescence formation 

(SCP1_11), corresponding to an high fungal proliferation (Figure II-12, SCP1-11, C-D).  

 



 
The role of microorganisms in the mural paintings pathologies 

64 
 

 

Figure II-12. Analysis of several altered areas from Santa Clara Church, focusing on darkening areas and salt 

efflorescence formation, evidencing details of the areas with alteration by: photographs captured under frontal (A) and 
raking (B) light, and, SEM micrographs in secondary electron mode (C, D). 

 

 
Thus, this biological contamination seems to contribute for the alterations observed in the 

Santa Clara Church, whose high contamination level were found in cracked areas, pigments 

oxidation and materials crystallisation. 

In this way, to complement these results, culture-dependent methods were applied in order to 

characterise the cultivable microbial population that colonise these paintings. 
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The results show that the cultivable microorganisms thriving in the Santa Clara mural paintings 

are essentially filamentous fungi of the genera Aspergillus, Cladosporium and Penicillium, but 

were also isolated unclassified fungi, and several unidentified bacterial strains.  

The areas that suffer chromatic alterations, due to darkening process, show high contamination 

levels, particularly by fungi of the genus Penicillium. The microorganisms identified in this case 

study are widely found in other mural paintings, whose incidence was detected in areas with 

significant alterations (Rosado et al., 2013a). These microorganisms seem to be related with the 

chromatic alteration detected, probably induced by their metabolic activity and excretion products 

(Qingping et al., 1999; Aze et al., 2008). At this moment it is not possible to identify the main 

parameter that promote this degradation process, however results obtained in this study, clearly 

show that microbial contamination give an important contribution to lead based compounds 

oxidation.  

To try to get a deeper insight on this process, simulation assays are in progress, in order to 

understand the role of the microorganisms on the pigments oxidation. For this purpose and to 

mimic the paintings of Santa Clara Church, several mortar specimens, painted with lead white 

and red lead, were inoculated with the different microorganisms isolated and natural aging is in 

course. 

 
 
 
 
4.2. Green pigments alteration - Nossa Senhora da Saudação Convent 

 One of the chromatic alterations that affect mural paintings is the degradation of copper green 

pigments. In the Low Choir of the Nossa Senhora da Saudação Convent, the painting areas with 

these pigments were altered by the appearance of a brown veil, which cover the surfaces 

promoting in several cases the alteration of a broad area of the mural paintings. 

 The Low Choir of the Nossa Senhora da Saudação Convent has a mural paintings with a good 

artistic quality, dating from the seventeenth century that needs an urgent attention to preserve 

them. In this way, these paintings were studied and the main problems that causes the chromatic 

alteration were identified.  

 In Figure II-13 it is possible to observe the sampling scheme used for this study.  
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Figure II-13. Sampling location on green, brown and golden areas of the panels 2, 4, 5, 8, 13, and from Left and Right 

wall (  - samples collected with sterile cotton swabs;  - microfragments collected with sterile scalpels and microtubes) 
present in the Low Choir of the Convent of Nossa Senhora da Saudação Church, Montemor-o-Novo, Portugal).  
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 Several samples were collected in green, brown and golden areas, with visible alterations signs 

and different approaches were performed in order to characterise these alterations. 

 
 

4.2.1. Microbial community identification 

 Mortar microfragments from altered painted areas were analysed by SEM, allowing the 

observation and identification of the presence of microbial communities thriving in the paintings. 

This technique provides an image of high magnification and resolution, and, hence infer about 

the existence of contamination, by direct observation. In the collected mortar microfragments were 

observed (Figure II-14) filamentous fungi and hyphae proliferation within the structure of the 

mortar, which may explain the presence of some cracks in the paint. The image obtained by SEM 

allows also the observation of fungal hyphae and micellar structures of filamentous fungi 

penetrating the microstructure of the mortars, therefore promoting the proliferation of these 

microorganisms in depth. 

 
 

 

Figure II-14. SEM micrograph of mortar microfragments. The arrows indicate the presence of filamentous fungi and 

hyphae proliferation by the surface of the mortar (A, B) and the penetration of these microorganisms in depth (C, D).  
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 To evaluate the microbial population present in the paintings, an in vitro growth assay was 

envisaged, using different culture media. The characterisation of the isolated microorganisms was 

performed according to macroscopic (colour, size and morphology) and microscopic features 

(type of reproductive structures and colour of colonies in the case of bacteria) and in some cases 

by DNA sequencing. Although this approach does not enable a full characterisation of the 

microbial community, since some microorganisms do not have the capacity to grow under in vitro 

conditions, however, it allows to obtain isolated microorganisms, required  for other assays, 

namely for simulation of biodegradation process with high density of cells. 

The results showed that the microorganisms growing on these paintings are bacteria, 

filamentous fungi and yeasts. With this study it was possible to isolate seventeen strains of fungi 

and, based on molecular approaches attribute genera Cladosporium (six isolates), Penicillium 

(one isolate) and Nectria (one isolate). On the other hand, the bacterial population isolated is 

mainly composed by bacilli Gram-positive, being possible to assign the identification of three 

different Bacillus sp. strains. 

 Left Wall and Panel 2 (Figure II-13) correspond to the zones of the painting where the isolation 

procedure allowed a greater fungal diversity. Panel 13 (Figure II-13) showed a high bacterial 

number of isolated strains. Microbial colonisation may be one of the factors contributing to 

chromatic alterations observed in the painting, namely surface veils and colour alteration of 

original green areas. Several studies indicate that microorganisms are the main responsible for 

the biofilms formation on the paintings, promoting alterations in the pigments (Nugari et al., 2009; 

Zammit et al., 2011). 

 
 
 

4.2.2. Green areas alteration 

4.2.2.1. Evidence of alterations by oxalates formation  

 Pigment analysis of green areas, by Raman spectroscopy, have allowed to identify the main 

green pigment used as malachite, as is shown in the figure II-15 and according to standard 

analysis. 

 Mortar microfragments from altered green areas were also analysed by Raman spectroscopy 

allowing the detection of oxalate compounds. 

 The Raman spectra present in the figure II-15 show the presence of calcium oxalates in the 

analysed samples. Different forms of calcium oxalates can be observed. These oxalates can 
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occur as whewellite (CaC2O4.H2O, calcium oxalate monohydrate) and weddellite (CaC2O4.2H2O, 

calcium oxalate dihydrate), the latter being less stable (Cariati et al., 2000; Hernanz et al., 2007). 

 

 

 

Figure II-15. Raman spectra of mortar microfragments (A-F) collected in the Low Choir of the Convent of Nossa 
Senhora da Saudação Church. The oxalates bands are evidenced in the spectra. Peaks of malachite pigment (m), 
oxalate compounds like weddellite (wd) and whewellite (wl), and calcite (c) are evidenced in the spectra.  
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 Raman spectra of the several samples analysed (Figure II-15, A-F) allows the detection of a 

band around 900 cm-1, characteristic of calcium oxalate compounds. The presence of the  

455 cm-1, 909 cm-1 (Figure II-15, A-F)  and 1440 cm-1 (Figure II-15,D) bands are characteristic of 

weddellite, however, in Figure II-15 C it is also present a band at 945 cm-1, characteristic of 

whewellite (Pérez-Alonso et al., 2004; Villar et al., 2004). In all the analysed samples it is observed 

a peak at 1080 cm-1, characteristic of calcite (CaCO3) (Daniilia et al., 2008), the mortars binder. 

This compound may be an available source of calcium, which react with oxalic acid produced by 

metabolic activity of bacteria and fungi, forming the calcium oxalates compounds founded in these 

paintings.  

 The results obtained in the green zones allowed to detect the presence of calcium oxalates, 

associated to high levels of microbial contamination, factors that seem to be responsible for the 

alteration on the green pigments (malachite) that compose the mural paintings present in the Low 

Choir of the Nossa Senhora da Saudação Convent. Thus, the results suggest that the chromatic 

changes in the paint layers can be due to the presence of calcium oxalates. Several studies have 

reported the occurrence of weddellite in degraded areas of mural paintings (Pérez-Alonso et al., 

2004; Nevin et al., 2008; Sarmiento et al., 2008) due to the metabolic activity of the 

microorganisms, which secrete oxalic acid that reacts with calcium compounds present on the 

surface (Sarmiento et al., 2008). 

 
 

4.2.2.2. Analysis of oxalates in simulated assays 

The influence of microorganisms metabolic activity on the green areas alteration was studied 

using: 

- microsamples removed from degraded areas of the painting which retain the presence of 

total microbial communities, and, 

- simulation assays performed with real sterilised mortar microsamples, inoculated with high 

cells density of pure and mixed cultures, isolated from the painting, 

that were performed as mentioned in the section 3.6 of the Experimental Section. 

These cultures were analysed by Raman spectroscopy to detect the presence of oxalates in 

the metabolic pool. The results indicate the presence of oxalates in all bacterial cultures. Figure 

II-16 shows an example of a Raman spectrum of the metabolic pool, from mixed bacterial cultures 

from Panel 13, where it was also found oxalate compounds. It was possible to detect the presence 

of whewellite (885 cm-1, 1464 cm-1 and 1490 cm-1) and weddellite (455 cm-1, 908 cm-1 and  

1464 cm-1).  
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Figure II-16. Raman spectrum of bacteria mixed cultures, coming from Panel 13, to simulate oxalates production. 

 
 
This is consistent with the results obtained in the mortar microfragments analyses, where these 

oxalates were firstly detected.  

To complement the results, simulation assays were performed. Sterile mortar microfragments 

were inoculated with the bacterial pool from Panel 13, as mentioned above, incubated and 

analysed by scanning electron microscopy. 

Figure II-17B shows a SEM micrograph of a mortar microfragment submitted to a mixed culture 

of bacteria taken from Panel 13, where it is evident a biofilm formation involving all the surface of 

the mortar, indicating the potential proliferation of the bacteria. The results clearly show the 

influence of the microorganisms, namely bacterial communities, in the colour alteration, due the 

formation oxalate biofilms. Simulated assays in mortar microfragments, with mixed culture of fungi 

(Figure II-17D) obtained from the Left Wall were also performed in order to clarify the fungal 

impact in the mural painting biodeterioration. 
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Figure II-17. Magnifying glass observation of a mortar microfragment (A, C) and SEM micrograph of biofilm formation 

by bacteria taken from Panel 13 on the sterilised mortar microfragment (B), and, hyphae proliferation of fungi taken 
from Left wall (D),  after in-vitro growth.  

 
 
 
These assays allow to infer that these microorganisms have the capacity to proliferate within 

the mortar microfragments. Furthermore, observation of real mortar samples, show that the 

proliferation of these microorganisms seem to be correlated with cracks observed and the 

detachments of some areas of the painting, not only on the Left Wall but also on all panels of the 

Low Choir of the Nossa Senhora da Saudação Convent. Thus, fungal proliferation appears 

associated to mortar structural damages, whereas bacteria development is a determining factor 

in the chromatic alterations. 

All the panels analysed have biological contamination, either by bacteria or filamentous fungi 

proliferation, which seems to be associated with chromatic alterations, development of biofilms 

(particularly due to bacterial contamination), cracking (chiefly promoting by fungal contamination) 

and detachment of some areas of the painting. 
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4.3. Mortar discolouration - Évora Cathedral  

Évora Cathedral is one of the most emblematic monuments of Évora that has suffered some 

chromatic alterations in the inner walls, acquiring pink/dark orange stains, covering a broad area 

of the mortars. Several studies were performed in order to characterise the mortars composition 

(Adriano et al., 2009; Silva et al., 2010), however the analyses were unable to detect any pigment 

and hence to explain the pink colour that covers the majority of the inner walls surface. Thus, in 

order to identify the phenomena that promote the pink/orange stains appearance in the mortars 

of the Évora Cathedral inner walls, a multidisciplinary approach was adopted. 

The first step of this study was the samples collection, whose sampling locations are 

represented in the Figure II-18.  

 
 
 

 

Figure II-18. Sampling location in the inner wall of the Évora Cathedral with pronounced signs of alteration: pink/orange 

spots covering the surface.  

 
 
 

In this process, several samples were collected in order to allow the characterisation of the 

materials used, investigate the presence microbiological agents and understand the alterations 

that promote mortars discolouration. 
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4.3.1. Material characterisation 

The chemical analyses performed in mortars from inner walls of Évora Cathedral do not show 

pigment or an inorganic chromophore in their composition. Elemental point spectra and two-

dimensional (2D) elemental mapping by SEM-EDX (Figure II-19) showed the association of 

aluminium (Al), calcium (Ca), potassium (K), iron (Fe) and silicon (Si) in the mortars composition, 

suggesting a dolomitic aerial lime mortars with siliceous aggregates. Each chemical element 

micrograph (Figure II-19 Al, Ca and Si) shows the distribution of each of them in the mortar 

surface. Additionally, the support microstructure shows porosity and particle size (Figure II-19A,B) 

characteristic of this type of materials.  

 
 

 

Figure II-19. Analysis of cross section by stereozoom observation (A), SEM micrograph in back-scattered mode (B), 

EDX 2D map (C) and elemental map distribution of aluminium (Al), calcium (Ca) and silicon (Si) in mortar microfragment 
from Évora Cathedral inner walls. 

 

 
These results confirm that the pink colour observed in the inner walls of Évora Cathedral is not 

due to inorganic pigment presence, as has already been suspected and indicated in previous 

work (Adriano et al., 2009; Silva et al., 2010). Therefore, to understand the reasons that led to the 

appearance of these stains the present work envisaged a study of the possible biological nature 

of this phenomenon. 

Pigment formation may be a consequence of microorganisms metabolic activity. Many fungi 

produce organic pigments of different colours (green, grey, blue, purple, pink, violet, orange, and 

others), belonging to different classes of compounds like anthraquinones, xanthones or 
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carotenes, and are characteristic of different species, but the colour of the stain depends not only 

upon the chemical composition of the pigment but also on the other factors like the composition 

of painting constituents, presence of other microbial species or environmental conditions. Thus, 

pigments release on the material support or the presence of microorganisms containing pigments, 

can cause the appearance of different coloured stains or patches on mural paintings (Garg et al., 

1995). 

 
 

4.3.2. Microbial diversity characterisation 

The microfragments collected in the pink stained inner walls of the Cathedral, analysed by 

SEM, presented strong signs of microbiological contamination by yeast, bacteria and filamentous 

fungi (Figure II-20A-C). Yeast contamination forms a biofilm on the surface of the mortar totally 

covering the fragment analysed (Figure II-20A). In the case of fungal contamination it is possible 

to observe the proliferation of micellar structures upon/over the mortar surface (Figure II-20C). 

 
 

Figure II-20. SEM micrographs of mortar microsamples. Cluster of yeast (A) on the wall surface, bacteria (B) and 

filamentous fungi (C) proliferating in the inner wall of the Évora Cathedral. 

 
 
Once detected biological contamination in the samples, solid culture-dependent methods were 

applied, being possible to isolate several bacterial strains (e.g. Gram-positive cocci/bacilli), 3 

yeast strains in particular one of the genera Rhodotorula and filamentous fungi, 5 strains of the 

genera Penicillium, one strain of the genera Cladosporium, mycelium and also sterile mycelia. 
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Particularly relevant was the fact that, the predominant isolated microorganism, Rhodotorula 

sp. yeast, exhibited a strong pink/dark orange colour. Given these results, liquid medium cultures 

were carried out with microfragments from pink zones. These assays allowed us to obtain high 

cell densities revealing a potential proliferative capacity of microorganisms present in the walls of 

the Évora Cathedral (Figure II-21A). In addition, a pink colour is visible in the cultures which 

appears to be indicative of the presence of microorganisms able to produce coloured compounds 

(Figure II-21B). 

 
 

 

Figure II-21. Solid (A) and liquid (B) cultures of Rhodotorula yeast isolated from the inner wall of the Évora Cathedral 

with pink stains. 

 
 
These results suggest that the presence of the Rhodotorula yeast may be one of the causes 

of the pink stains on the walls of the Cathedral, an interesting result, once till now, this 

microorganisms was not yet considered in this kind of deterioration. In the literature the chief 

microorganisms associated to this alteration are phototropic bacteria and algae (Ariño and Saiz-

Jimenez, 1996; Urzì and Realini, 1998; Cappitelli et al., 2009; Tran et al., 2012a; Kusumi et al., 

2013; Ortega-Morales et al., 2013), however the results obtained in this work suggest Rhodotorula 

as a biodeterioration agent, nevertheless it is important to be aware that all biodeterioration 

processes are probably the result of complex microbial interactions. 

 
 

4.3.3. Analytical approaches to identify products alteration 

Besides the biological approach that allowed the knowledge of the Cathedral colonisers, an 

analytical study was also performed to characterise the chromatic and microstructural alterations 

observed in the walls. 



Chapter II 

77 
 

Raman spectroscopy analyses allowed the detection of carotenoid bands in the isolated yeast, 

Rhodototula sp., and in the microsamples collected. Figure II-22 presents Raman spectra of -

carotene standard (Figure II-22A), with three intense bands at 1008, 1154 and 1514 cm-1, and, of 

Rhodotorula yeast and Évora Cathedral mortar sample (Figure II-22B) where 1154 and  

1514 cm-1 bands (Baranska et al., 2006; Lin et al., 2007; Vítek et al., 2009) are visible.  

 
 

 

Figure II-22. Raman spectra of (A) -carotene standard and mixtures of -carotene/Évora Cathedral sterilised mortar 

at different concentrations (12, 58, 122 and 212 mg of -caroten/g of sterilised mortar); (B) microsamples collected in 
the inner wall of the Évora Cathedral with pink stains (dark grey) and Rhodotorula yeast (light grey) isolated from the 
same place. Carotenoids bands are evidenced in the spectra.  
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Raman spectra of carotenoid compounds are typically dominated by two Raman bands at 1150 

cm-1 and at 1500 cm-1, attributed to the in phase (C-C) and (C=C) stretching vibrations, 

respectively (Merlin, 1985; Agalidis et al., 1999). Due to resonance enhancement, these Raman 

bands are very intense when irradiated with a green 532 nm laser. Raman spectroscopy was 

used to study polyenes and carotenoids in different biological matrices, such as microorganisms, 

fruits and feathers (Veronelli et al., 1995; Silva et al., 2008; Abdel-Haliem et al., 2013; Jehlička et 

al., 2013; Jehlička and Oren, 2013; Kusumi et al., 2013). When recording Raman spectra of pure 

molecules, the exact band position can be related to the length of the polyene chain (Brambilla et 

al., 2012). However, it has been well demonstrated by Oliveira et al. (de Oliveira et al., 2009) that 

the band positions may shift depending on the molecular environment: interactions with other 

molecules in the matrix or with other carotenoids present may cause small shifts. Moreover, polar 

and non-polar interactions affect the conformation of the polyene chain, hence wavenumber shifts 

are observed. Therefore, it is difficult to provide an exact identification of the carotenoid molecules 

that are present inside the microorganism (Jehlička and Oren, 2013). 

Raman microspectroscopy revealed to be a non-destructive tool for the identification of 

carotenoids and was successfully applied for their detection in real and biological samples, 

without any preliminary preparation. The results obtained are indicative the presence of this 

compound in the inner walls of the Cathedral, and therefore the main chromophore responsible 

for the alterations detected. In fact Raman analyses reliably identifies carotenoids on paintings 

but cannot pin-point the producing species, because the same pigment is produced by more than 

one specie. Thus, the combination of culture-dependent methods and Raman microspectroscopy 

allows the association of the microbial community isolated with the pigment identification. 

Carotenoids provide the strongest bands in the spectrum but, although not well-resolved and 

very weak, calcium oxalate compounds (bands at 915 and 1460 cm-1) also seem to be present 

(Urzì and Realini, 1998; Edwards et al., 2003; Villar et al., 2004; Ortega-Morales et al., 2005; Villar 

et al., 2005; Nevin et al., 2008; Rosado et al., 2013a). The production of calcium oxalate 

compounds can be indicative for the biodeteriorative ability of the microorganisms in accumulating 

calcium ions from the substratum or from the environment. 

Raman spectroscopy has proven to be a powerful tool for the characterisation of several 

biomarkers which are produced by microbial colonies in extreme habitats as part of their survival 

strategy (Imperi et al., 2007b; Vítek et al., 2009). This technique was successfully applied in this 

study and can to provide the causal link between yeast production of carotenoid pigments and 

colour alteration of mortars. 
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On the other hand, mixtures of β-carotene with Évora Cathedral mortar, in different 

concentrations (12, 58, 122 and 212 mg g-1), were analysed by Raman spectroscopy in order to 

validate the application of this methodology to β-carotene identification within mortar grains. The 

results obtained revealed that Raman spectroscopy is useful for the detection of carotenoids 

compounds, even in low concentrations (Figure II-22A). The analytical potential of this technique 

for the identification of β-carotene in complex samples was confirmed, as has been previously 

presented by other authors (Goodwin et al., 2006; Imperi et al., 2007b; Vítek et al., 2009; Kusumi 

et al., 2013).  

Additionally to the Raman analyses, we have conducted FTIR-ATR measurements with the 

intention to complement the experiments. FTIR-ATR spectra (Figure II-23) revealed characteristic 

bands of carotenoids in the isolated yeast and in the samples from pink stained sites.  

 
 

 

Figure II-23. FTIR-ATR spectra of -carotene standard (A), microsamples collected in the inner wall of the Évora 

Cathedral (B) with pink stains (dark grey) and Rhodotorula yeast (light grey) isolated from the same place (B). 
Carotenoids bands are evidenced in the spectra. 
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The β-carotene spectrum (Figure II-23A) exhibited a spectral region between 3500-3000 cm-1, 

characteristic of the O–H stretching vibrations, and 1715-1695 cm-1 corresponding to a carbonyl 

group (C=O), bands at 2919 and 2862 cm-1 for asymmetric and symmetric stretching vibrations 

of the CH2 and CH3, 1444 cm-1 for CH2 scissoring, 1368 cm-1 for splitting due to dimethyl group, 

1263 cm-1 corresponding to (C–O) of ester or acid groups, 1070 cm-1 is assigned to the C–O 

stretching  band and 965 cm-1 for trans conjugated alkene-CH=CH- out-of-plane deformation 

mode (Tarantilis et al., 1998; Ammawath and Man, 2010; Adamkiewicz et al., 2013). This last 

band is a good indicator of the presence of carotenoids and was detected in Rhodotorula sp. and 

in the Évora Cathedral samples (Figure II-23B). 

These findings are consistent with the results obtained by the previous technique. In this way, 

carotenoids seem to be responsible for the pigmentation acquired by inner wall of the Cathedral, 

due to Rhodotorula proliferation, behaviour detected in Figure II-20A, which can induce pink 

stains. Thus, biological activity contributed to the colour alteration of the mortar, and its interaction 

with the support is crucial to understand the long term deterioration. 

 The results have shown that carotenoid compounds are correlated with the 

degradation/deterioration of the inner walls of the Évora Cathedral, due to development and 

metabolic activity of living organisms, particularly Rhodotorula yeast. These compounds are 

responsible for pink/orange spots that cover the wall surface and alter the original aspect.  

 
 
 

5. Conclusions 

In this study we developed an analytical strategy that enables to understand several 

deterioration processes that occur in mortars and mural paintings. Complementary non-

destructive microanalytical techniques were applied to characterise the materials used and the 

alteration products formed. 

Among the results obtained it was possible to understand that: 

In the case of Santa Clara church, the process that caused chromatic alteration on the mural 

paintings was a result of the lead based compounds oxidation by the formation of plattnerite, 

which promotes the darkening of these areas. Salt efflorescences formation promotes alterations 

in the painting, due to the recrystallisation of the mortars components on the surface, inducing 

the destruction of the support. The high microbial contamination levels and the particular presence 

of Penicillium and Cladosporium, seem to contribute to the black spots development and 

efflorescence formation.  
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The alterations detected in the green areas of the Low Choir of Nossa Senhora da Saudação 

Convent allowed to establish a strong correlation with the presence of microbial contamination. 

The cracks and detachment of some areas of the paintings was supported by fungal proliferation 

and propagation of micellar structures in depth, affecting the mortar integrity. Bacterial 

development appears to be responsible for biofilm formation in the paint surface, promoting 

chromatic alterations of the green areas, particularly due to the Bacillus sp. proliferation. The 

detection of calcium oxalate compounds like whewellite and weddellite, can be attributed to the 

metabolic activity of the microorganisms which colonise these paintings.  

 Regarding the pink/dark orange colouration of the inner walls of Évora Cathedral, the results 

revealed that this phenomenon can be attributed to the presence of carotenoid compounds 

produced by the metabolic activity of microorganisms. Furthermore, the study revealed that 

Rhodotorula sp. yeast is the main agent involved in this process.  

The combined spectroscopic approach using SEM, Raman and FTIR-ATR allowed the 

pigments and support matrix characterisation of the mural paintings, alteration products and the 

microflora proliferation, proving to be a useful methodological approach for the biodeterioration 

assessment in artworks. 
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The results presented in this chapter were published in the following scientific paper: 

 

Rosado T, Mirão J, Candeias A and Caldeira AT (2014) Microbial communities analysis assessed by 
pyrosequencing - a new approach applied to conservation state studies of mural paintings. Analytical and 
Bioanalytical Chemistry 406:887-895. 
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1. Overview 

The knowledge about the microbial communities present in mural paintings is of utmost 

importance to develop effective conservation and mitigation strategies. This chapter describes a 

methodological approach for the detailed characterisation of microorganisms thriving in mural 

paintings by combining culture-dependent methods that allow the identification of microorganisms 

capable of growing in laboratory conditions and to obtain high cell densities for further studies, 

and culture independent methods, such as Denaturing Gradient Gel Electrophoresis (DGGE) and 

pyrosequencing. The combined use of culture dependent methods and DGGE does not give 

enough information to fully investigate the diversity and abundance of microorganisms present in 

wall paintings. Pyrosequencing, a novel molecular technique, used here for the first time in this 

area of research, allowed to identify a large number of microorganisms, confirming some already 

identified by the cultivation-dependent methods such as fungi of the genera Aspergillus, 

Cladosporium and Penicillium, but also providing a great contribution in the identification of 

several genera and species, unprecedented identified in these artworks, giving also a detailed 

overview of contaminants which was not possible with the other approaches. The results obtained 

on several mural painting samples have shown a strong relationship between the most 

deteriorated areas of the paintings and higher microbial contamination. 
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2. Introduction 

Microorganisms like bacteria, fungi, algae and lichens can play an important role in the 

biodegradation of cultural heritage, together with ageing, the chemical structure of the substrate 

and the environmental conditions such as humidity, temperature, pH, and light (Garg et al., 1995; 

Pangallo et al., 2009b). Development of microorganisms on mural paintings may cause aesthetic 

and/or structural damages such as pigment discolouration, stains and biofilms formation on the 

painted surface, cracking and disintegration of paint layers, and, degradation of binders resulting 

in detachment of the paint layer (Ciferri, 1999; Capodicasa et al., 2010; Pepe et al., 2011a). 

Although the involvement of microorganisms in the degradation process is well acknowledged, 

the specific role of the different groups and species that compose the microbial communities is 

not yet well understood because methodologies tend to identify only easily cultivable and omit 

slow growing and uncultivable microorganisms. Identification of the microbial diversity present in 

cultural heritage is a crucial step to develop and apply correct conservation and mitigation 

methodologies and to prevent further contaminations (Ramírez et al., 2005). 

The traditional way to identify the microbial diversity is  based on the cultivation of 

microorganisms in specific nutrient media, but, this approach detects less than 1% of the microbial 

communities present on the Earth (González and Saiz-Jiménez, 2005). To understand the 

phenomena that promote the degradation of mural paintings it is important to know as much as 

possible the microbial population that colonise these artworks. The use of culture-independent 

techniques like molecular approaches, based on nucleic acids detection, allows the differentiation 

of microorganisms within complex microbial communities, since each microorganism holds 

unique sequences (Portillo and Gonzalez, 2009). 

Cultivation-independent methods enable to detect uncultivable microorganisms giving a more 

complete view of the microbial communities present in a certain sample than traditional cultivation 

techniques (Schabereiter-Gurtner et al., 2001a; Justé et al., 2008). Thus, molecular fingerprinting 

techniques like denaturing gradient gel electrophoresis (DGGE) have been used to determine 

and identify the genetic diversity of natural microbial communities present in mural paintings 

(Rölleke et al., 1996a; Gurtner et al., 2000a; Piñar et al., 2001). 

DGGE technique has the advantage of directly profiling microbial populations present in 

specific ecosystems by separating PCR products that have originated with universal primers, on 

the basis of the melting domain of the DNA molecules (Muyzer et al., 1993; Rantsiou et al., 2005; 

Justé et al., 2008). 
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The detection of microorganisms is mainly based on the small subunit ribosomal DNA (rDNA) 

genes, 16S rDNA for prokaryotes and 18S rDNA for eukaryotes. Ribosomal DNA (rDNA) is the 

most commonly employed target for PCR amplification prior to DGGE because they are present 

in every living organism and they contain variable and highly conserved regions which allow to 

distinguish between organisms on all phylogenetic levels (Ercolini, 2004; González and Saiz-

Jiménez, 2005; Santos et al., 2009).  

DGGE separates amplified rDNA fragments of the same length but with different base pair 

sequences (Rölleke et al., 1996a; Malik et al., 2008). Double-strand DNA fragments are subjected 

to an increasing denaturing environment as they encounter increasing concentrations of the 

denaturing agents and partially melt in discrete regions called ‘‘melting domains”, and, depends 

on the hydrogen bonds formed between the GC and AT base pairings and the attractions between 

neighbouring bases of the same strand. GC pairs are much more stable to denaturation than AT 

pairs. This technique uses a chemical gradient of urea and formamide created within an 

acrylamide gel. Usually, the PCR products applied in a DGGE gel are obtained by PCR 

amplification using a GC-rich tail at the 5’-end of one primer, generally composed by about 40 

bases like as 5'-CGC CCG CCG CGC GCG GCG GGC GGG GCG GGG GCA CGG GGG G and 

it will be continued by the priming sequence complementary to the target DNA to be amplified. 

This GC rich tail is highly resistant to chemical denaturation (Ercolini, 2004; Gonzalez and Saiz-

Jimenez, 2004). This technique provides information about the microbial diversity in the samples 

and by excising individual DGGE bands from the gel and reamplifying the DNA, it is possible to 

get sequence information of single community members. Thus, DGGE represents a powerful tool 

for monitoring microbial communities present in wall paintings and other cultural assets 

(Möhlenhoff et al., 2001; Hoshino and Morimoto, 2008).  

Pyrosequencing, a next generation sequencing technology, allows high-throughput 

sequencing and is revolutionising the study of microbial diversity. This methodology has been 

applied to identify mammal species, to study microbial diversity in soils, freshwater, human guts, 

wastewater treatment facilities (Karlsson and Holmlund, 2007; Jones et al., 2009; Roh et al., 2009; 

Acosta-Martínez et al., 2010; Nam et al., 2011; Vaz-Moreira et al., 2011; Ye and Zhang, 2011; Hu 

et al., 2012). More comprehensive information about the microbial communities contributing to 

the degradation of mural paintings are needed, so in this work pyrosequencing was envisaged to 

access microbial diversity. 

Pyrosequencing technology is a non-electrophoretic real-time ssDNA sequencing method 

based on the detection of released pyrophosphate during nucleotide incorporation in the DNA-

strand. The DNA synthesis is catalysed by four kinetically well-balanced enzymes: DNA 
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polymerase, ATP Sulfurylase, Luciferase and Apyrase (Ronaghi, 2001; Langaee and Ronaghi, 

2005; Ahmadian et al., 2006a; Trama et al., 2007; Edlund and Allen, 2009; Petrosino et al., 2009; 

Fakruddin et al., 2012; Leite et al., 2012).  

This approach has never been applied to mural paintings biodegradation assessment. A single 

study was found in the literature for the application of this technique in cultural heritage research 

and relates to the characterisation of algal and fungal community living on sandstone buildings in 

Belfast (UK) (Cutler et al., 2013).  

The strategy adopted in this study combined culture-dependent methods and molecular 

approaches: DGGE and 454-pyrosequencing, to investigate the diversity and abundance of 

microorganisms present in the wall paintings.  Moreover, it is intended to compare the results 

obtained with each approach and assess the microorganisms found by culture-

dependent/independent methods. 

With this innovative application, we hope to contribute to deepen the knowledge about the 

microbial populations that colonise mural paintings. 

To develop this study, two mural paintings inserted in different environmental conditions were 

selected: Santo Aleixo Church (Figure III-1A) and Oval Room of Condes de Basto Palace (Figure 

III-1B). 

 
 

 

Figure III-1. Sampling location in mural paintings from Santo Aleixo church (A) and Oval Room of Condes de Basto 

Palace (B). 
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The Santo Aleixo Church is an abandoned church in a rural area, near Montemor-o-Novo 

(Southern Portugal), that has suffered severe structural damages with partial collapse of the 

ceiling but that holds important renascence frescoes (Figure III-1A). The other case study is the 

mannerist mural paintings (2nd half of the 16th century) from the Oval Room of Condes de Basto 

Palace (Figure III-1B) in the world heritage town Évora (Southern Portugal). This palace has been 

inhabited continuously till present days. 

 
 

3. Experimental Section 

3.1. Sampling process 

 The sampling places for analysis were carefully chosen according to the level of degradation 

observed in the two cases (A - Santo Aleixo Church and B - Oval Room of Condes de Basto 

Palace) selected for this work (Figure III-1), and, ensuring the representativeness of the paintings. 

In the sampling process was collected only the minimum amount essential for the different 

analyses, using non- and micro-invasive methods (Annexe C-C4 and C5). Samples were 

collected under aseptic conditions with sterile swabs and scalpels, placed in a suspension of 

transport MRD medium (Maximum Recovery Diluent, Merck) and conserved at 4ºC until 

utilisation. Mortars microfragments (50 mg) were also collected using sterile scalpels and 

microtubes.  

 
 

3.2. Evaluation of microbial contamination in mortars 

The mortar microfragments collected were analysed by scanning electron microscopy (SEM), 

and the samples were coated with gold or used as such (Balzers Union SCD030), and observed 

in a Hitachi Scanning Electron Microscope S-3700N. The accelerating voltage was 18–20 kV. 

Microanalysis of the selected samples was performed using the same scanning electron 

microscope coupled with a Bruker XFlash 5010 energy dispersive X-ray spectrometer (SEM-

EDX). This technique allowed the observation of the mortars microstructure and morphology, and, 

microbial contaminations as well as the elemental composition (point analysis and 2D mapping). 

 
 

3.3. Culture-dependent methods 

Serial dilutions (10-1-10-3) of the samples recovered were prepared and inoculated (100 µL) in 

selective media (Annexe A) such as Nutrient Agar for bacteria isolation, Yeast Extract Peptone 
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Dextrose Agar for yeasts development,  Malt Extract Agar and Cook Rose Bengal to isolate 

filamentous fungi. The cultures were incubated at 30°C for 24-48h for the development of bacteria, 

and for 4-5 days at 28°C for fungal growth. To detect slow growing microbial populations the 

inoculated Petri dishes stayed in incubation for longer period of time. Each different colony 

observed was picked up to obtain pure cultures, stored at 4ºC and periodically peaked to maintain 

the cultures active.  

The characterisation of the microbial isolates was performed based on the observation of 

macroscopic features of the colonies such as texture and colour of the colonies and in micro-

morphology of the hyphae and reproductive structures (in the case of spore isolates). The 

preparations made for fungal isolates were stained with methylene blue, observed with a 20x and 

50x objective with an optical microscope Leica DM 2500P and digitally recorded by a Leica 

DFC290HD camera photo. The bacterial isolates were carried out with Gram stain and observed 

in the same optical microscope with a 100x objective lens. 

 
 

3.4. Culture-independent methods 

3.4.1. Denaturing gradient gel electrophoresis 

3.4.1.1. DNA amplification 

 Metagenomic DNA was extracted with NucleoSpin 740945 DNA Extraction kit (Macherey-

Nagel, Düren, Germany) and was used as template for PCR amplification. PCR reactions were 

carried out in a final volume of 50 µL containing reaction buffer 10x supplied with MgCl2 25 mM, 

dNTPs 2 mM, primer sets (A e B) 0.4 µM, Taq DNA polymerase 5 U and DNA extracted (1 µL). 

The amplification started with a denaturation step of 5 min at 94ºC, followed by 40 cycles of 

denaturation for 1 min at 94ºC, annealing for 1 min at 50ºC, extension for 2 min at 72ºC ended 

with a final elongation step of 6 min at 72ºC, using a Robocycler (MJ Mini Bio-Rad). The integrity 

of the PCR products was checked by 1.2% agarose gel electrophoresis (Annexe B-B2), 

containing ethidium bromide 10 mg/mL, at 90 V, and visualised under UV light (Bio-Rad). 

A partial sequence of 18S rDNA gene was amplified using primer pair A: NS1 (5’-

GTAGTCATATGCTTGTCTC-3’) / GCfung (5’-CGCCCGCCGCGCCCCGCGCCCGGCCCG 

CCGCCCCCGCCCCATTCCCCGTTACCCGTTG-3’) and for 16S rDNA the primer pair B: 518F-

GC (5’- CGCCCGCCGCGCGGGGGGGG-3’) / 785R (5’-CTACCAGGGTATCTAATCC-3’) 

(Muyzer et al., 1993; Duong et al., 2006; Mühling et al., 2008).  
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3.4.1.2. DGGE gel analysis 

DGGE analyses of the PCR products were carried out in polyacrylamide gels (8% (m/v) 

acrylamide-bisacrylamide (37.5:1)) with a gradient between 30% and 50% created by 0 to 80% 

denaturant (Annexe B-B1), consisting of urea and formamide, using a DGGE K-2401. 

Electrophoresis was performed in TAE 0.5x (Annexe B-B3) at a constant voltage of 100 V, 60°C 

during 8 h for bacteria and 22 h for fungi. Following completion of electrophoresis, gels were 

stained in an ethidium bromide solution (10 mg/mL) and documented using a transilluminator 

(Uvitec mod STX 20 M). 

 
 

3.4.2. Pyrosequencing 

3.4.2.1. DNA extraction 

DNA from mural painting swabs was extracted with QIAamp® DNA Stool Mini kit (Qiagen, 

Hilden, Germany). Briefly, the swabs were incubated in ASL buffer for 30 min at 37ºC and 10 min 

at 95ºC; then glass beads were added to the suspensions and submitted to disruption and 

homogenization using the TissueLyser (Qiagen). The lysates were centrifuged and purified 

according to the standard procedure for pathogen detection of the kit. 

 
 

3.4.2.2. Amplification of rDNA 

DNA from each sample was used as template for amplification of the V3V4 region of the 

bacterial 16S rDNA and ITS2 region for the fungal population study. 

The V3V4 region was amplified with the forward primer 5’–ACTCCTACGGGAGGCAG‐3’ and the 

reverse primer 5’–TACNVRRGTHTCTAATYC–3’. 

The ITS2 region was amplified with the primers ITS2_F 5’‐GCATCGATGAAGAACGC‐3’ and 

ITS2_R 5‐‘CCTCC GCTTATTGATATGC‐3’, 

The forward primers contain an upstream 454 Life Science’s titanium sequencing adaptor (5’‐

CGTATCGCCTCCCTCGCGCCATCAG‐3’) and a TAG sequencing with 8 nucleotides which 

allows the pooling of multiple samples for pyrosequencing. Reverse primers also contain an 

upstream 454 Life Science’s titanium sequencing adaptor (5’‐

CTATGCGCCTTGCCAGCCCGCTCAG ‐3’). 

Two independent replicate reactions were done for each region of each sample with 1X 

Advantage 2 Polymerase Mix (Clontech, Mountain View, CA, USA), 1x Advantage 2 PCR Buffer, 
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0.2 μM of each PCR primer, 0.2 mM dNTPs (Bioron, Ludwigshafen am Rhein, Germany), 5% 

DMSO (Roche Diagnostics GmbH, Mannheim, Germany) and 2 μl of DNA. The following PCR 

programs were used: an initial denaturation at 94ºC for 4 min followed by 25x (ITS2)/30x (V3V4) 

cycles of denaturation at 94ºC for 30 s; annealing at 44ºC (V3V4)/50ºC (ITS2) for 45 s and 

extension at 68ºC for 60 s, and a final extension step at 68ºC for 10 min. All the amplifications 

were carried out in a MyCycle Thermal Cycler (Bio‐Rad Laboratories, Hercules, California, USA). 

The amplified products were purified with AMPure XP beads (Agencourt, Beckman Coulter, USA) 

followed by quality assessment of nucleic acid on 1.2% (w/v) agarose gel and quantification by 

fluorescence using the PicoGreen dsDNA quantitation kit (Invitrogen, Life Technologies, 

Carlsbad, California, USA). 

 
 

3.4.2.3. Emulsion PCR and massive parallel sequencing 

The amplicons were clonally amplified by emulsion PCR, and immobilized onto beads, each 

bead carrying a single DNA molecule. The bead‐bound library is then emulsified with the 

amplification reagents in a water‐in‐oil mixture, creating millions of microreactors, where a single‐

fragment PCR occurs. Resulting DNA library beads are loaded into the wells of a PicoTiterPlate 

(PTP) device. Once in the Genome Sequencer FLX Instrument (454 Life Sciences, Roche), the 

fluidics system delivers sequencing reagents across the wells of the plate, along with the four 

DNA nucleotides, added sequentially in a fixed order. During the nucleotide flow, millions of copies 

of DNA bound to each of the beads are sequenced in parallel. When a nucleotide complementary 

to the template strand is added into a well, the polymerase extends the existing DNA strand by 

adding nucleotide(s). Addition of one (or more) nucleotide(s) generates a light signal that is 

recorded by the CCD camera in the instrument, signal strength being proportional to the number 

of incorporated nucleotides. The software converts the light signals into nucleotide information 

generating the final sequencer reads. 

 
 

3.4.2.4. Data analysis 

The microorganisms present in each sample were identified with a bioinformatics pipeline 

developed at Biocant. Briefly, raw pyrosequencing readings were separated according to barcode 

identifiers and processed through quality filters to remove sequences that did not have a complete 

forward primer; had less than two undefined nucleotides and were shorter than 100 bp. 

Additionally, the 3’ ends were trimmed for average qualityscore ≤ 15, based on a seven bases 
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window. After filtering, reads were trimmed for the A and B sequence adaptors and the barcode. 

The high quality sequences were clustered together by uclust v2.1 (Edgar, 2010) with a similarity 

of 97%. The clustered sequences were then assembled by Cap3 (Huang and Madan, 1999) to 

produce OTU (Operational Taxonomic Units). The OTU were searched by NCBI BLAST against 

RDP, release 10 update 24 (Ribosomal Database Project) with a cut-off of 1e‐50 to identify the 

taxa. Chimeras were identified by BLAST, through the confirmation of whether different fragments 

of the same OTU matched only the same hit. To improve the accuracy of the results a bootstrap 

method was included, where OTUs were replicated 100 times and changed in 10% by seqboot 

application from PHYLIP package (Felsenstein, 1993). Only sequences with 70% bootstrap 

support of the same taxonomy were identified. 

 
 
 

4. Results and Discussion 

4.1. Microbial contamination 

 This work focused on the application and comparison of different bioanalytical approaches for 

the characterisation of microbial populations, present in two different mural paintings with visible 

signs of contamination but in different degradation status, as can be seen in Figure III-1. In a first 

approach, microfragments of mortar were analysed by scanning electron microscopy, a technique 

that provides an image of high magnification and resolution and so allows to infer about the 

microstructure of the painting and the existence of biological contamination. SEM micrographs 

(Figure III-2A-D) of the mortar microfragments show evident indicators of biological contamination 

like filamentous fungi and hyphae proliferation within the mortars, which may explain the presence 

of cracks and detachments in the paint of case A (Santo Aleixo Church) and the colour alterations 

in the panels of case B (Condes de Basto Palace). It is also possible to visualise the typical 

microstructure of lime mortars with crystallites of calcite.  
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Figure III-2. SEM micrographs of the microfragments of mortars. Filamentous fungi and hyphae penetrating in the 

microstructure of the mortars (A, B) and superficial proliferation (C, D). 

  
 
 EDX analysis (Figure III-3) of these structures confirm the concomitant presence of elements 

characteristics of organic material such as carbon, sulphur, oxygen and nitrogen compatible with 

the presence of microbial contamination in the paintings.  

 
 

 

Figure III-3. SEM micrograph and EDX 2D mapping of mortars microfragments with representation of elemental maps 
of Carbon (C), Oxigen (O), Nitrogen (N) and Sulfur (S). Microample removed from Oval Room of Condes de Basto 
Palace (A) and Santo Aleixo Church (B). 
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Microbial proliferation on wall paintings has been associated to several degradation effects. 

Some microorganisms, like fungi and bacteria, have the ability to survive and thrive in extreme 

conditions (extremophile behaviour) including in the presence of heavy metals as is the case of 

some pigments present in mural paintings. Filamentous fungi development in the paintings lead 

the hyphae penetration within the mortar structure, promoting the proliferation of these 

microorganisms in depth, affecting the cohesion of the structure facilitating the appearance of 

some cracks and hence detachment of some fragments, which leads loss of some structures, or 

even, in extreme cases the entire work. Apart from structural effects, the biological activity of the 

microorganisms in the surface of the paintings can also induce chromatic alterations due to 

products excretion resulting from their metabolic activity or due to biofilms formation. For example, 

some microorganisms can induce irreversible stainings and chromatic alterations (see Chapter 

II), due to their ability to produce pigmented compounds, like carotenoids, as described in the 

Chapter II (Rosado et al., 2013c). On the other hand, calcium oxalates have been reported in 

degraded areas of mural paintings due to the metabolic activity of the microorganisms, which 

secrete oxalic acid that reacts with calcium compounds present on the surface. Their formation 

can occur as a defence mechanism of the microorganisms in situation with excess of calcium, to 

prevent the toxicity to the cell (Rosado et al., 2013a). 

Therefore, microbial activity contributes to deterioration of mural paintings, and its interaction 

with physico-chemical mechanisms is considered central to understanding the long term 

deterioration, as well as knowing the agents that colonise these artworks. 

 In order to characterise the microbial population present in mural paintings several analyses 

using culture-dependent and independent techniques were adopted. 

 
 

4.2. Culture-dependent methods 

 While cultivation methods give information about the microorganisms able to grow on a culture 

medium, molecular approaches provide information of the DNA sequences. Combining the 

information obtained with these different methods it is possible to know with more detail the 

microbial diversity that colonise these art works. 

Isolated microorganisms from the paintings were characterised taking into consideration their 

macroscopic (colour, size and morphology) and microscopic features (type of reproductive 

structures and colour of colonies in the case of bacteria). The predominant microflora isolates 

were bacteria, yeasts and filamentous fungi (Garg et al., 1995; Ciferri, 1999; Jurado et al., 2008; 

An et al., 2009; Pangallo et al., 2009b; De Felice et al., 2010; Pepe et al., 2010; Laiz et al., 2011).  
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The identification of the bacterial population (Table III-1) isolated is difficult to perform based 

on the macroscopic and microscopic features, however it was possible identify that there are 

different bacteria, composed by cocci and bacilli morphology, being possible to identify some 

Bacillus sp. strains. 

 
 

Table III-1. Identification of bacterial isolates obtained by culture-dependent methods. 

Macroscopic 
features of colonies 

Microscopic features Identification 

  

Cocci 

(Gram-negative) 

  

Bacilli 

(Gram-positive) 

  

Cocci 

(Gram-positive) 

  

Bacillus sp. 

(Gram-positive) 
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In the case of fungal population was possible to identify several cultivable fungi of the genera 

Aspergillus, Cladosporium, Penicillium, but also unidentified fungi named sterile and non-sterile 

mycelia. 

 
 

Table III-2. Identification of fungal isolates obtained by culture-dependent methods. 

Macroscopic 
features of colonies 

Microscopic features Identification 

  

Aspergillus sp. 

  

Cladosporium sp. 

  

 Penicillium sp. 

  

Mycelium 

 
 

Although this approach does not enable a full characterisation of the microbial community, 

since some microorganisms do not have the ability to grow under in vitro conditions, is extremely 
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important because it gives a first scan on the cultivable microflora and allows to obtain high density 

of cells for simulation assays or biocide tests, essential steps for the development of adequate 

conservation methodologies. 

 
 

4.3. Microbial communities 

Considering that not all microorganisms have the ability to grow under in vitro conditions, the 

proposed research strategy envisaged the application of DGGE and pyrosequencing to the same 

collected samples. 

DGGE was employed to assess the structure of microbial communities in samples without 

cultivation. The purity and integrity of the metagenomic DNA amplified was analysed by agarose 

gel electrophoresis (Figure III-4). It is possible to observe fragments with 300 bp and 400 bp, for 

bacteria and fungi respectively.  

 
 

 

Figure III-4. Agarose gel electrophoresis of metagenomic DNA extracted from Santo Aleixo Church (Sample A) and 

Condes de Basto Palace (Sample B). Legend: 1 - 100 bp Ladder; 2, 3 - PCR product of bacterial amplification of Sample 
A and B, respectively; 4, 5 - PCR product of fungal amplification of Sample A and B, respectively. 

 
 

The PCR products obtained were separated by DGGE and the results revealed the presence 

of several distinguishable bands, most likely derived from different fungal and bacterial species 

constituting the population of each sample. It is possible to observe that exist more fungal diversity 

(Figure III-5a), due to the presence of a larger number of bands, in comparison with the bacterial 
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population detected (Figure III-5b). These results are also correlated with those obtained by 

culture-dependent methods, where fungal isolates prevail. 

 

 

Figure III-5. DGGE fingerprints of the amplified fungal (a) and bacterial (b) DNA of the samples A - Oval Room of 
Condes de Basto Palace and B - Santo Aleixo Church. 

 
 

DGGE represents a powerful tool for monitoring microbial communities and examining 

population dynamics (Gonzalez and Saiz-Jimenez, 2004; González and Saiz-Jiménez, 2005; 

Malik et al., 2008; Pepe et al., 2011a), but it does not allow full identification of the microorganisms 

present in the samples. Strategies for sequenciation of separated bands can be applied but are 

highly time consuming and the DNA obtained correspond frequently to a mix DNA, conducing to 

ambiguous identification. Pyrosequencing on the other hand, is a powerful novel technique that 

complements the results obtained by the aforementioned methods, allowing the full identification 

of the microbial population and was used on this work for the first time, as to the authors’ 

knowledge, to biodegradation studies of artworks. 

Amplicons for the V3V4 and ITS2 regions were generated for the samples using primers of 

conserved regions and submitted to pyrosequencing in the 454 sequencing platform as described 

on the Experimental Section. The number of sequences obtained for each sample is listed in 

Table III-3.  
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Table III-3. Massive parallel sequencing general results. Raw sequences correspond to the 
number of sequences obtained after sequencing and before data processing. 

Sample Raw Sequences 
High quality 

sequences 
OTU (3%) 

A_V3V4 15,887 12,061 319 

A_ITS2 6,985 6,314 74 

B_V3V4 1,742 1,064 264 

B_ITS2 9,200 8,318 334 

 
 

Sequences in each sample were grouped to generate consensus sequences, named OTU 

(operational taxonomic unit). An operational taxonomic unit is the consensus sequence containing 

sequences that are no more than 3% different from each other, which is generally considered to 

define a microbial specie. The number of generated OTU found in Table III-3 shows that sample 

B (Condes de Basto Palace) is a little bit greater in fungal contamination than bacterial population 

and in sample A (Santo Aleixo Church) the opposite is observed. The OTUs were assigned a 

taxonomic ID by searches against data in public databases. To better understand the meaning of 

these values, the results for each sample were subjected to non‐parametric statistical analysis by 

determination of CHAO parameter. Figure III-6 shows rarefaction curves for the samples and the 

respectively CHAO.  

 
 

 

Figure III-6. Rarefaction curves of the sequenced samples at 3% difference level. 
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This analysis estimates the coverage of sequencing in samples, by determining the expected 

number of independent sequences and the number of independent sequences actually obtained 

in each sample. The results are summarised in Table III-4. These results, although unexpected 

taking into consideration the different environment and state of conservation of both mural 

paintings studied, show that identified species found in sample A and B are very similar.  

 
 
 

Table III-4. Statistical analysis of sequencing results. 

Sample Raw Sequences OTU (3%) 
High quality 

sequences 

A_V3V4 581.52 319.00 54.86 

A_ITS2 93.89 74.00 78.81 

B_V3V4 678.55 264.00 38.91 

B_ITS2 488.22 334.00 68.41 

 
 
 

The microflora present on the two case studies is divided into three kingdoms: Bacteria (53%), 

Fungi (41%) and Viridiplantae (5%), in the total of 303 microorganisms identified, which bacterial 

population is slightly higher than fungal diversity. 

This approach allowed the identification of more than one hundred and thirty genera and sixty 

different species. Namely, for the fungi:  

Cladosporium, Penicillium, P.daleae, P.digitatum, P.corylophilum, P.glabrum,  Aspergillus, 

Cystoderma, Hypholoma, Tubaria, Pholiota, Armillaria, Physalacria, Chondrostereum, 

Schizophyllum, Coltricia, Fuscoporia, Hyphodontia, H.alutaria, H.radula, H.nothofagi, H.nespori, 

Phlebia, Radulomyces, Vesiculomyces, Russula, Amphinema, Hyphodontiella, Lactarius, 

Cyphellostereum, Stereum, Skeletocutis, Ganoderma, Tyromyces, Antrodia, Postia, Coriolopsis, 

Rhodotorula, R.mucilaginosa,  

and for the bacteria:  

Bacillus, Catenibacterium, Anaerococcus, Roseburia, Veillonella, Atopostipes, Dolosigranulum, 

Granulicatella, Aerococcus, Abiotrophia, Streptococcus, Lactobacillus, L.delbrueckii, 

Leuconostoc, L.citreum, Marinococcus, Virgibacillus, Geobacillus, G.stearothermophilus, 

Thermicanus, Staphylococcus, Salinicoccus, S. halodurans, Paenibacillus, Streptomyces, 

S.clavuligerus, Actinomyces, Nocardia, Rhodococcus, Corynebacterium, Arthrobacter, 
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Micrococcus, Kocuria, Rothia, Blastococcus, Geodermatophilus, Bifidobacterium, B.bifidum, 

Oligella, O.urethralis, Haemophilus, Pseudoxanthomonas, Pseudomonas, Sphingomonas. 

The results show that pyrosequencing has the potential to be an important tool in this field 

which will allow to revolutionise the knowledge about the microbiological colonisers of mural 

paintings. 

 
 
 

5. Conclusions 

This work encompassed different approaches to characterise the microbial population that 

colonise mural paintings, which enabled the creation of an analytical methodological strategy to 

address the present limitations in microbiological agents studies in the field of cultural heritage 

research (Figure III-7). 

 
 

 

Figure III-7. Methodological strategy defined to mural paintings biodegradation/biodeterioration studies. 
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A very important point in this study was the application of pyrosequencing, which provided an 

important and exhaustive description about the microbial population that develops on the mural 

paintings and allowed to expand the knowledge about them, giving a detailed overview of the 

contaminants that was not possible with the other techniques. In fact, culture dependent methods 

and DGGE are useful tools in the characterisation of the biodeteriogenic agents however 

constitute incomplete approaches to investigate the diversity and abundance of microorganisms 

present in wall paintings. 
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Biodeteriogenic agents 
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The results presented in this chapter were published in the following scientific paper: 
 

Rosado T, Pires M, Mirão J, Martins MR, Candeias A and Caldeira AT (2013) Enzymatic monitorization of mural 
paintings biodeterioration, International Journal of Conservation Science 4: 603-612. 
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1. Overview 

Biodegradation/biodeterioration of mural paintings is an important research field that needs 

novel approaches to fully understand their mechanisms and effects. In this work, the presence of 

microorganisms and their biological activity were investigated by extra and intracellular enzymatic 

monitorisation. The enzymes arylsulphatase, β-glucosidase, dehydrogenase and phosphatase 

were used as biomarkers of the microbial metabolic activity, and the viability cellular assays 

revealed a relationship with the degradation levels of the paintings. In this way, the metabolic 

activity of the microbial population can be correlated with the contamination levels detected and 

with biodegradation/biodeterioration status of the paintings. Therefore, enzymatic approaches 

constitute good biomarkers to be applied in this research field and are useful to detect 

biodeteriogenic agents. 
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2. Introduction 

Mural painting is not only a form of art but also a way to learn more about our ancestral 

traditions. Unfortunately, some of these artworks have suffered alterations, which can lead to an 

incalculable loss. The damages usually found in deteriorated mural paintings are promoted by 

several factors, however the biological agents assume a role of utmost importance and it is 

necessary to give special attention to them. Therefore, biodegradation/biodeterioration is a 

serious risk to Cultural Heritage, which needs the application of effective and fast methods in 

order to identify the microorganisms involved in this process and to assess their biodegradation 

and biodeterioration ability (Pangallo et al., 2009a). The term biodeterioration is defined as 

unwanted alteration in a material caused by the activity of biological agents. Biodeteriogenic 

organisms have the ability to use a substrate to sustain their growth and reproduction, producing 

alterations (Sequeira et al., 2012). Several microorganisms can grow on various materials, 

causing their biodegradation and biodeterioration. In fact, it is a complex process that illustrates 

the interaction of living microorganisms with substratum and environment (Dakal and Cameotra, 

2012c). Some microorganisms have the capacity to degrade mural paintings and their 

biodeteriogenic ability, in synergy with other physical and chemical agents, may increase the 

damages (Cappitelli et al., 2006; Rolón and Cilla, 2012).  

The microbial flora present in artworks, like mural paintings, may result from the successive 

colonisations by different microorganisms. Their biological attack occurs at favourable 

temperature and relative humidity conditions for the development of microorganisms and spores 

present on the paintings, and, each coloniser agent has different ways to compromise these 

structures (Nugari et al., 1993b; Borrego et al., 2010). Thus, microorganisms that grow on mural 

paintings may origin structural damages involving different processes, such as cracking, 

exfoliation of paint layers, formation of paint blisters and detachment of the paint layer from the 

support, or, aesthetic damages which involves the pigment discoloration and stains. It is believed 

that aesthetic damages occur earlier than structural damages and can precede serious corruption 

of the materials, being these damages strongly linked (Sarró et al., 2006; Santos et al., 2009). 

The study of microflora involved in biodegradation/biodeterioration processes of artworks, was 

usually based on DNA-dependent methods or in isolation procedures that were mainly useful to 

provide information about the presence of microbial communities (Gonzalez and Saiz-Jimenez, 

2004; González and Saiz-Jiménez, 2005; Rosado et al., 2013a; Sterflinger and Piñar, 2013a; 

Rosado et al., 2014a; Rosado et al., 2014c), however, the physiological/biological potential of 

these microorganisms has not been explored in this field (Pepe et al., 2011b). Therefore, in this 
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study, enzymatic activities were taken into account, to understand the role of their metabolic 

activity on the biodegradation/biodeterioration process.  

The enzymes ability to recognize specific molecules as substrates has led to the proposal of 

enzyme-based analytical approaches. Thus, different enzymes like: arylsulphatase, 

dehydrogenase, β-glucosidase and phosphatase were chosen to assess the physiological 

features of the predominant mural painting colonisers and to evaluate their biodegradative and 

biodeteriorative potential. Arylsulphatase, β-glucosidase and phosphatase enzymes, hydrolyse 

and catalyse specific reactions involved in the biogeochemical transformations of carbon (C), 

phosphorus (P) and sulphur (S). These enzymes regenerate inorganic nutrients from organic 

materials and have been reported as the rate-limiting step in the nutrient cycling process. On the 

other hand, organic phosphorus (P) must be mineralised into inorganic orthophosphate (PO4
3-) 

ions to be assimilated by many organisms. Only enzymes produced by plants and/or 

microorganisms are able to hydrolyse organic P into phosphates. Dehydrogenase enzyme allows 

to detect viable organisms and can be considered an accurate measure of the microbial oxidative 

activity (Taylor et al., 2002; Pozo et al., 2003; Stege et al., 2009). 

To access the presence of microorganisms and evaluate their effect in the mural paintings 

degradation/deterioration, different enzymes were monitored and cell viability assay was for the 

first time applied in artworks, in order to develop biomarkers that may give information about the 

degradation assisted or not by deterioration process. 

 
 
 

3. Experimental Section 

3.1. Microorganisms selection 

Several microbiological specimens, previously isolated from mural paintings, with significant 

alteration signs, were selected to investigate the role of the microorganisms in the alteration 

processes that affect these artworks. Thus, Aspergillus sp., Cladosporium sp., Penicillium sp. and 

Rhodotorula sp. (microorganisms from HERCULES-Biotech Laboratory, Évora University), the 

main fungi associated to mural paintings colonisation, were analysed individually and as a 

community, by the mixture of these microorganisms, in order to simulate mix cultures that 

proliferate in mural paintings. 
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3.2. Sampling process 

 Mortar microfragments from contaminated historical mural paintings were collected with sterile 

scalpels and microtubes, in two areas of the painting with different degradation/deterioration 

levels.  

 

 

3.3. Analysis of mortars microfragments 

In order to assess the degree of degradation/deterioration of the support and the type of 

colonising microorganisms, the mortar microfragments collected were analysed by scanning 

electron microscopy (SEM). The samples were gold sputtered (Balzers Union SCD030) and then 

observed under a scanning electron microscope (Hitachi 3700N) operated at high vacuum with 

an accelerating voltage 10–20 kV in secondary electron mode.  

 

 

3.4. In vitro simulations of mortars colonisation 

To evaluate the role of the microorganisms in the mural painting degradation/ deterioration, a 

combinatory strategy was used: 

a) Development of liquid cultures with high cells density of pure cultures: Aspergillus sp., 

Cladosporium sp., Penicillium sp. and Rhodotorula sp., and, a mix culture combining these 

microorganisms (Figure IV-2); 

b) Simulation assays in order to evaluate the influence of these microorganisms on real 

sterilised mortars, inoculated with each microbial isolated (Aspergillus sp., Cladosporium 

sp., Penicillium sp. and Rhodotorula sp.) and with a mix culture with each microorganisms 

previously mentioned. 

 

Fresh fungal cultures were prepared in solid medium MEA (Malt Extract Agar). Fungal 

suspensions were prepared washing each slant with 2 mL of NaCl 0.85% solution. The 

suspensions from pure cultures and a mixed culture obtained by the combination of the 4 isolates 

were inoculated in 100 mL of Malt Extract liquid medium and incubated at 28ºC in an orbital shaker 

at 150 rpm (Heidolph unimax 1010), during 15 days (Annexe A).  

For the simulation assays, mortar samples were sterilised, 1000 mg were distributed in Petri 

dishes and inoculated with 0.2 mL of the suspension prepared as the same form mentioned above 

(pure and mixed cultures) and incubated at 28ºC during 15 days.  
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3.5. Enzymatic assessment 

 The enzymes arylsulphatase, -glucosidase, phosphatase and dehydrogenase were 

monitored in the assays of liquid cultures (a), in the simulations assays (b) and in real mortar 

samples. 

Arylsulphatase activity was assayed according to the method of Tabatabai and Bremner (1970) 

(Tabatabai and Bremmer, 1970). The liquid (0.3 mL) and solid (0.1 g) samples were incubated 2 

h at 20ºC with 0.5 M acetate buffer pH 5.8 and 0.2 mL of 2 mM p-nitrophenyl sulphate (PNS). The 

reaction was stopped by adding 0.1 mL of 0.5 M NaOH, and immediately centrifuged for 15 min 

at 10,000 rpm. The amount of p-nitrophenol (p-NP) released from PNS was measured 

spectrophotometrically (Hitachi, U-3010) in the supernatant at 405 nm. 

-Glucosidase activities were also evaluated according to Tabatabai and Bremner (1970) 

(Tabatabai and Bremmer, 1970). The liquid (0.1 mL) and solid (0.1 g) samples were incubated 

with modified universal buffer (Annexe B-B4) pH 6.0 and 0.2 mL of 2 mM p-nitrophenyl -D-

glucoside, during 1h at 37ºC. The reaction was stopped by adding 0.1 mL of 0.5 M NaOH and 

centrifuged for 15 min at 10,000 rpm. The amount of p-nitrophenol released was measured in the 

supernatant at 405 nm. 

The enzymatic activity of the Phosphatase was evaluated according to the method of 

Tabatabai and Bremner (Tabatabai and Bremmer, 1969). The liquid (0.1 mL) and solid (0.1 g) 

samples were incubated at 37ºC for 1 h modified universal buffer (MUB) pH 5.0 and 0.2 mL of 

115 mM p-nitrophenyl phosphate (p-PNP). The reaction was stopped by adding 0.1 mL of 0.5 M 

NaOH, and immediately centrifuged for 15 min at 10,000 rpm. The amount of p-nitrophenol 

released from PNP was measured in the supernatant at 405 nm. 

Dehydrogenase enzymatic activity was determined according to Camiña (Camiña et al., 1998; 

Taylor et al., 2002). Cells disintegration was performed by sonification during 30 s, 5 times at 

40/50 Hz. The liquid (0.1 mL) and solid (0.1 g) samples were incubated for 1h at 40ºC, in the dark, 

with 1 M Tris-HCl buffer pH 7.5 and 0.2 mL of 0.5% 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-

phenyltetrazolium chloride (INT). The reaction was stopped by adding 0.1 mL of ethanol:DMF 

(1:1), and immediately centrifuged for 15 min at 10,000 rpm. The amount of iodonitrotetrazolium 

formazan (INTF) released was measured spectrophotometrically (Hitachi, U-3010) in the 

supernatant at 490 nm. 

These assays were performed in triplicate. A unit of enzyme activity (U) was defined as µmole 

of substrate hydrolysed or oxidized min-1 (Annexe D-D2), and per mg of protein (Annexe D- D1) 

for liquid assays or per mg of mortar for solid assays. 
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3.6. Statistical analyses 

The results of the enzymatic activity monitored in the several assays mentioned above were 

reported as average ± standard deviation (SD). Data were evaluated statistically (Annexe D-D3) 

using the SPSS® 20.0 software for Windows Copyright, Microsoft Corporation, by descriptive 

parameters and by One-way ANOVA in order to determine statistically significant differences at 

the 95% confidence level (p<0.05). The population variances homogeneity was confirmed by 

Levene test and multiple average comparisons were evaluated by Tukey test, being considered 

significant values those whose probability of occurrence is greater than 95% (p <0.05).  

 

 

3.7. Microbial viability evaluation 

Cell viability of the microbial population present in the mural paintings was assessed by 

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, as previously 

described by Mosmann (Mosmann, 1983), being optimised in this work to be applied in artworks.  

Mortar microsamples (0.1 g) from mural paintings sites with different degradation levels were 

incubated with 0.5 mL of MTT stock solution (prepared in PBS at 5 mg/mL and after filtered to 

sterilise the solution), during 4h, in the dark, at room temperature. After this period, 1 mL of 

DMSO/ethanol (1:1) was added to dissolve the formazan crystals formed. The final suspension 

was centrifuged at 10,000 rpm for 15 min and the supernatant was spectrophotometrically 

(Hitachi, U-3010) analysed at 570 nm. Each assay was performed in triplicate.  

 
 
 

4. Results and Discussion 

 The identification of the biological population that thrive in mural paintings is an important and 

necessary step, however, understand if these colonisers are metabolically active or not it is also 

a relevant approach that need to be exploited, in order to identify the most biodeteriogenic agents. 

In this way, several assays were carried out in microbial isolates, mixed cultures, simulated 

assays and in real mortar microfragments to gather as much information about the metabolic 

activity that these agents develop in mural paintings, almost without noticing them but after a 

period of time its effects are well visible and can be irreversible. 

 In this work several fungal strains were selected: Aspergillus sp., Cladosporium sp., Penicillium 

sp. and Rhodotorula sp. (Figure IV-1), isolated from different mural paintings (Garg et al., 1995; 
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Ciferri, 1999; Sterflinger, 2010; Rosado et al., 2013a; Rosado et al., 2014a; Rosado et al., 2014c; 

Rosado et al., 2014e), in order to evaluate their role in the degradation process. 

 
 

 

 

Figure IV-1. Microbiological agents commonly found in mural paintings: Aspergillus sp. (A), Cladosporium sp. (B), 
Penicillium sp (C) and Rhodotorula sp. (D). 

 
 
 

4.1. Enzymatic assessment of liquid cultures 

Several enzymatic assays were performed in order to understand if these enzymatic systems 

are active in each microbial isolate (Aspergillus sp., Cladosporium sp., Penicillium sp., 

Rhodotorula sp. and mix culture), and if they can be used as biological markers to monitor 

biodegradation/ biodeterioration (Figure IV-2). Therefore, the first approach intends to investigate 

if the enzymes arylsulphatase, -glucosidase, phosphatase and dehydrogenase can be used for 

enzymatic monitorisation of the microorganisms usually found in mural paintings. 

 
 

 

Figure IV-2. Liquid cultures of several microorganisms isolated from mural paintings: Rhodotorula sp. (A), 
Cladosporium sp. (B), Penicillium sp. (C), Aspergillus sp. (D) and a mixed culture (E) with these four microbial isolates. 
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 These enzymatic systems have been used in soils, water and wastewaters 

quality/contamination studies (Bergstrom et al., 2000; Pozo et al., 2003; Klose and Ajwa, 2004; 

Jastrzębska and Kucharski, 2007; Floch et al., 2009; García-Ruiz et al., 2009; Kang et al., 2009; 

Antunes et al., 2011; Balestri et al., 2013), being good indicators of biological activity, so this work 

intends to evaluate their potential in mural paintings degradation/deterioration. 

Enzymatic monitorisation of arylsulphatase, -glucosidase, phosphatase and dehydrogenase 

in liquid cultures (Figure IV-3) showed that the enzymatic systems are active in all the fungal 

strains tested. However, -glucosidase reveal less activity than the other biological systems. 

 Analysing each enzyme individually it was possible to observe that:  

In the case of arylsulphatase the microorganisms Rhodotorula and Cladosporium show higher 

enzymatic activity than the other agents tested. Relatively to -glucosidase monitorisation, 

Rhodotorula is also the microorganism that reveal higher enzymatic levels, while in the case of 

dehydrogenase, Cladosporium stands out from the other microorganisms. On the other hand, 

Cladosporium and Aspergillus reveal higher enzymatic activity in the phosphatase monitorisation. 

According these results, Rhodotorula, Cladosporium and Aspergillus seem to be easily detectable 

by enzymatic monitorisation. However, in the case of mix cultures, performed to simulate a 

microbial community, it is observed a decrease of the enzymatic activity comparatively to the 

microbial isolates, a trend that holds for all the enzymes tested, with the exception of the -

glucosidase enzyme which revealed an increase of 14% compared to Rhodotorula. 
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Figure IV-3. Enzymatic monitorisation of arylsulphatase (A), -glucosidase (B), phosphatase (C) and dehydrogenase 

(D) in liquid cultures of predominant fungal strains isolated from mural paintings: Rhodotorula sp., Cladosporium sp., 
Aspergillus sp., Penicillium sp. and a mix culture of these microorganisms, performed during 15 days. Different letters 
(a-c) following the values indicate significant differences (p<0.05). Values of each determination represents means ± 
SD (n=3). 

 
 
The activity of these enzymes is correlated to the compounds transformation that provide 

different components to the microorganisms development. In the case of dehydrogenase, their 

activity reflects the total oxidative activities of microorganisms and hence the presence of living 

cells (Huang et al., 2012), and can be used as an indicator of the presence of metabolic active 

cells.  

Thus, the results obtained allow us to verify that all fungi tested have the enzymatic systems 

studied active, suggesting that these enzymes are good biochemical markers to evaluate the 

metabolic activity of the coloniser agents of mural paintings. 
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4.2. Simulation assays on mortars 

 Once verified the presence of the enzymes arylsulphatase, -glucosidase, phosphatase and 

dehydrogenase on liquid cultures, as well as their detection on mix cultures, simulation tests were 

carried out in mortars. These assays were used to mimic as much as possible, the real context 

where these microorganisms act. Accordingly, simulation assays, were performed on real 

sterilised mortars samples, inoculated with microorganisms aforementioned, allowing to verify 

their individual and combined action on the samples, and, infer about their biodeteriogenic 

capacity, clarifying the fungal impact in the mural painting biodegradation/biodeterioration.  

Enzymatic monitorisation of arylsulphatase, -glucosidase, phosphatase and dehydrogenase 

in mortar simulated assays (Figure IV-4) allowed to observe that the enzymes tested are active 

in the mortar samples inoculated with different microorganisms, showing that it is possible to 

monitor enzymatic activity in mortars. 

 

 
 

Figure IV-4. Enzymatic monitorisation of arylsulphatase (A), -glucosidase (B), phosphatase (C) and dehydrogenase 
(D) in mortar simulated assays with the predominant fungal strains isolated from mural paintings: Rhodotorula sp., 
Cladosporium sp., Aspergillus sp., Penicillium sp. and a mix culture of these microorganisms. Different letters (a-c) 
following the values indicate significant differences (p<0.05). Values of each determination represents means ± SD 
(n=3). 
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The results showed that, for the enzyme arylsulphatase the fungi Cladosporium has the highest 

enzymatic levels. In the case of -glucosidase, the filamentous fungi Aspergillus, Cladosporium 

and Penicillium are more active than Rhodotorula. As observed for arylsulphatase, the 

microorganism Cladosporium reveals greater activity for dehydrogenase. For this enzyme the 

fungus Aspergillus is also very active. In the case of phosphatase monitorisation, Penicillium 

exhibits the highest activity. Furthermore, for the mix cultures from mortar simulated assays was 

detected the same behaviour above described for liquid cultures, observing an enzymatic 

decrease for arylsulphatase, phosphatase and dehydrogenase. In addition, it is also important to 

emphasize that some microorganisms reveal increased activity in the presence of mortar 

fragments, probably due to the mortar constituents, which can be used by the microorganisms for 

their development, together with the nutrients obtained from the culture medium, promoting then 

higher development and consequently higher metabolic activity. On the other hand, in general, 

the enzymatic activity of the filamentous fungi was higher than the yeast tested. This result can 

be related with the higher ability of the filamentous fungi to proliferate in mortars and the different 

nutritional requirements of these distinct microorganisms. Moreover, a decrease of the metabolic 

activity observed for the microbial communities assays (mix cultures), probably can also be 

affected by the capacity of certain microorganisms to inhibit others. Another explanation for this 

behaviour can be due to nutritional requirements, wherein the development of some 

microorganisms can limit the growth of others. 

 
 
 
 

4.3. Enzymatic monitorisation in real samples 

In order to validate the applicability of these enzymatic systems as 

biodegradation/biodeterioration biomarkers, to be used in real mortar samples monitorisation, 

mortar microfragments with different visual alterations, removed from the highly degraded Santo 

Aleixo Church were analysed, to understand the effect of microbial proliferation in mural paintings 

and their impact in the degradation process. The different samples analysed were named: Low 

Deteriorated Sites (LDS) and High Deteriorated Sites (HDS) according to the degradation levels 

observed. 

The results of the enzymatic assays of arylsulphatase, -glucosidase, phosphatase and 

dehydrogenase, performed in real mortar samples with different contaminated levels, to evaluate 

the biological activity in mural paintings showed that samples from sites with larger signs of 

contamination present higher enzymatic activity (Figure IV-5). This effect is particularly relevant 
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to dehydrogenase, arylsulphatase and phosphatase, which revealed a noticeable increase in the 

places with higher alteration signs. 

 

 

Figure IV-5. Enzymatic assays to evaluate biological activity in samples with different contaminated levels, using 

dehydrogenase (  ), arylsulphatase (  ), phosphatase (  ) and -glucosidase (  ) as biochemical markers. LDS – 
Low Deteriorated Sites; HDS – High Deteriorated Sites. 

 
 
Assays in real mortar samples that revealed the highest enzymatic activities were detected in 

samples from High Deteriorated Sites (Figure IV-5), which is located in the sites with greater 

degradation signals and concomitantly revealed high microbial colonisation, confirmed by SEM 

observation (Figure IV-6). An exception in this behaviour was detected for the enzyme -

glucosidase that presents little variability on LDS and HDS samples. The results showed that 

arylsulphatase, phosphatase and dehydrogenase can be used as biochemical markers in mural 

paintings, giving useful information about the biological activity of the microbial population, which 

can be correlated with the degradation status of the artwork. 

 The SEM analysis allowed a further insight on the presence of microbial communities thriving 

in the paintings and their capacity to proliferate within and/or penetrate inside the mortar structure. 

Results show that fungal proliferation conduces to penetration of mycelia structures in the 

microstructure of the mortars, promoting dissemination of these microorganisms in depth, whose 

behaviour seems to be correlated with cracks and the detachments observed in the painting 

(Figure IV-6). Thus, fungal proliferation appears associated to mortar structural damages and 

chromatic alterations. 
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The microbial degradation assisted or not by deterioration of paintings can be caused due to 

the hydrolytic activity of microorganisms to growth and/or also due to the damage that excretion 

metabolites inflict (Santos et al., 2009). Moreover, the production of extracellular polymeric 

substances (EPS), mainly polysaccharides, surrounding the hyphae, promotes the adhesion to 

the substrate leading to biofilm formation (Zucconi et al., 2012) that also contributes to the 

paintings degradation. 

 
 

 

Figure IV-6. SEM analysis of samples from Low Deteriorated Sites (LDS) and High Deteriorated Sites (HDS). 



 
Biodeteriogenic agents monitorisation 

120 
 

The results showed that the combined approach using SEM analysis and metabolic activity 

measurement can be a useful methodology for the evaluation of microflora proliferation and the 

biodegradation/biodeterioration diagnosis of the mural paintings. 

 The enzymatic assays constitute good biomarkers for the biodegradation/biodeterioration 

assessment, giving a correlation with the degradation/deterioration levels of the paintings.  

 Therefore, the physical damages of the paintings, like cracks and detachment, are reported to 

microorganisms development, and, chemical decay of the mural paintings are associated to the 

metabolic activity of them, by assimilation or dissimilation processes. In the assimilation process, 

the microbial communities use the constituents of wall paintings as a carbon source through 

enzyme production, whereas in the dissimilation process, the decay is mainly by the excretion of 

waste products or secretion of metabolic intermediates including acids and pigments, promoting 

serious alterations in these artworks. 

 
 

4.4. Microbial viability 

 Enzymatic assays can be affected by several parameters like temperature, pH and substrate. 

The assessment of total cells viability on the microsamples can constitute a quicker 

complementary methodology to biodeteriogenic agents detection. 

A method, based on the cell viability, described by Mosmann (Mosmann, 1983), was adapted 

and optimised to monitor the biological activity in mortar microfragments from mural paintings 

(Rosado et al., 2013b). This assay was originally developed to evaluate growth and survival of 

mammalian lymphoma cells, based on the transformation and colorimetric quantification of MTT 

[3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide]. It relies on the ability of living cells 

to reduce metabolically the MTT substrate in insoluble purple formazan crystals within the cells, 

which can be quantified by spectrophotometry. Formazan generated is proportional to the living 

cells present in the sample. These features can be taken advantage of in cytotoxicity or cell 

proliferation assays, which are widely used in immunology, toxicology, and cellular biology 

(Mosmann, 1983; Sieuwerts et al., 1995; Freimoser et al., 1999; Mota et al., 2012) but never in 

Cultural Heritage biodegradation/biodetrioration studies 

Cellular viability of the microbial population present on LDS and HDS samples from mural 

paintings were also used for the assays. The results are presented in Figure IV-7 and shows that 

samples from painting areas with low signals of degradation present low concentration of viable 

cells while samples from areas with evident signs of degradation have the opposite behaviour, 

i.e., present high concentration of viable cells (Figure IV-7). These results are according to the 
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previous ones obtained by the enzymatic assays. This method is advantageous because it is 

simple, fast and very sensitive. Furthermore, the optimised methodology allows viability 

determination using only 100 mg of sample. 

 

Figure IV-7. Cellular viability of the microbial population present in mural paintings. LDS - Low Deteriorated Sites; HDS 

- High Deteriorated Sites. 

 

 

To validate the method response, sterilised mortar samples were inoculated with different 

concentrations of microorganisms. The results present a linear correlation between cellular 

viability and microorganisms concentration (ucf/mL). Thus, this approach can be used in mural 

paintings biodegradation/biodeterioration assessment to correlate degradation/deterioration 

status with metabolic active cells levels and consequently with microbial contamination degrees, 

constituting a very sensitive bioindicator. 

 
 
 

5. Conclusions 

Enzymatic systems like arylsulphatase, -glucosidase, dehydrogenase and phosphatase 

constitute good biomarkers to assess biological activity in mural paintings and can be correlated 

with the biodegradation and biodeterioration status of the artwork. 
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 Cell viability assays based on mitochondrial enzymes (MTT assays) were optimised in this 

work to be applied in mortar samples and constitutes an efficient real time method to assess 

metabolic activity in microsamples, which allows to infer about the active microbial contamination 

in the paintings. 

The combined use of these techniques enabled the development of a novel methodological 

approach which represents an important contribution to artworks biodegradation/biodeterioration 

research, enabling an overview of the damages promoted by the microbial degradation and 

biodeteriogenic agents. 
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Some results of this chapter were published in the following scientific papers: 
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characterization assessment of mural paintings: Renaissance frescoes from Santo Aleixo church, southern 
Portugal. International Journal of Architectural Heritage 8:1-18. 
 
Rosado T, Gil M, Mirão J, Candeias A and Caldeira AT (2014) Biodeterioration assessment of the 16th century 
mural painting from Casas Pintadas in Évora, Journal of Cultural  
Heritage (submitted). 
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1. Overview 

To ensure the longevity of the mural paintings and consequently the building where these are 

inserted, mitigation strategies must be developed in order to avoid the loss of these important 

landmarks. Two case studies were selected - Santo Aleixo Church (Montemor-o-Novo) and 

Casas Pintadas porch (Évora) which represent two completely distinct situations. The church of 

Santo Aleixo is almost destroyed, nevertheless integrates paintings of extraordinary beauty but in 

a status of extreme degradation. Regarding the paintings from Casas Pintadas some alteration 

signs were detected but at this moment these artworks are completely rehabilitated, due to the 

intervention that was submitted.  

This chapter presents an integrated investigation on iconic mural paintings of Alentejo region 

encompassing material characterisation, biological contamination identification and in vitro and in 

situ biocidal treatments. All of these topics are very important steps to allow a well-defined 

remediation strategy and to attempt to obtain information for the conservation-intervention 

process to be the most faithful way possible. 

To understand the effects of microorganisms involved in the biodeterioration/biodegradation 

process of cultural assets, and to define an efficient strategy to conserve and protect monuments 

and artworks from microbial colonisation, it is necessary their prior identification. 

In vitro biocidal tests were performed against the main microbial mural painting colonisers, in 

order to select the most efficient commercial biocide to be applied in real situations. The 

antimicrobial assays revealed satisfactory inhibition results, whose action spectrum is noticeably 

enlarged by combined application of biocides. 
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2. Introduction 

Biodeterioration/Biodegradation of Cultural Heritage is the result of interactions between living 

organisms, material support and environmental conditions (Nuhoglu et al., 2006; Capodicasa et 

al., 2010). The biological activity of microorganisms like bacteria, fungi, algae, and lichens, 

contributes to the deterioration of cultural assets, particularly if they are exposed to open air. Their 

interaction with physico-chemical properties of the materials is considered central to understand 

the long term deterioration (Ripka et al., 2006; Herrera and Videla, 2009; Wiktor et al., 2009). 

These microorganisms are able to obtain different elements (calcium, aluminium, silicon, iron and 

potassium) essential for their metabolism, by biosolubilisation of the materials (Nuhoglu et al., 

2006). 

Taking into account the various external factors that affect the conservation status of the 

paintings, microorganisms play an extremely important role, which cannot be neglected. In mural 

paintings, the development of diverse organisms is supported by humidity, slight alkaline pH 

values and the presence of organic and inorganic nutrient sources (Altenburger et al., 1996a). On 

the other hand, the natural porosity of paintings makes their surfaces receptive to microbial spores 

and vegetative cells transported by airborne particles (Saarela et al., 2004; Milanesi et al., 2009). 

Fungi are among the most harmful organisms associated to biodeterioration of organic and 

inorganic substances (Wiktor et al., 2009). The destructive potential of these microorganisms is 

the result of mechanical and chemical processes, caused by mycelia penetration inside the 

plaster of the painting resulting in loss of cohesion and detachment of the paint layer, as well as 

paints discolouration due to products of their metabolism, secreted in the surface (Altenburger et 

al., 1996a; Rölleke et al., 1996a; Berner et al., 1997; Herrera et al., 2004; Milanesi et al., 2006; 

Imperi et al., 2007a). 

Therefore, it is crucial to develop efficient approaches to detect potentially harmful or 

destructive microorganisms, and strategies to conserve and eliminate their contamination. If 

procedures are taken to prevent their growth, biodegradation/biodeterioration can be avoided 

(Gurtner et al., 2000a; de los Ríos et al., 2009; Wang et al., 2011). 

Consequently, for studying degradation/deterioration of artistic materials induced by 

environmental and biological agents, and thereafter proceed to a restoration, it is necessary the 

detailed knowledge of the materials originally employed by the artist (Milanesi et al., 2009; Wiktor 

et al., 2009). On the other hand, biocides application are a very important step to prevent and/or 

control microbial growth/ re-colonisation for one acceptable period of time (Urzì and De Leo, 2007; 

Fonseca et al., 2010; de los Ríos et al., 2012). However their application requires attention to 
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chromatic alterations, changes in water absorption capacity, permeability and surface tension 

(Tretiach et al., 2007). Treatments with biocides should be tested on a small scale (in vitro test), 

but preferentially on the affected monument to determine their effectiveness against 

microorganisms, since some studies indicate that the biocides efficacy can be reduced 

significantly in the case of in situ applications compared to the sensitivity of the microorganisms 

observed in laboratory experiments (de los Ríos et al., 2012).  

In the case of artworks exposed to open air, usually occur fast recolonisation after restoration 

process (Nascimbene and Salvadori, 2008), thus the development of preservation strategies is 

urgent.  

In this study, a biodegradation/biodeterioration assessment and mitigation measures were 

applied on two 16th century mural paintings of Évora region, which present completely different 

conservation status.  

One of the paintings studied, the ancient Parish Church of Santo Aleixo (1531), is in an 

advanced degradation status. This Church is a building with simple structure, which has one of 

the most beautiful Renaissance Portuguese wall paintings, located in the wall of the main altar. It 

represents a false altarpiece with three scenes of Santo Aleixo life (Figure V-1). The building has 

been abandoned for almost 42 years resulting, among other factors, in the collapse of the nave 

roof, the appearance or deepening of structural cracks, and vandalism and theft of the central 

panel depicting Saint Alexius marriage. 

 
 

 

Figure V-1. Mural Painting of Santo Aleixo church (Adapted from(Serrão, 2005).  
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The other case study used in this research work is the renaissance mural paintings from Casas 

Pintadas located in the garden of the Inquisition Palace in Évora (Portugal), classified as World 

Heritage by UNESCO, and, in 1950 as Asset of Public Interest by IGESPAR (Instituto de Gestão 

do Património Arquitectónico e Arqueológico). The paintings exhibited in Casas Pintadas (Figure 

V-2) show mythological and exotic scenes decorating a cloister and a small chapel. This space is 

all that remains of the Noble House belonging to Silveira Henriques family, Masters of the Horse 

of D. Afonso V and D. João II. However, in the Past they have been attributed to Vasco da Gama 

(Portuguese navigator), fact that has been proved to be a legend. The paintings in the cloister, of 

a great historical and artistic value, combine exoticism, originality and evocative power, 

constituting an iconic national and international mural composition (Caetano and de Carvalho, 

2014). 

 
 

 

Figure V-2. Mural Painting of Casas Pintadas located in the garden of the Inquisition Palace, Évora, before to the 

conservation-intervention process. 

 
 

The main goal of this work was to obtain relevant data for art historians concerning the 

materiality of these unique paintings and to evaluate the main sources of degradation in order to 

produce a scientific and technical report for the regional authorities and the owners, to support a 

conservation-restoration intervention strategy for the future safeguard of these paintings. 
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Due to the great importance of these mural paintings a material study were performed, the 

biological contamination was evaluated and remediation strategies were studied in order to 

promote their longevity. 

 

 
 

3. Experimental Section 

3.1. Sampling process 

The sampling process was performed on representative areas of the paintings, and, in areas 

with significant contamination and alterations signs, under the coordination of a Conservator-

Restorer, using micro-invasive and non-invasive methods (Annexe C-C5 and C6). 

Microsamples (samples with less than 1 mm2) for chromatic layers characterisation were 

removed near paint losses or cracks to avoid further damage, using a small chisel, on several 

areas selected after in situ X-ray fluorescence spectrometry and colorimetric analysis, to allow a 

full characterisation of the paintings polychromy and support mortars (Annexe E-E1). 

For microbiological assays (Annexe E-E1), samples were collected under semi-aseptic 

conditions with sterile swabs and scalpels, placed in a suspension of transport MRD medium 

(Maximum Recovery Diluent, Merck), until utilisation. 

 
 

3.2. Material characterisation 

Microsamples collected were incorporated in epoxy resin (Epofix Fix) and polished to allow 

cross-section analysis. 

Optical microscopy observations were carried out in a Leica DM2500 microscope in reflected 

light and dark field mode and digitally recorded by a Leica DFC290 HD photo camera, enabling 

stratigraphy analysis and pigment morphology. 

To allow microstructural characterisation of the paint layers and elemental composition (point 

analysis and 2D mapping), the paint cross-sections were used as such or coated with Au-Pd 

(Balzers Union SCD 030) and analysed with a HITACHI 3700N variable pressure scanning 

electron microscope (VP-SEM) coupled with a Bruker XFlash 5010 energy dispersive X-ray (EDX) 

spectrometer with an accelerating voltage of 20 kV. 

Selected samples were further investigated by micro-Raman spectrometry and micro-X-ray 

diffraction to confirm pigment identification and alteration products. Raman spectra were 

measured on a Horiba Xplora confocal spectrometer, using 1% of the power coming from a 25 
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mW laser diode operating at a wavelength of 637.1 nm. This low power was necessary to preserve 

the sample of burning. To improve the signal-to-noise ratio, several spectra (between 10 and 20) 

were accumulated for an exposure time of 120 s for each. X-ray diffraction was performed in a 

Bruker D8 Discovery diffractometer with Gadds detector and Cu X-ray source operating. The 

detector diffraction image was converted to a diffractogram by integration of the diffraction pattern 

in the range of 3-70º and 0.02º steps.  

 
 

3.3. Microorganisms isolation and characterisation 

Samples collected for microbiological studies were mechanically shaken for 1h, and after serial 

dilutions (10-1 to 10-3) were prepared and inoculated (100 µL), under aseptic conditions, in NA 

(Nutrient Agar), for bacteria isolation, in MEA (Malt Extract Agar) and CRB (Cook Rose Bengal) 

for filamentous fungi isolation, and, in YPD (Yeast Extract Peptone Dextrose Agar) for yeast 

growth (Annexe A). The cultures were incubated at 30°C for 24-48 h, and at 28°C for 4-5 days, 

to allow bacterial and fungal development, respectively. After this period, the plates stayed in 

incubation at the same temperature to detect slow microbial development. The several colonies 

developed were picked up to obtain pure cultures, and then stored at 4ºC. 

The microbial population was characterised based on macroscopic features of the colonies, 

and, in micro-morphology of the reproductive structures, that were observed in the optical 

microscope Leica DM 2500P, and the images were acquired with the digital camera Leica 

DFC290HD.  

 
 

3.4. Analysis of mortars biological contamination 

Mortar microfragments were coated with gold (Balzers Union SCD030), and analysed by 

Scanning Electron Microscopy with an accelerating voltage of 10–20 kV in secondary electron 

mode, to evaluate the microbial proliferation. 

 
 

3.5. Antimicrobial activities 

The antimicrobial activity of several water soluble commercial biocides such as Preventol PN 

[sodium 2, 3, 4, 5, 6-pentachlorophenplate], Preventol R-80 [alkyl-benzyldimethyl ammonium 

chloride], NEW-Des [Streptamidina H, Igran 500FW [Terbutryn], Wikamol Murosol [tributiltin 

oxide], Panacide [4-chloro-2-[(5-chloro-2-hydroxyphenyl)methyl] phenol] and Linquad were 

evaluated against the predominant fungi isolated, under sterile conditions. The biocides were 
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tested at different concentrations against the several microorganisms isolates from Santo Aleixo 

and Casas Pintadas mural paintings. Cultures of these microorganisms were prepared in Malt 

Extract Agar (MEA) slant and incubated at 25ºC for 7 days. 

Fungal spore suspensions were prepared by adding loopful of hyphae and spores in 5 mL of 

NaCl 0.85% solution. The suspension was filtered by sterilised triple gauze and incorporated (108 

CFU) in MEA at 45ºC. Sterile filter paper discs (Macherey-Nagel 827 ATD) were placed on agar 

and impregnated with 20 µL of biocide. The Petri dishes were incubated at 28ºC for 4-5 days. 

Antimicrobial activity was evaluated accordingly to the inhibition halo formation developed around 

the disc. The measurement was performed in triplicate plates. 

 
 

3.6. In situ biocides application  

Preventol PN, Panacide and Linquad were applied in Casas Pintadas (combined applications), 

first in small areas and after in all affected zones, since no changes were detected. After these 

experimental applications, this local was subjected to a conservation intervention, together with a 

combined application of these biocides to prevent recolonisation.  

 
 

 

4. Results and Discussion 

Nowadays, the preservation of artworks has been a growing concern due to their historical and 

cultural importance.  

In this way several measures have been proposed. However, some conservation-intervention 

processes undervalue the contribution of biologic agents in the processes of degradation, often 

performing restoration works without the elimination of these agents. These procedures often put 

in question the durability of the restoration process, whose degradation can be enhanced due to 

nutrients availability, which are used by the remain microorganisms for their growth and 

proliferation in these surfaces. 

In this section two different mural paintings studies will be presented.  

The cases selected are inserted in completely distinct context, environment and conservation 

status. In the case of Santo Aleixo Church the degradation level is very high, having a lot of 

detached fragments that can be used for laboratorial assays, being a particular situation, since, 

most of the times only a very limited number of microsamples can be collected. This fact 

contributed to perform several tests that usually are impossible to carry out with microfragments. 
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On the other hand, Casas Pintadas, presents a completely different situation from the above 

mentioned, having only some alteration signs due to the particular fact that these paintings are in 

an outdoor environment. These paintings suffered a conservation-intervention and this study was 

developed within this framework. Presently, the Casas Pintadas paintings are completely 

rehabilitated and it is possible to visit them.  

 
 

4.1. Santo Aleixo Church case study 

The mural paintings present in the Santo Aleixo church are currently in an advanced status of 

degradation, since the building has been abandoned for almost 42 years. The consequence of 

this abandonment reflects in the collapse of the nave roof, the appearing and/or deepening of 

structural cracks, vandalism and theft of the central panel depicting Santo Aleixo marriage. 

The degradation progress of these paintings can be observed through photos acquired in 

different years (Figure V-3), when it is possible the identification of biological colonisation as the 

main responsible for paint layers and mortars degradation and disruption. Several brownish to 

greenish stains are visible in the paint surface and seem to be spreading a little bit further each 

year. Therefore, measures to avoid the complete destruction have to be taken. Nevertheless, it is 

necessary to understand the physicochemical properties of the mural paintings materials, 

including paint layers, grounds, and mortars to avoid the use of inadequate materials in restoration 

and also to take measures to control and eliminate biological proliferation. 
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Figure V-3. General view of the Santo Aleixo main altar mural paintings. Photographs taken in 1960, 2010, 2013 and 2014. 
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Comparing the alterations over the years, it is clearly visible that a total loss of these paintings 

can happen in a few years, as well as all information contained therein. 

 
 

4.1.1. Identification of pigments and painting technique 

Microanalysis by SEM-EDX allowed the identification of iron in all samples collected from red 

areas (Annexe E-E1), indicating that the red pigments used were very likely red ochres, clay-

based earth pigment containing mainly hematite (Fe2O3) as chromophore species (Figure V-4). 

The EDX spectra are typical of ochre pigments and elemental maps allowed the association 

between Si and Al with Fe in the red layers. The different shades were obtained by mixing lime, 

for the light areas, and/or animal black pigment (C + Ca(PO4)2), in shadow areas. 

 
 

 

Figure V-4. Sample 42: (A) EDX spectrum of red pigment and (B) SEM micrograph in back-scattered mode and EDX 

2D elemental  maps of a cross-section from a red area.  
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Like for the red pigments, micro-analysis performed in the samples from yellow and brown 

areas (Annexe E-E1) allowed the identification of iron in all samples, indicating that yellow and 

brown pigments are yellow and brown ochres, pigments composed of clay minerals containing 

iron oxo-hydroxides such as goethite (FeOOH). EDX spectra obtained by scanning electron 

microscopy in Figure V-5 confirmed the association of Al and Si with Fe thus corroborating the 

use of ochre pigments.  

 
 

 

Figure V-5. Sample 8: SEM micrograph in back-scattered mode (A) and EDX 2D elemental maps (B) of a cross-section 

from a yellow-orange area. 

 
 

Microchemical analysis of green samples (Annexe E-E1) detected the presence of copper, 

suggesting the use of a copper-based pigment, probably malachite. In Figure V-6, the EDX 

spectra and elemental mapping 2D confirmed the presence of Cu in green particles while the 

black areas are consistent with the use of animal black (presence of P and Ca, from apatite) just 

like was observed in the reds for the darker hues. Animal black pigment was also used 

intentionally as dark ground layer for the green foliage. Nowadays, almost all the green paint 

layers from these areas have disappeared. 
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Figure V-6. Sample 4: (A) SEM micrograph in back-scattered mode and EDX 2D elemental maps of a cross-section 

from a green area (B) micro-X ray diffractogram of green particles and (C) micro-Raman spectra of green-black 
particles. 

 
 

Micro-XRD and micro-Raman allowed the identification of the green pigment as malachite as 

well as the identification of degradation products namely tenorite (black copper oxide) and 

whewellite (calcium oxalate). Conversion of basic copper carbonates into tenorite is usually 

attributed to the exposure to an alkaline environment or warm situations. The paintings are 

sheltered from direct light exposure so the temperature does not seem to be the cause of its 

alteration. The most likely hypothesis is the painting technique since this pigment was mixed with 

a basic medium (Ca(OH)2).  

The presence of calcium oxalates indicates the action of oxalic acid (H2C2O4) in the wall 

paintings. Oxalic acid could have promoted the decay of the basic green carbonates that were 

used by the painter. By reacting with calcium carbonate from the matrix and underneath mortars, 

it also continuously disrupts the material on which the artwork is based. This could be one of the 

reasons of the several chromatic lacunae present within the green decoration motifs.  
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As reported in Chapter II, the widespread formation of oxalates on paintings surfaces and on 

stone have been extensively studied (Pérez-Alonso et al., 2006; Nevin et al., 2008; Lluveras et 

al., 2010; Rosado et al., 2013a). However the origin of oxalates is still on discussion. Three 

hypotheses are currently appointed: a) metabolic products of biological activity (e.g. lichens); b) 

degradation of binding media (proteins and other organic materials) and finally, c) oxidation 

products of organic substances applied in conservation treatments. In the case study reported 

here, the first source seems to be the most likely origin (as noted previously in the discussion of 

biodegradation activity assessment). From the extensive green paint layers losses, the hypothesis 

b) cannot also be completely excluded although in the two paint layers analysed, the only binder 

found was calcite.  

In the case of blue areas (Annexe E-E1), the only blue pigment (Figure V-7) used in Santo 

Aleixo main altar mural painting was the basic copper carbonate azurite. This pigment was 

identified by the optical properties under an optical microscope, by scanning electron microscopy 

(presence of copper) and confirmed by micro-XRD as illustrated in figure V-7B. 

 
 

 

Figure V-7. Sample 12: (A) SEM micrograph in secondary electrons mode and EDX 2D elemental maps of a cross-

section from a blue area and (B) micro-X ray diffractogram of blue particles. 
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In an alkaline environment it was also expected to find the black copper oxide (tenorite) as a 

degradation product. However, unlike malachite, in this case, azurite painted areas exhibit an 

extraordinary stability taking into consideration the fact that the pigment was laid down at fresco. 

One explanation for the stability of azurite painting may be due to the coarse nature of the pigment 

particles. Optical observation (Annexe E-E2) of the few black grains of tenorite present in the blue 

paint, shows that they have sizes smaller than 10 µm, which seems to corroborate this hypothesis 

(Gil et al., 2011). 

 
 
 
 
 

4.1.2. Microbiological study 

The microbiological study allowed the isolation of 31 bacterial strains (eg Gram+ cocci, Gram+ 

bacilli, Actinomycetes sp.), five yeast strains and 53 filamentous fungi strains. The most 

predominant genera were Penicillium sp. and Cladosporium sp. Aspergillus sp., Trichoderma sp. 

and sterile micelia were also isolated. Figure V-8 presents macroscopic features of the colonies 

and microscopic morphology of the microorganisms both by optical microscopy and scanning 

electron microscopy.  
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Figure V-8. Cultivable microbial population from Santo Aleixo church: (A) Main fungi isolation i - Penicillium sp.; ii - 
Cladosporium sp.; iii - Aspergillus niger; iv- sterile mycelium; (B) Main bacterial isolates v - Bacillus sp., vi – Gram-

positive cocci; vii – Actynomycetes, and, (C) Main yeast isolates viii, ix – unidentified yeast. 
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Additionally, sterile mortar samples were inoculated with the predominant isolates, and 

incubated during 1 month, in order to evaluate the proliferation ability of these microorganisms. 

 
 

 

Figure V-9. SEM micrographs of mortars with bacterial contamination (A), reproductive structure of Aspergillus sp. 
grown (B) in the mortar, Penicillium sp. with reproductive structure and hiphae proliferation (C, D). 

 
 

SEM observation in secondary electrons mode at high magnification and resolution allowed 

the observation of microorganisms showing that both bacterial and fungal population are capable 

of proliferating in the paintings (Figure V-9). Furthermore, fungal proliferation conduces to 

penetration of mycelia structures in the microstructure of the mortars, promoting dissemination of 

these microorganisms in depth (Figure V-9,B-D) while the bacterial growth occurs more 

superficially (Figure V-9A). These results complement the SEM analysis of the mortar 

microfragments collected in Santo Aleixo already showed in the Chapter IV. 
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4.1.3. Biocides treatment 

The antimicrobial activity of several commercial biocides was evaluated against the 

predominant isolates found in the mural paintings. Table V-1 shows the inhibition halo results 

obtained against the main bacterial and fungal isolates. 

 
 
 

Table V-1. Biocide activities against the main bacteria and fungal isolates from Santo Aleixo 
church. 

 Inhibition halo (mm) 

Preventol 
R-80 

 (5% v/v) 

Preventol PN 
(0.6 % p/v) 

Wikamol 
Murosol 

(1% v/v) 

New Des 

(10% v/v) 

Igran 500 FW 

(10% v/v) 

Actinomycetes sp. 29 ± 0.5 t.i. t.i. w.i. 38 ± 0.5 

Bacillus sp. 42 ± 1.5 51 ± 3.5 t.i. w.i. 21 ± 0.5 

Pseudomonas sp t.i. t.i. t.i. w.i 29 ± 1.5 

Cocci strain t.i. t.i. t.i w.i w.i. 

Cladosporium sp. 30 ± 1.5 t.i. 35 ± 1.5 29 ± 2.0 w.i 

Penicillium sp. 37 ± 2.5 28 ± 1.5 49 ± 2.0 w.i. w.i. 

Aspergillus niger 29 ± 0.5 t.i. 26 ± 1.5 w.i. w.i. 

Aspergillus sp. 24 ± 1.0 34 ± 1.2 31 ± 2.5 w.i. w.i. 

Sterile mycelium 32.9 ± 2.0 45.7 ± 1.0 32.2 ± 1.5 30.7 ± 2.5 n.d. 

t.i. - total inhibition;  w.i. - without inhibition;  n.d. - not determined 

 

 

 

 
The most effective biocides tested against bacteria were Preventol PN and Wikamol Murosol. 

Igram 500 FW which showed inhibition capacity for bacilli strains but were not active against cocci 

strains. The biocide New Des showed no inhibition capacity. For fungal communities, the most 

effective biocides were Preventol R-80 (inhibition zones ranging from 24 to 42 mm), Preventol PN 

(inhibition zones ranging for 28 mm to total inhibition) and Wikamol Murosol (inhibition zones from 

26 to 49 mm). Igram 500 FW had no fungicide activity against the studied fungal strains.  

Biodeterioration of mural paintings is caused by the attack of microorganisms which thrive and 

feed on the murals. Biocides used in chemical treatment exert their effect on the organisms in 

various ways, including oxidation, hydrolysis, denaturation, cell lysis, metabolic inhibition, and 
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alteration of membrane permeability (Warscheid and Braams, 2000; Allsopp et al., 2004; Pepe et 

al., 2010). 

The commercial biocides used presented ability to inhibit the growth of all isolated 

microorganisms, showing satisfactory inhibition results particularly in a combined application of 

Preventol and Wikamol Murosol. In fact these two biocides belonging to the class of chlorophenols 

and organometalic compounds, respectively, act on cells by different mechanisms and their joint 

action can enhance a greater biocide activity. 

This study allowed to perform a high number of studies, since these paintings are hugely 

degraded, and, in some cases with several fragments detached that can be used for simulation 

assays, giving useful information that can be used in other case studies. 

 
 
 

4.2. Casas Pintadas in Évora case study 

The other case study focused in this chapter is the sixteenth century mural paintings in the vaulted 

porch of the cloister of Casas Pintadas in Évora (Figure V-10). This study was developed under 

the framework of an integrated conservation-restoration intervention that took place during 2013, 

financed by Fundação Eugénio de Almeida and supervised by the Alentejo Regional Directorate 

for Culture. This intervention is one of the most complete examples of interdisciplinary research 

and encompassed the historical research, the material and biodegradation study for the support 

of the conservation-restoration intervention of this iconic national and international mural 
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UP – Upper painting; GF – Grotesque frize 

 

Figure V-10. General view of the mural paintings present in the cloister of Casas Pintadas. 
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The main problem of these paintings is their outdoor location, being exposed to several 

alteration agents that lead to deterioration/degradation mechanisms. One of the important agents 

that promote these alterations are microorganisms which gradually came to spread throughout 

the walls of the cloister, thus affecting, in various degrees, the whole surface of the paintings. 

In this way, the identification of the biological agents and their short and medium term control 

was one of the most urgent operations, for preservation and future maintenance of these historical 

mural paintings. 

 
 

4.2.1. Material characterisation 

The material characterisation of mural paintings is an important step to understand an artist 

technique allowing a deeper knowledge on the pigments and mortars used and providing also 

crucial parameters for the conservation/restoration process and consequently contributing to their 

preservation. In this way, the strategy adopted started with in situ analysis which provided a global 

information about the mural paintings under study, allowing the careful selection of the collection 

points for the analytical and biological analysis. 

These paintings showed a simple colour pallet composed by red, yellow, brown, blue and black 

pigments/shades. Stratigraphic analysis of the cross sections (Figure V-11), by optical microscopy 

and scanning electron microscopy enable the characterisation of these pigments. 

 
 

 

Figure V-11. SEM micrograph in back-scattered mode and EDX 2D elemental composition of a cross-section from red 

(A), yellow (B) and blue (C) areas. 
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Microanalysis by SEM-EDX of the red areas showed that red ochre is the pigment responsible 

for this colouration. 

Ochres are composed by clay minerals (alluminosilicates) enriched in iron oxides and 

hydroxides, goethite (FeO(OH)) and hematite (Fe2O3) (Gil et al., 2007). These compounds are 

easily identified by SEM-EDX by the presence of aluminium, silicon and potassium in their 

composition (Figure V-11A). Hematite (Fe2O3) is the responsible for the red colour of these 

pigments although these may also contain other chromophores in their composition, such as 

goethite (FeO(OH)) and manganese dioxide (MnO2) that confer orange and brownish nuances 

(Gil et al., 2009). Both on the upper painting as on the grotesque frieze, red ochres were used 

alone or in conjunction with bone black, a black pigment obtained from the burning of bones, and 

identified by the presence of Ca and P.  

Like the red areas, yellow and brown colours were obtained with clay-based earth pigments, 

whose composition is similar to the red ochres, however the type and proportion of the iron 

compound present is different. In the yellow ochres, the chromophore responsible for the colour 

is mainly goethite, an iron hydroxide (FeO(OH)) compound (Figure V-11B). On the other hand, 

the brownish shades can be explained by the presence of manganese oxides, organic matter or 

others clay minerals (e.g. smectite). 

The blue mineral azurite (2Cu.CO3.Cu(OH)2) was detected in the remaining blue layers of the 

flesh tones in the upper register of the cloister wall (Figure V-11C). 

For the backgrounds of the grotesque frieze, currently dark bluish grey, however, no 

chromophore was identified. The absence of blue pigment particles in the samples analysed by 

optical microscopy and scanning electron microscopy, the detection of animal black and yet the 

presence of red and yellow ochres in the adjacent areas seem to indicate the possible use of an 

optical blue (Ashok, 1993).  

In the black areas of the painting, the presence or absence of phosphates revealed the 

application of bone black or charcoal, respectively. Both pigments are artificially produced by 

calcination of organic matter (bones and wood). 

 
 

4.2.2. Microbiological study 

To assess the biodegradation of Casas Pintadas, samples from areas with obvious signs of 

alteration were analysed. This approach involved a detailed study in order to characterise the 

biological agents that promote degradation of the murals and to understand their propagation in 

the deteriorated areas. 
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Thereby, mortar microfragments were observed by SEM (Figure V-12) which confirmed 

microbiological contamination, showing the capacity of microorganisms to thrive in the paintings. 

Fungal hyphae proliferation in the microstructure of the mortars promote microbial depth 

dissemination (Figure V-12 A-F), fact that may explain the detachment and cracking observed in 

some areas of the painting.  

 
 

 

Figure V-12. SEM micrograph of mortar microfragments, evidencing filamentous fungi and hyphae proliferation in the 

surface of the mortar and the penetration of these microorganisms in depth. 

 
 
In figure V-12D is evident the micellar structures of filamentous fungi, forming a biofilm on the 

surface of the mortar, covering some areas of the paint, which can induce pigment alterations due 

to the metabolic activity of the microorganisms or colour acquisition from the development of the 
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microorganisms in the surface of the walls. Biofilms are biological deposits of a highly hydrated 

gel of extracellular polymeric substances containing microbial cells and inorganic detritus that can 

drastically change the physicochemical characteristics of the environment in contact with the 

structural material and generally increase its aggressiveness (Herrera et al., 2004; Harding et al., 

2009). 

Once detected microbial proliferation in the paintings it was necessary to characterise this 

population, to identify the harmful microorganisms in the degradation process and the areas with 

the greatest contamination. 

The microbiological study allowed the isolation and characterisation of several bacterial strains 

such as cocci and bacilli Gram-positive and Actinomycetes sp., yeast strains and filamentous 

fungi of the genera Aspergillus, Cladosporium, Penicillium, Sporothrix; microorganisms frequently 

founded in the mural paintings (Garg et al., 1995; Gorbushina et al., 2004; Sterflinger, 2010; 

Rosado et al., 2013a; Rosado et al., 2014a). In addition, other unclassified microorganisms 

namely mycelia and sterile mycelia were also isolated. 

These results show a high microbial contamination in the paintings surface, fact that can be 

correlated with the damages observed, whose dissemination affected the structure and visual 

appearance of the paintings. Highly contaminated areas showed higher degradation levels, due 

to fungal proliferation as it was possible to detect by SEM analysis. 

The paintings are located in an outdoor area of the building, exposed to variations of 

temperature, humidity and luminosity during the day and over the seasons of the year, which, 

together with the high biological contamination detected can promote chromatic alterations, 

cracking and detachment of some areas of the painting (Garg et al., 1995; Ciferri, 1999; 

Gorbushina and Petersen, 2000a; Milanesi et al., 2006; Guiamet et al., 2011).  

The biological attack and biodeterioration processes are strongly influenced by water 

availability (Guiamet et al., 2013). Since the paintings are in outdoor environment and are subject 

to extreme humidity due to the harsh winters in this location, this poses an important factor to take 

into account in a conservation strategy. 

To ensure the longevity of the intervention and to avoid the fast recolonisation, remediation 

strategies were envisaged, using biocides treatment to control microbial proliferation. 

 

 

4.2.3. Biocides application 

To determine the efficacy of the biocides to eliminate the microorganisms which develop in 

these paintings, a serial dose laboratory tests were carried out with a high cell concentration of 
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fungi strains previously isolated from the wall paintings of the Casas Pintadas. The results are 

summarised in Table V-2 and analysed according to the inhibition halo formed in the cultures. 

 
 

Table V-2. Effect of biocides against fungal isolates of Casas Pintadas.  

 Preventol PN Panacide Linquad 

Yeast 

   

Penicillium 

   

Sporothrix 

   

Cladosporium 

   

Aspergillus 

   

Mycelium  
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Preventol PN was the most efficient biocide for inhibiting all fungal isolates. This biocide 

promoted almost total inhibition for all tested fungi except for the isolate Aspergillus. This 

compound has hydrophilic and hydrophobic chemical groups, able to disrupt the cell membrane 

structure of the microorganism causing leakage of intracellular materials (Ascaso et al., 2002). 

The inhibition induced by Panacide was satisfactory for all tested microorganisms, being less 

effective for Cladosporium, however inhibits considerably their growth. Linquad produced 

satisfactory results, however showed lower inhibition capacity than the other biocides tested. This 

fact was evident for the fungal isolate whose identification was not possible so far, thereby calling 

it mycelium. The majority of the fungal isolates were inhibited with more efficiency by Preventol 

PN, followed by Panacide and then Linquad, except for Cladosporium wherein Linquad had 

greater inhibition capacity than Panacide. 

Mixtures of biocides are frequently employed to allow an effective microbiological elimination, 

in order to avoid a quick recolonisation (Gaylarde et al., 2011). 

In this study the results show that the biocides have the ability to inhibit the growth of all isolated 

fungi, promoting good inhibition results particularly with a combined application of Preventol PN 

and Panacide in the wall paintings of Casas Pintadas (Figure V-13).  
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Figure V-13. Details of the mural paintings of Casas Pintadas, before and after treatment with biocide, and, intervention and restoration process. 
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The compounds considered in this work were able to eliminate and control microorganisms 

development and present low toxicity to humans. In situ application of biocides in these paintings 

did not promote chromatic alterations neither mortar damages.  

During the conservation-restoration process, painting layers were fixed, holes were filled and 

some areas were retouched. One has to take into consideration that after the conservation-

restoration process it is important to control and prevent possible recolonisation. Therefore, 

preventive conservation measures were taken and presently a long term in situ monitorisation is 

ongoing that encompasses weekly measures of T and RH in the paintings area, and monthly 

photogrametry/photographic assessment and collection of possible neoformation products (salts) 

and microorganisms. 

 
 
 

5. Conclusions 

The analytical methodology adopted, based on optical and scanning electron microscopy 

analyses and complemented with -XRD and -Raman, allowed the identification of the pigments 

palette used, as well as alteration products. This is a determinant step for the conservation-

restoration intervention of these murals. 

The microbial population detected in these paintings is responsible for the biodegradation on 

Santo Aleixo and Casas Pintadas, and may have an important role on the overall degradation 

process. Due to a wide microbial diversity present in these structures it was necessary to develop 

strategies to eliminate and prevent their proliferation. Biocides applications seem to be the answer 

for this problem, safeguarding the pigments and support matrix integrity. The greatest efficacy of 

biocides treatment is obtained for combined applications of these compounds once exist a wide 

variety of microorganisms.  

The results show that to efficiently eliminate and control the development of the 

microorganisms actively involved in the biodegradation process it is crucial to have a deep 

knowledge of the processes and remediation solutions before the conservation-restoration 

intervention and after to develop preventive conservation monitorisation programs to ensure the 

longevity of the intervention.  
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This thesis developed a multidisciplinary approach to characterise the microbial population 

present in mural paintings and to identify the biodeteriogenic agents responsible for the 

degradation/deterioration of these heritage assets. 

The results obtained reveal the involvement of the microorganisms in the paintings alterations, 

showing the active contribution of this agents in the mural paintings decay. 

This work gives a substantial input in the biodegradation studies, providing a methodological 

advance in Portugal, for cultural heritage safeguard, having developed strategies and procedures 

that can constitute an experimental key to define protocols for cultural assets studies. 

The early diagnosis and the development of strategies that characterise the biological agents, 

involved in the alterations of these artworks, and the effective elimination of these agents, are an 

added value to safeguard these heritage assets. The methodology used in this study and the 

strategies outlined proved to be very effective and promising in mural paintings decay prevention, 

and, can be adapted to other artworks for diagnostic and rehabilitation, contributing to the cultural 

heritage safeguard.  

 

The methodology developed for biological characterisation under the framework of this 

research has proven that: 

 The combined application of culture-dependent methods and molecular approaches 

are useful tools for microbial identification; 

 Traditional cultivation methods allow to obtain high microbial cells concentration for 

simulation assays, and for metabolic and physiological tests; 

 DGGE analysis allows multiple samples comparison enabling to discriminate different 

biological contamination levels; 

 Pyrosequencing discriminate different biological contamination levels and reveal a 

strong potentialities for microbial identification from microsamples, proving to be 

revolutionary tool for the microbial knowledge in this field; 

 The biological agents found in mural paintings were fungi of the genera Aspergillus, 

Cladosporium, Penicillium, Cystoderma, Hypholoma, Tubaria, Pholiota, Armillaria, 

Physalacria, Chondrostereum, Schizophyllum, Coltricia, Fuscoporia, Hyphodontia, 

Phlebia, Radulomyces, Vesiculomyces, Russula, Amphinema, Hyphodontiella, 
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Lactarius, Cyphellostereum, Stereum, Skeletocutis, Ganoderma, Tyromyces, Antrodia, 

Postia, Coriolopsis, Rhodotorula and bacteria of the genera Bacillus, Catenibacterium, 

Anaerococcus, Roseburia, Veillonella, Atopostipes, Dolosigranulum, Granulicatella, 

Aerococcus, Abiotrophia, Streptococcus, Lactobacillus, Marinococcus, Virgibacillus, 

Geobacillus, Thermicanus, Staphylococcus, Salinicoccus, S. halodurans, 

Paenibacillus, Streptomyces, S.clavuligerus, Actinomyces, Nocardia, Rhodococcus, 

Corynebacterium, Arthrobacter, Micrococcus, Kocuria, Rothia, Blastococcus, 

Geodermatophilus, Bifidobacterium, Oligella, Haemophilus, Pseudoxanthomonas, 

Pseudomonas and  Sphingomonas; 

 The metabolic activity assessment allowed the signalisation of the main biodeteriogenic 

agents involved in the mural paintings decay: Penicillium sp., Cladosporium sp., 

Aspergillus sp., Rhodotorula sp. and Bacillus sp.; 

 Areas with high alteration signs are correlated with high microbiologic contamination; 

 Cell viability assays revealed to be an effective fast way to monitor and quantify 

microbial metabolic activity; 

 There is a strong relationship between the presence of microorganisms metabolically 

active and the areas highly altered; 

 Oxalate compounds, plattnerite and carotenoids were the main alteration products 

detected in the studied damaged mural paintings and mortars; 

 Whewellite and weddellite were found essentially in altered areas, as a result of 

biological metabolism, mainly  caused by Bacillus sp. metabolic activity, inducing 

chromatic alteration by biofilm development and oxalate compounds formation; 

 Plattnerite detected in altered carnation areas of the paintings results from the oxidation 

of lead-based compounds; 

 Fungi of the genera Penicillium and Cladosporium seem to be related with plattnerite 

formation; 

 Rhodotorula sp. was identified as a biodeteriogenic agent, responsible for the pink/dark 

orange stains, that cover the mortars in the inner walls of Évora Cathedral; 
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 Aesthetic damages like chromatic alterations and stains appearance seem to be 

particularly related with bacteria and yeast proliferation, however some fungi are also 

responsible for these damages; 

 Structural damages like  salt efflorescence formation, cracks and detachment of some 

mortar fragments are associated to fungal development due to the hyphae ability to 

proliferate in the microstructure of the mortars promoting microbial depth dissemination; 

 Biocides application are very effective in microbial inhibition of all microorganisms 

tested; 

 Preventol PN and Panacide show, in most of the cases, high inhibition capacity; 

 Fungi of the genera Cladosporium were the microorganisms more resistant to the 

tested biocides; 

 The combined application of biocides allows better inhibition levels, since the action 

spectrum is enlarged; 

 In the case of a conservation-intervention process, the durability of the intervention is 

increased with biocides application due to its capacity to inhibit microbial development.  

 

 

In order to increase the knowledge about the biological agents that colonise mural paintings 

further approaches could be considered. 

An important step in the mural painting degradation/deterioration studies is the detection of the 

biological agents. However, it is also important to know if they are active or not. In this way 

comparative DGGE analyses of the total DNA and RNA from microbial communities should be 

applied, in order to estimate the biodeteriogenic potential in a fast screening. On the other hand, 

real time-PCR can also be a useful contribution, providing quantitative information. 

Biological contamination should be regularly monitored, once the environmental conditions can 

be altered and the presence of inactive microorganisms represents a potential risk. Additionally, 

other biological agents can develop in the paintings. The application of Fluorescence In Situ 

Hybridisation, with specific primers for biodeteriogenic agents, can be taken into account to 

perform their monitorisation. 
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In the point of view of the mitigation strategies, the development and application of 

natural/novel biocides, environmental friendly and more effective should be an interesting 

alternative to the commercial compounds usually applied. 
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ANNEXE A. Culture medium composition 

 

  

Table A-1. Composition of the several culture media used to microbiological development. 

NA NB MEA MEA CRB YEPD 

5 g/L Peptic digest animals 30 g/L Malt extract 5 g/L Peptone 
10 g/L Yeast 

extract 

1.5 g/L Beef extract 5 g/L Peptone mycologic 10g/L Glucose 10g/L Peptone 

1.5 g/L Yeast extract 20 g/L Glucose 1 g/L K2HPO4 20 g/L Dextrose 

5 g/L Sodium Chloride 

15 g/L Agar --- 

0.5 g/L MgSO4 

20 g/L  Agar 
15 g/L Agar --- 

0.05 g/L Rose 

Bengal 

0.1 g/L 

Chloramphenicol 

15.5 g/L Agar 

NA – Nutrient Agar; NB – Nutrient Broth; MEA - Malt Extract Agar; ME - Malt Extract; CRB - Cook Rose Bengal; YEPD 

- Yeast Extract Peptone Dextrose Agar 
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ANNEXE B. Solutions composition 
 
 

B1. DGGE solutions 
 

Stock solution 0% Stock solution 80% 

1.5 mL TAE 5x 1.5 mL TAE 5x 

30 mL Acrylamide 40% 30 mL Acrylamide 40% 

120 mL distilled water 30 mL distilled water 

 48 mL Formamide 

 50.4 g Urea  

 

 

 

Solutions to gel preparation 

Solution 30% Solution 50% 

7 mL Solution stock 0% 4.1 mL Solution stock 0% 

4mL Solution stock 80% 6.9 mL Solution stock 80% 

7.7 L TEMED 7.7 L TEMED 

55 L APS 55 L APS 

 

 
 
 

B2. TBE 10X (pH8) 

 
Tris 890 mM 

Boric acid 890 mM 

EDTA 0.5 M 

 

TBE 1x (pH8) 

TBE 10x diluted 1/10 in sterile water 
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B3. TAE 50x 
 

242g Tris 

57.1 mL Acetic acid 

EDTA 0.5M pH8.0 

(for 1L) 

 

 

TAE 0.5x 

TAE 0.5x diluted 1/10 in sterile water 

 

 

 

B4. Modified Universal Buffer (MUB) 
 

12.1 g Tris 

11.6 g Maleic acid 

14.0 g Citric acid 

6.3 g Boric acid 

(for 1L) 
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ANNEXE C. Mural paintings samples collection 

 

C1. Santa Clara Church, Sabugueiro 
 

 

Figure C-1. Photographs of the sampling process performed in the Santa Clara Church. 

 

 

 

Figure C-2. Schematic representation of the salt efflorescence location and areas affected by cohesion loss in Panel 
1 of the Santa Clara Church. 
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Figure C-3. Schematic representation of the salt efflorescence location and areas affected by cohesion loss in Panel 
2 of the Santa Clara Church. 

 

 

 

C2. Low Choir of Nossa Senhora da Saudação Convent, Montemor-o-Novo 
 

 

Figure C-4. Photographs showing the collection of samples in the Low Choir of the Nossa Senhora da Saudação 

Convent. 
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C3. Évora Cathedral, Évora 
 

 

Figure C-5. Examples of the sampling process performe in Évora Cathedral. 

 

 

 

 

C4. Condes de Basto Palace, Évora 
 

 

Figure C-6. Sampling process carried out in Condes de Basto Palace. 
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C5. Santo Aleixo Church, Montemor-o-Novo 
 

 

Figure C-7. Photographs acquired during the sampling process performed in the Santo Aleixo Church. 

 

 

 

 

C6. Casas Pintadas, Évora 
 

 

Figure C-8. Photographs showing the sampling process performed in Casas Pintadas. 
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ANNEXE D. Enzymatic monitorisation 

 

D1. Protein quantification 

 

Figure D-9. Calibration curve for protein quantification. 

 

 

D 2. Substrate quantification 

 

Figure D -10. Calibration curve of the p-nitrophenol (p-NP) for phosphatase quantification. 
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Figure D -11. Calibration curve of the p-nitrophenol (p-NP) for arylsulphatase quantification. 

 

 

 

Figure D -12. Calibration curve of the p-nitrophenol (p-NP) for β-glucosidase quantification. 
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Figure D -13. Calibration curve of the iodonitrotetrazolium formazan (INTF) for dehydrogenase quantification. 
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D3. Statistical analysis  
 

Table D-2. Analysis of variance (ANOVA) of the enzymatic activity of liquid cultures. 

 
Sum of Squares df Mean Square F Sig. 

Arylsuphatase 

Between Groups 11.496 4 2.874 14.641 0.000 

Within Groups 1.963 10 0.196   

Total 13.459 14    

β-Glucosidase 

Between Groups 3541.474 4 885.369 79.765 0.000 

Within Groups 110.997 10 11.100   

Total 3652.471 14    

Phosphatase 

Between Groups 1942.756 4 485.689 21.069 0.000 

Within Groups 230.521 10 23.052   

Total 2173.277 14    

Dehydrogenase 

Between Groups 0.124 4 0.031 2255.992 0.000 

Within Groups 0.000 10 0.000   

Total 0.124 14    
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Table D-3. Average multiple comparison of the enzymatic activity of liquid cultures, by Tukey HSD 
test. 

Dependent 

Variable (I) Activity (J) Activity 

Mean 

Difference  

(I-J) 

Std. 

Error Sig. 

95% Confidence Interval 

Lower 

Bound 

Upper 

Bound 

Arylsuphatase Rhodotorula Penicillium 1.24522* 0.36176 0.040 0.0546 2.4358 

Cladosporium -0.61816 0.36176 0.470 -1.8087 0.5724 

Aspergillus 1.02694 0.36176 0.100 -0.1636 2.2175 

Mix cultures 1.79585* 0.36176 0.004 0.6053 2.9864 

Penicillium Rhodotorula -1.24522* 0.36176 0.040 -2.4358 -0.0546 

Cladosporium -1.86338* 0.36176 0.003 -3.0540 -0.6728 

Aspergillus -0.21829 0.36176 0.971 -1.4089 0.9723 

Mix cultures 0.55063 0.36176 0.572 -0.6400 1.7412 

Cladosporium Rhodotorula 0.61816 0.36176 0.470 -0.5724 1.8087 

Penicillium 1.86338* 0.36176 0.003 0.6728 3.0540 

Aspergillus 1.64509* 0.36176 0.007 0.4545 2.8357 

Mix cultures 2.41401* 0.36176 0.000 1.2234 3.6046 

Aspergillus Rhodotorula -1.02694 0.36176 0.100 -2.2175 0.1636 

Penicillium 0.21829 0.36176 0.971 -0.9723 1.4089 

Cladosporium -1.64509* 0.36176 0.007 -2.8357 -0.4545 

Mix cultures 0.76892 0.36176 0.281 -0.4217 1.9595 

Mix cultures Rhodotorula -1.79585* 0.36176 0.004 -2.9864 -0.6053 

Penicillium -0.55063 0.36176 0.572 -1.7412 0.6400 

Cladosporium -2.41401* 0.36176 0.000 -3.6046 -1.2234 

Aspergillus -0.76892 0.36176 0.281 -1.9595 0.4217 

Glucosidase Rhodotorula Penicillium 25.54609* 2.72026 0.000 16.5935 34.4987 

Cladosporium 25.06941* 2.72026 0.000 16.1168 34.0220 

Aspergillus 18.13342* 2.72026 0.000 9.1808 27.0860 

Mix cultures -13.47619* 2.72026 0.004 -22.4288 -4.5236 

Penicillium Rhodotorula -25.54609* 2.72026 0.000 -34.4987 -16.5935 

Cladosporium -0.47668 2.72026 1.000 -9.4293 8.4759 

Aspergillus -7.41267 2.72026 0.119 -16.3653 1.5399 

Mix cultures -39.02228* 2.72026 0.000 -47.9749 -30.0697 

Cladosporium Rhodotorula -25.06941* 2.72026 0.000 -34.0220 -16.1168 

Penicillium 0.47668 2.72026 1.000 -8.4759 9.4293 

Aspergillus -6.93599 2.72026 0.155 -15.8886 2.0166 



 
Annexes 

207 
 

Mix cultures -38.54559* 2.72026 0.000 -47.4982 -29.5930 

Aspergillus Rhodotorula -18.13342* 2.72026 0.000 -27.0860 -9.1808 

Penicillium 7.41267 2.72026 0.119 -1.399 16.3653 

Cladosporium 6.93599 2.72026 0.155 -2.0166 15.8886 

Mix cultures -31.60961* 2.72026 0.000 -40.5622 -22.6570 

Mix cultures Rhodotorula 13.47619* 2.72026 0.004 4.5236 22.4288 

Penicillium 39.02228* 2.72026 0.000 30.0697 47.9749 

Cladosporium 38.54559* 2.72026 0.000 29.5930 47.4982 

Aspergillus 31.60961* 2.72026 0.000 22.6570 40.5622 

Phosphatase Rhodotorula Penicillium 2.99333 3.92021 0.935 -9.9084 15.8951 

Cladosporium -19.62218* 3.92021 0.004 -32.5239 -6.7204 

Aspergillus -26.80943* 3.92021 0.000 -39.7112 -13.9077 

Mix cultures -7.99367 3.92021 0.315 -20.8954 4.9081 

Penicillium Rhodotorula -2.99333 3.92021 0.935 -15.8951 9.9084 

Cladosporium -22.61551* 3.92021 0.001 -35.5173 -9.7138 

Aspergillus -29.80276* 3.92021 0.000 -42.7045 -16.9010 

Mix cultures -10.98701 3.92021 0.106 -23.8887 1.9147 

Cladosporium Rhodotorula 19.62218* 3.92021 0.004 6.7204 32.5239 

Penicillium 22.61551* 3.92021 0.001 9.7138 35.5173 

Aspergillus -7.18725 3.92021 0.407 -20.0890 5.7145 

Mix cultures 11.62851 3.92021 0.083 -1.2732 24.5302 

Aspergillus Rhodotorula 26.80943* 3.92021 0.000 13.9077 39.7112 

Penicillium 29.80276* 3.92021 0.000 16.9010 42.7045 

Cladosporium 7.18725 3.92021 0.407 -5.7145 20.0890 

Mix cultures 18.81576* 3.92021 0.005 5.9140 31.7175 

Mix cultures Rhodotorula 7.99367 3.92021 0.315 -4.9081 20.8954 

Penicillium 10.98701 3.92021 0.106 -1.9147 23.8887 

Cladosporium -11.62851 3.92021 0.083 -24.5302 1.2732 

Aspergillus -18.81576* 3.92021 0.005 -31.7175 -5.9140 

Dehydrogenase Rhodotorula Penicillium 0.00192 0.00303 0.966 -0.0080 0.0119 

Cladosporium -0.21500* 0.00303 0.000 -0.2250 -0.2050 

Aspergillus 0.02010* 0.00303 0.000 0.0101 0.0301 

Mix cultures 0.02274* 0.00303 0.000 0.0128 0.0327 

Penicillium Rhodotorula -0.00192 0.00303 0.966 -0.0119 0.0080 

Cladosporium -0.21692* 0.00303 0.000 -0.2269 -0.2070 

Aspergillus 0.01818* 0.00303 0.001 0.0082 0.0281 

Mix cultures 0.02082* 0.00303 0.000 0.0109 0.0308 
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Cladosporium Rhodotorula 0.21500* 0.00303 0.000 0.2050 0.2250 

Penicillium 0.21692* 0.00303 0.000 0.2070 0.2269 

Aspergillus 0.23510* 0.00303 0.000 0.2251 0.2451 

Mix cultures 0.23774* 0.00303 0.000 0.2278 0.2477 

Aspergillus Rhodotorula -0.02010* 0.00303 0.000 -0.0301 -0.0101 

Penicillium -0.01818* 0.00303 0001 -0.0281 -0.0082 

Cladosporium -0.23510* 0.00303 0.000 -0.2451 -0.2251 

Mix cultures 0.00264 0.00303 0.901 -0.0073 0.0126 

Mix cultures Rhodotorula -0.02274* 0.00303 0.000 -0.0327 -0.0128 

Penicillium -0.02082* 0.00303 0.000 -0.0308 -0.0109 

Cladosporium -0.23774* 0.00303 0.000 -0.2477 -0.2278 

Aspergillus -0.00264 0.00303 0.901 -0.0126 0.0073 

*. The mean difference is significant at the 0.05 level. 

 
 

 

Table D-4. Analysis of variance (ANOVA) of the enzymatic activity of simulation assays. 

 
Sum of Squares df Mean Square F Sig. 

Arylsuphatase Between Groups 8.094 4 2.023 9.104 0.002 

Within Groups 2.222 10 0.222   

Total 10.316 14    

β-Glucosidase Between Groups 2.456 4 0.614 2.068 0.160 

Within Groups 2.969 10 0.297   

Total 5.426 14    

Phosphatase Between Groups 46031.099 4 11507.775 7.641 0.004 

Within Groups 15060.005 10 1506.001   

Total 61091.105 14    

Dehydrogenase Between Groups 219724.465 4 54931.116 92.910 0.000 

Within Groups 5912.294 10 591.229   

Total 225636.759 14    
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Table D-5. Average multiple comparison of the enzymatic activity of simulation assays, by Tukey 
HSD test. 

Dependent 

Variable (I) Activity (J) Activity 

Mean 

Difference  

(I-J) 

Std. 

Error Sig. 

95% Confidence Interval 

Lower 

Bound 

Upper 

Bound 

Arylsuphatase Rhodotorula Penicillium 0.39793 0.38492 0.834 -0.8689 1.6647 

Cladosporium -1.67587* 0.38492 0.010 -2.9427 -0.4091 

Aspergillus 0.17072 0.38492 0.991 -1.0961 1.4375 

Mix cultures -0.17478 0.38492 0.990 -1.4416 1.0920 

Penicillium Rhodotorula -0.39793 0.38492 0.834 -1.6647 0.8689 

Cladosporium -2.07381* 0.38492 0.002 -3.3406 -0.8070 

Aspergillus -0.22722 0.38492 0.974 -1.4940 1.0396 

Mix cultures -0.57272 0.38492 0.591 -1.8395 0.6941 

Cladosporium Rhodotorula 1.67587* 0.38492 0.010 0.4091 2.9427 

Penicillium 2.07381* 0.38492 0.002 0.8070 3.3406 

Aspergillus 1.84659* 0.38492 0.005 0.5798 3.1134 

Mix cultures 1.50109* 0.38492 0.019 0.2343 2.7679 

Aspergillus Rhodotorula -0.17072 0.38492 0.991 -1.4375 1.0961 

Penicillium 0.22722 0.38492 0.974 -1.0396 1.4940 

Cladosporium -1.84659* 0.38492 0.005 -3.1134 -0.5798 

Mix cultures -0.34550 0.38492 0.891 -1.6123 0.9213 

Mix cultures Rhodotorula 0.17478 0.38492 0.990 -1.0920 1.4416 

Penicillium 0.57272 0.38492 0.591 -0.6941 1.8395 

Cladosporium -1.50109* 0.38492 0.019 -2.7679 -0.2343 

Aspergillus 0.34550 0.38492 0.891 -0.9213 1.6123 

β-Glucosidase Rhodotorula Penicillium -1.23373 0.44491 0.111 -2.6980 0.2305 

Cladosporium -0.68806 0.44491 0.558 -2.1523 0.7762 

Aspergillus -0.90268 0.44491 0.320 -2.3669 0.5615 

Mix cultures -0.76597 0.44491 0.464 -2.2302 0.6983 

Penicillium Rhodotorula 1.23373 0.44491 0.111 -0.2305 2.6980 

Cladosporium 0.54567 0.44491 0.738 -0.9186 2.0099 

Aspergillus 0.33104 0.44491 0.941 -1.1332 1.7953 

Mix cultures 0.46776 0.44491 0.826 -0.9965 1.9320 

Cladosporium Rhodotorula 0.68806 0.44491 0.558 -0.7762 2.1523 

Penicillium -0.54567 0.44491 0.738 -2.0099 0.9186 

Aspergillus -0.21463 0.44491 0.987 -1.6789 1.2496 
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Mix cultures -0.07791 0.44491 1.000 -1.5421 1.3863 

Aspergillus Rhodotorula 0.90268 0.44491 0.320 -0.5615 2.3669 

Penicillium -0.33104 0.44491 0.941 -1.7953 1.1332 

Cladosporium 0.21463 0.44491 0.987 -1.2496 1.6789 

Mix cultures 0.13672 0.44491 0.998 -1.3275 1.6009 

Mix cultures Rhodotorula 0.76597 0.44491 0.464 -0.6983 2.2302 

Penicillium -0.46776 0.44491 0.826 -1.9320 0.9965 

Cladosporium 0.07791 0.44491 1.000 -1.3863 1.5421 

Aspergillus -0.13672 0.44491 0.998 -1.6009 1.3275 

Phosphatase Rhodotorula Penicillium -151.01577* 31.68596 0.005 -255.2969 -46.7347 

Cladosporium -0.88547 31.68596 1.000 -105.1666 103.3956 

Aspergillus -58.02958 31.68596 0.408 -162.3107 46.2515 

Mix cultures -37.17512 31.68596 0.766 -141.4562 67.1060 

Penicillium Rhodotorula 151.01577* 31.68596 0.005 46.7347 255.2969 

Cladosporium 150.13030* 31.68596 0.006 45.8492 254.4114 

Aspergillus 92,98619 31.68596 0.087 -11.2949 197.2673 

Mix cultures 113.84065* 31.68596 0.031 9.5595 218.1218 

Cladosporium Rhodotorula 0.88547 31.68596 1.000 -103.3956 105.1666 

Penicillium -150.13030* 31.68596 0.006 -254.4114 -45.8492 

Aspergillus -57.14411 31.68596 0.422 -161.4252 47.1370 

Mix cultures -36.28966 31.68596 0.780 -140.5708 67.9915 

Aspergillus Rhodotorula 58.02958 31.68596 0.408 -46.2515 162.3107 

Penicillium -92.98619 31.68596 0.087 -197.2673 11.2949 

Cladosporium 57.14411 31.68596 0.422 -47.1370 161.4252 

Mix cultures 20.85446 31.68596 0.961 -83.4267 125.1356 

Mix cultures Rhodotorula 37.17512 31.68596 0.766 -67.1060 141.4562 

Penicillium -113.84065* 31.68596 0.031 -218.1218 -9.5595 

Cladosporium 36.28966 31.68596 0.780 -67.9915 140.5708 

Aspergillus -20.85446 31.68596 0.961 -125.1356 83.4267 

Dehydrogenase Rhodotorula Penicillium 83.04909* 19.85329 0.013 17.7103 148.3879 

Cladosporium -232.48726* 19.85329 0.000 -297.8261 -167.1485 

Aspergillus -72.92749* 19.85329 0.028 -138.2663 -7.5887 

Mix cultures 99.88050* 19.85329 0.004 34.5417 165.2193 

Penicillium Rhodotorula -83.04909* 19.85329 0.013 -148.3879 -17.7103 

Cladosporium -315.53635* 19.85329 0.000 -380.8751 -250.1976 

Aspergillus -155.97658* 19.85329 0.000 -221.3154 -90.6378 

Mix cultures 16.83141 19.85329 0.909 -48.5074 82.1702 
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Cladosporium Rhodotorula 232.48726* 19.85329 0.000 167.1485 297.8261 

Penicillium 315.53635* 19.85329 0.000 250.1976 380.8751 

Aspergillus 159.55977* 19.85329 0.000 94.2210 224.8986 

Mix cultures 332.36776* 19.85329 0.000 267.0290 397.7066 

Aspergillus Rhodotorula 72.92749* 19.85329 0.028 7.5887 138.2663 

Penicillium 155.97658* 19.85329 0.000 90.6378 221.3154 

Cladosporium -159.55977* 19.85329 0.000 -224.8986 -94.2210 

Mix cultures 172.80799* 19.85329 0.000 107.4692 238.1468 

Mix cultures Rhodotorula -99.88050* 19.85329 0.004 -165.2193 -34.5417 

Penicillium -16.83141 19.85329 0.909 -82.1702 48.5074 

Cladosporium -332.36776* 19.85329 0.000 -397.7066 -267.0290 

Aspergillus -172.80799* 19.85329 0.000 -238.1468 -107.4692 

*. The mean difference is significant at the 0.05 level. 

 

 

 

Table D-6. Analysis of variance (ANOVA) of the enzymatic activity of real mortars. 

 
Sum of Squares df Mean Square F Sig. 

LCS Between Groups 187.823 3 62.608 5.535 0.024 

Within Groups 90.498 8 11.312   

Total 278.322 11    

HCS Between Groups 490.107 3 163.369 12.769 0.002 

Within Groups 102.350 8 12.794   

Total 592.458 11    
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Table D-7. Average multiple comparison of the enzymatic activity of real mortars, by Tukey HSD 
test. 

Dependent 

Variable (I) Activity (J) Activity 

Mean 

Difference 

(I-J) 

Std. 

Error Sig. 

95% Confidence Interval 

Lower 

Bound 

Upper 

Bound 

LCS Desidrogenase Arylsulphatase -0.23319 2.74618 1.000 -9.0274 8.5611 

Phosphatase -9.20126* 2.74618 0.041 -17.9955 -0.4070 

β-Glucosidase 0.03006 2.74618 1.000 -8.7642 8.8243 

Arylsulphatase Desidrogenase 0.23319 2.74618 1.000 -8.5611 9.0274 

Phosphatase -8.96807* 2.74618 0.046 -17.7623 -0.1738 

β-Glucosidase 0.26325 2.74618 1.000 -8.5310 9.0575 

Phosphatase Desidrogenase 9.20126* 2.74618 0.041 0.4070 17.9955 

Arylsulphatase 8.96807* 2.74618 0.046 0.1738 17.7623 

β-Glucosidase 9.23132* 2.74618 0.040 0.4371 18.0256 

β-Glucosidase Desidrogenase -0.03006 2.74618 1.000 -8.8243 8.7642 

Arylsulphatase -0.26325 2.74618 1.000 -9.0575 8.5310 

Phosphatase -9.23132* 2.74618 0.040 -18.0256 -0.4371 

HCS Desidrogenase Arylsulphatase 0.53731 2.92048 0.998 -8.8151 9.8897 

Phosphatase -14.37221* 2.92048 0.005 -23.7246 -5.0198 

β-Glucosidase 0.59367 2.92048 0.997 -8.7587 9.9461 

Arylsulphatase Desidrogenase -0.53731 2.92048 0.998 -9.8897 8.8151 

Phosphatase -14.90952* 2.92048 0.004 -24.2619 -5.5571 

β-Glucosidase 0.05636 2.92048 1.000 -9.2960 9.4088 

Phosphatase Desidrogenase 14.37221* 2.92048 0.005 5.0198 23.7246 

Arylsulphatase 14.90952* 2.92048 0.004 5.5571 24.2619 

β-Glucosidase 14.96588* 2.92048 0.004 5.6135 24.3183 

β-Glucosidase Desidrogenase -0.59367 2.92048 0.997 -9.9461 8.7587 

Arylsulphatase -0.05636 2.92048 1.000 -9.4088 9.2960 

Phosphatase -14.96588* 2.92048 0.004 -24.3183 -5.6135 

*. The mean difference is significant at the 0.05 level. 

 
 

 

 

 



 
Annexes 

213 
 

ANNEXE E. Case study of Santo Aleixo 
 

E 1. Santo Aleixo Church sampling process - Chapter V 

 

 

Figure E -14. Sampling location of Santo Aleixo Church (orange dots for material characterisation; outline yellow dots 

for biological agents assessment). 
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E2. Stratigraphic analysis of Santo Aleixo Church samples 
 

 

Figure E -15. Stratigraphies of paint cross-sections of Santo Aleixo paintings (a: sample 12; b: sample 15; c: sample 

51; d: sample17; e: sample 42; f: sample 37; g: sample 22; h: sample 4; j: sample 1)  
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Table E-8. Summary of the analytical setup and stratigraphic analysis of the 11 paint layers, illustrated in the figure E-12, with the identification 

of the pigment present in each area.  
 

 
 
 
 
 

 

 

sample 

ref.
layer nº color

thichness 

(µm)
Microchemistry EDS XRD µ-Raman

1 2 green apr. 48-67 Cu based pigment Cu,Ca malachite

1 black apr. 30-40 bone black P,Ca _

4 1 greyish green apr. 91 Cu based pigment Cu,Ca malachite,whewellite, 

quartz,aragonite,calcite

malachite and 

tenorite

8 1 yellow apr. 12 Fe based pigment (yellow ochre) Fe,K,Si,Al,Ca _

12 2 blue apr. 25-55 Cu based pigment Cu,Ca azurite, calcite,quartzo

1 light blue apr.44 Cu based pigment Cu,Ca

13 1 red apr.15-30 Fe based pigment (red ochre) Fe,K,Si,Al,Ca

15 1 brownish red apr.5-30 Fe based pigment ( ochre) Fe,K,Si,Al,Ca

17 3 dark blue apr.55 Cu based pigment Cu,Ca

2 blue apr.39 Cu based pigment Cu,Ca

1 red (preparatory drawing) apr.15 Fe based pigment (red ochre) Fe,K,Si,Al,Ca

22 1 black apr.117 bone black P,Ca

37 1 brown apr.19 Fe based pigment ( brown ochre) Fe,Mn,K,Si,Al,Ca

42 2 pinck apr.19-54 Fe based pigment (red ochre) Fe,K,Si,Al,Ca

1 blackish red apr.21 Fe based pigment (red ochre)+ 

bone black

Fe,P,K,Si,Al,Ca

51 2 orange apr.12-30 Fe based pigment ( ochre) Fe,K,Si,Al,Ca



 


