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1. Introduction

Classical models for the growth of an individual animal (or plant) in terms of its size X (¢) (some
measure of weight, volume or height) at time ¢ have assumed the form of a differential equation

(1) dY (t) = b(A =Y (1)) dt, Y (to) = vo,

whit Y'(¢) = g(X(t)), where g is a strictly increasing function. We have yo = g(zo), where z¢ is the
size at birth, and A = g(a), where a is the asymptotic size or size at maturity of the individual. The
parameter b > 0 is a rate of approach to maturity.

The Bertalanffy-Richards model, proposed by von Bertalanffy (1957) and also studied by Richards
(1959), has been extensively used and corresponds to g(x) = z¢ for ¢ > 0 and to g(z) = Inz for c=0
(for ¢ = 0, is also known as the Gompertz model, appropriate if one assumes growth to be basically
a multiplicative process). The special case ¢ = 1 is also known as the Mitscherlich model and has
been used in agriculture (see, for instance, Goldsworthy and Colegrove, 1974), particularly for linear
measurements like length or height. If one, however, considers size measured as a volume or a weight,
¢ =1/3 is quite a common choice (making Y'(¢) a kind of "length"). Other choices of ¢ (including the
choice providing the best adjustment) have been proposed.

The Bertalanffy-Richards model has been applied to animal growth data extensively. See, for
instance: Freitas (2005), Mazini et al. (2003), Ohnishi and Akamine (2006), Oliveira, Lobo, and Pereira
(2000). For an application to tumor growth, see Kozusko and Bajzer (2003).

When one considers the effects of environmental random fluctuations on the growth process, it
is natural to propose (see Garcia, 1983) the stochastic differential equation (SDE) model

2) dY (t) = b(A — Y (t)) dt + odW (¢), Y (to) = yo,

where W (t) is a standard Wiener process and o > 0 measures the intensity of the effect of environmental
fluctuations (internal and external) on growth. The solution is a homogeneous diffusion process with
drift b (A — y) and diffusion coefficient 0. The solution is (see, for instance, Braumann, 2005)

(3) Y(t)=A+e Y (yg— A) +oe ™™ /Ot P dW (s).

The distribution of Y (¢) is Gaussian with mean A + e~%(yo — A) and variance 3—2(1 — e~ 20,
Usually, random variations in data have been treated by classical regression models. Regression
models assume that the observed deviations from a deterministic curve are independent at different

times. This would be a realistic assumption if the deviations were due to measurement errors, but it



is totally unrealistic when they are due to random changes on growth rates induced by environmental
random fluctuations. For instance, in a regression model, a delay in growth at a certain time has no
repercussions on future weights, making regression models inappropriate to model growth in a random
environment. The SDE model (2) does not have these shortcomings.

In Patricia, Braumann, and Roquete (2007), we have considered, for a single path (a single
animal), the statistical problems of parameter estimation and of prediction of future population sizes
for model (2) and have illustrated the methods with data on the weight of bovine growth. Section 2
gives a brief summary of the estimation part. Here, we extend (see Section 3) the estimation methods
to the case of several paths (several animals of the same type raised under similar conditions), assumed
to be independent, and also illustrate with bovine data.

The data in the illustrations, provided by Carlos Roquete (ICAM-University of Evora), is from
"mertolengo" cattle of the "rosilho" strand raised in the "Herdade da Abdboda'" in the Serpa region, at
the left margin of the Guadiana river. The animals were raised in pasture, together with their mothers
during nursing and later supplemented with silage when pasture is in shortage (Autumn and Winter).

2. Parameter estimation for a single path

Assume we observe the evolution of the size of one animal (one path) by measuring its size at the
times (counted from birth) 0 = ¢y < t; < ... < t,, and want to estimate p = (A,b,0). Let X} = X (tx)
be the animal size at time ¢ (k = 1,2,...,n) and let Yy = Y (t;) = g(X(tx)). Let x = (9,21, ..., Tn)
be the vector of observed values of X = (X, X1,...,X},) and let y = (y0,91, .-, Yn), With yp = g(zg)
(k=1,2,....,n). We assume that g is a known function, so that we can compute the y; (k = 1,2,...,n).

For k = 1,2, ...,n, one can see from (3) that Y3, = A+e bt —t-1) (Y} — A)+oe % ftt:,l P dW.
Therefore, conditioned on having Yx_1 = yx_1, the probability density function (p.d.f.) of Y} is

2
; ) 1 (g — A= (g1 — A) e t8)
Y Yeo1=yr_1 \Yk) = €Xp 4§ — 2 — )
kY k—1=Yk—1 \/271_%_2 (1_6*2bAtk) 2%_1) (1—6 2bAtk)

where Aty =t —tp—1. Since Y (t) is a Markov process, the joint density of Y1 =Y (1), ..., Y, = Y (¢n)
(given Yy = yo, assumed known) is the product of the above conditional p.d.f. for £ =1,2,...,n and
so the log-likelihood function in terms of the Y variables is given by

2
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(4) Ly(p) =~ n ( 5% ) —3 ;_1: In (1 —€ k) ) kZ_l 1 — c—2bAt :

In terms of the X variables, the log-likelihood is Lx(p) = Ly (p) + > i1 In (g—}g mxk)

The mazimum likelihood estimator p = (fl, b, ) is obtained by maximization of Ly (equivalent
to the maximization of Lx), using numerical techniques (in the applications we have used the nlminb
routine from the software S-PLUS). The estimators are asymptotically Gaussian with mean vector p
and variance-covariance matrix ¥ = F~! where F is the Fisher information matrix with elements
Fij = —E[0*Ly /0p;Opj]. The expressions of the F}; can be explicitly obtained using the properties of
the process Y (t). F, and therefore X, can be estimated by replacing p by p on those expressions, thus
allowing the construction of approximate confidence intervals for the parameters.

In Filipe, Braumann, and Roquete (2007), we have applied the stochastic Bertalanffy-Richards
model, for the particular cases ¢ = 0 and ¢ = 1/3, to the weight in Kg of a single animal for which we
had 79 observations since birth till about 5 tears of age. We have considered also the cases ¢ = 1 (not
very appropriate for weight data) and g(z) = ¢ with ¢ unknown (also to be estimated from data); the
last case is much more cumbersome (we can not use Ly because we do not know g, and so we have to
maximize Lx) and the improvement over the cases ¢ = 0 and ¢ = 1/3 was not significant.



The estimated asymptotic variance-covariance matrices for p are

0.00570 —0.00680 —0.00005 1731.7 —4.9989 —0.0882
Ve—o = |—0.00680 0.03266 0.00024 Vee1/3 = [—4.9989 0.0457 0.0008
—0.00005 0.00024 0.00033 —0.0882 0.0008 0.0018

Table 1 shows the maximum likelihood estimates (and the corresponding value of Lx) together
with the approximate 95% confidence intervals. We use the parameter a = g~!(A) (average weight at
maturity) so that we may compare the two cases; the other parameters, b and o, are not comparable.

Figure 1 shows the graphs of the adjusted models ¢ = 0 and ¢ = 1/3 in the absence of environ-
mental fluctuations (¢ = 0). Filipe, Braumann, and Roquete (2007) also studied the adjustment of
the models in terms of their ability to predict future weights of the animal under study.

Table 1. Maxzimum likelithood estimates and 95% confidence intervals (one animal)

for a for b for o Lx
¢ =0 (Gompertz) 407.1 +60.5 1.472+0.354 0.2259 +0.0355 —338.12
c=1/3 422.4+81.6 1.096 +£0.525 0.5248 +0.0827 —337.88
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Figure 1. Estimated curves for ¢c=0 (Gompertz) and c=1/3, when o =0

3. Parameter estimation for several independent paths

Let us consider now several paths of the stochastic process corresponding to different animals of
the same type and raised under similar conditions. Assume we have data on m animals. The size of
animal number j (j = 1,2,...,m) is observed at the times (counted from birth) 0 = t;0 < tj1 < ... < tjy,
and iS, respectively, on = X(tjo),le = X(tjl), ---annj = X(t]’nj). Let Y}k = Y(tjk) = g(Xjk;)- Let
x; = (xjo,:cjl,...,:cjnj> be the vector of of observed values of X; = (on,le,...,Xjnj) and let
v = (yjo,yﬂ, ...,yjn].>, with y, = g(zj) (j = 1,2,...,m; k =1,2,...,n;). Assume that g is known.

For animal (trajectory) number j we can obtain its log-likelihood Ly, by proceeding as in (4):

2
; ; A . _ —bAt
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g

with At =i —t; x—1. From the independence, the overall log-likelihood for the m animals is

(©) Loy () = 3 Ly, (p).
j=1

The mazimum likelihood estimator P is obtained by maximization of Ly, . y,,. again using nu-
merical techniques. The estimators are asymptotically Gaussian with mean vector p and variance-
covariance matrix ¥ = F~!. The Fisher information matrix F is the sum of the Fisher information



matrices of the individual trajectories, which expressions we already know. Replacing p by p, we can
again obtain an estimation of 3 and, therefore, approximate confidence intervals for the parameters.
We have applied the procedure for the stochastic Bertalanffy-Richards model, for the particular
cases ¢ = 0 and ¢ = 1/3, to m = 5 animals of the same strand raised under similar conditions. One
of them was the animal considered in the previous section (with 79 observations) and the other four

animals have 38 observations each.
The estimated asymptotic variance-covariance matrices for p were

0.00201 —0.00257 —0.00002 555.65 —1.7451 —0.0311
Ve—o = |—0.00257 0.00965 0.00008 Vee1/3 = [—1.7451 0.0115 0.0002
—0.00002 0.00008 0.00014 —0.0311 0.0002 0.0006

Table 2 shows the maximum likelihood estimates (and the corresponding value of Lx, . x,,)
together with the approximate 95% confidence intervals.

Table 2. Mazxzimum likelihood estimates and 95% confidence intervals (five animals)

for a for b for o Lx, . . xs
¢ =0 (Gompertz) 352.4 4283 1.708£0.193 0.2534 +£0.0234 —958.84
c= 1/3 384.1 +£46.2 1.147 £0.211 0.5062 4+ 0.0468 —941.85

4. Conclusions

Stochastic differential equation models for the growth of individual animals were considered and
parameter estimation procedures were developed for the case of several trajectories (several animals),
where observations of the animal size may be made at different times for different animals. An illustra-
tion is shown for cattle data provided by C. Roquete using the stochastic Bertalanffy-Richards model
with ¢ = 0 (Gompertz model) and ¢ = 1/3. Estimation procedures for the case where different animals
may have different randomly chosen A parameters will appear shortly in an upcoming paper.
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