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ações)Rua Romão Ramalho 597000-671 Évora, PortugalE-mail: pasf�uevora.ptBraumann, Carlos A.Universidade de Évora, CIMA (Centro de Investigação em Matemáti
a e Apli
ações)E-mail: braumann�uevora.pt1. Introdu
tionClassi
al models for the growth of an individual animal (or plant) in terms of its size X(t) (somemeasure of weight, volume or height) at time t have assumed the form of a di�erential equation
dY (t) = b (A − Y (t)) dt, Y (t0) = y0,(1)whit Y (t) = g(X(t)), where g is a stri
tly in
reasing fun
tion. We have y0 = g(x0), where x0 is thesize at birth, and A = g(a), where a is the asymptoti
 size or size at maturity of the individual. Theparameter b > 0 is a rate of approa
h to maturity.The Bertalan�y-Ri
hards model, proposed by von Bertalan�y (1957) and also studied by Ri
hards(1959), has been extensively used and 
orresponds to g(x) = xc for c > 0 and to g(x) = ln x for c = 0(for c = 0, is also known as the Gompertz model, appropriate if one assumes growth to be basi
allya multipli
ative pro
ess). The spe
ial 
ase c = 1 is also known as the Mits
herli
h model and hasbeen used in agri
ulture (see, for instan
e, Goldsworthy and Colegrove, 1974), parti
ularly for linearmeasurements like length or height. If one, however, 
onsiders size measured as a volume or a weight,

c = 1/3 is quite a 
ommon 
hoi
e (making Y (t) a kind of "length"). Other 
hoi
es of c (in
luding the
hoi
e providing the best adjustment) have been proposed.The Bertalan�y-Ri
hards model has been applied to animal growth data extensively. See, forinstan
e: Freitas (2005), Mazini et al. (2003), Ohnishi and Akamine (2006), Oliveira, L�bo, and Pereira(2000). For an appli
ation to tumor growth, see Kozusko and Bajzer (2003).When one 
onsiders the e�e
ts of environmental random �u
tuations on the growth pro
ess, itis natural to propose (see Gar
ia, 1983) the sto
hasti
 di�erential equation (SDE) model
dY (t) = b (A − Y (t)) dt + σdW (t), Y (t0) = y0,(2)where W (t) is a standard Wiener pro
ess and σ > 0 measures the intensity of the e�e
t of environmental�u
tuations (internal and external) on growth. The solution is a homogeneous di�usion pro
ess withdrift b (A − y) and di�usion 
oe�
ient σ2. The solution is (see, for instan
e, Braumann, 2005)
Y (t) = A + e−bt(y0 − A) + σe−bt

∫ t

0
ebsdW (s).(3)The distribution of Y (t) is Gaussian with mean A + e−bt(y0 − A) and varian
e σ2

2b
(1 − e−2bt).Usually, random variations in data have been treated by 
lassi
al regression models. Regressionmodels assume that the observed deviations from a deterministi
 
urve are independent at di�erenttimes. This would be a realisti
 assumption if the deviations were due to measurement errors, but it



is totally unrealisti
 when they are due to random 
hanges on growth rates indu
ed by environmentalrandom �u
tuations. For instan
e, in a regression model, a delay in growth at a 
ertain time has noreper
ussions on future weights, making regression models inappropriate to model growth in a randomenvironment. The SDE model (2) does not have these short
omings.In Patrí
ia, Braumann, and Roquete (2007), we have 
onsidered, for a single path (a singleanimal), the statisti
al problems of parameter estimation and of predi
tion of future population sizesfor model (2) and have illustrated the methods with data on the weight of bovine growth. Se
tion 2gives a brief summary of the estimation part. Here, we extend (see Se
tion 3) the estimation methodsto the 
ase of several paths (several animals of the same type raised under similar 
onditions), assumedto be independent, and also illustrate with bovine data.The data in the illustrations, provided by Carlos Roquete (ICAM-University of Évora), is from"mertolengo" 
attle of the "rosilho" strand raised in the "Herdade da Abóboda" in the Serpa region, atthe left margin of the Guadiana river. The animals were raised in pasture, together with their mothersduring nursing and later supplemented with silage when pasture is in shortage (Autumn and Winter).2. Parameter estimation for a single pathAssume we observe the evolution of the size of one animal (one path) by measuring its size at thetimes (
ounted from birth) 0 = t0 < t1 < ... < tn and want to estimate p = (A, b, σ). Let Xk = X(tk)be the animal size at time tk (k = 1, 2, ..., n) and let Yk = Y (tk) = g(X(tk)). Let x = (x0, x1, ..., xn)be the ve
tor of observed values of X = (X0,X1, ...,Xn) and let y = (y0, y1, ..., yn), with yk = g(xk)(k = 1, 2, ..., n). We assume that g is a known fun
tion, so that we 
an 
ompute the yk (k = 1, 2, ..., n).For k = 1, 2, ..., n, one 
an see from (3) that Yk = A+e−b(tk−tk−1)(Yk−1−A)+σe−btk
∫ tk
tk−1

ebsdWs.Therefore, 
onditioned on having Yk−1 = yk−1, the probability density fun
tion (p.d.f.) of Yk is
fYk|Yk−1=yk−1

(yk) =
1

√

2π σ2

2b
(1 − e−2b∆tk )

exp











−

(

yk − A − (yk−1 − A) e−b∆tk
)2

2σ2

2b
(1 − e−2b∆tk)











,where ∆tk = tk − tk−1. Sin
e Y (t) is a Markov pro
ess, the joint density of Y1 = Y (t1), ..., Yn = Y (tn)(given Y0 = y0, assumed known) is the produ
t of the above 
onditional p.d.f. for k = 1, 2, ..., n andso the log-likelihood fun
tion in terms of the Y variables is given by
LY (p) = −

n

2
ln

(

2πσ2

2b

)

−
1

2

n
∑

k=1

ln
(

1 − e−2b∆tk
)

−
b

σ2

n
∑

k=1

(

yk − A − (yk−1 − A) e−b∆tk
)2

1 − e−2b∆tk
.(4)In terms of the X variables, the log-likelihood is LX(p) = LY (p) +

∑n
k=1 ln

(

dY
dX

∣

∣

∣

x=xk

).The maximum likelihood estimator p̂ = (Â, b̂, σ̂) is obtained by maximization of LY (equivalentto the maximization of LX), using numeri
al te
hniques (in the appli
ations we have used the nlminbroutine from the software S-PLUS). The estimators are asymptoti
ally Gaussian with mean ve
tor pand varian
e-
ovarian
e matrix Σ = F−1, where F is the Fisher information matrix with elements
Fij = −E[∂2LY /∂pi∂pj]. The expressions of the Fij 
an be expli
itly obtained using the properties ofthe pro
ess Y (t). F, and therefore Σ, 
an be estimated by repla
ing p by p̂ on those expressions, thusallowing the 
onstru
tion of approximate 
on�den
e intervals for the parameters.In Filipe, Braumann, and Roquete (2007), we have applied the sto
hasti
 Bertalan�y-Ri
hardsmodel, for the parti
ular 
ases c = 0 and c = 1/3, to the weight in Kg of a single animal for whi
h wehad 79 observations sin
e birth till about 5 tears of age. We have 
onsidered also the 
ases c = 1 (notvery appropriate for weight data) and g(x) = xc with c unknown (also to be estimated from data); thelast 
ase is mu
h more 
umbersome (we 
an not use LY be
ause we do not know g, and so we have tomaximize LX) and the improvement over the 
ases c = 0 and c = 1/3 was not signi�
ant.



The estimated asymptoti
 varian
e-
ovarian
e matri
es for p̂ are
Vc=0 =





0.00570 −0.00680 −0.00005

−0.00680 0.03266 0.00024

−0.00005 0.00024 0.00033



 Vc=1/3 =





1731.7 −4.9989 −0.0882

−4.9989 0.0457 0.0008

−0.0882 0.0008 0.0018



 .Table 1 shows the maximum likelihood estimates (and the 
orresponding value of LX) togetherwith the approximate 95% 
on�den
e intervals. We use the parameter a = g−1(A) (average weight atmaturity) so that we may 
ompare the two 
ases; the other parameters, b and σ, are not 
omparable.Figure 1 shows the graphs of the adjusted models c = 0 and c = 1/3 in the absen
e of environ-mental �u
tuations (σ = 0). Filipe, Braumann, and Roquete (2007) also studied the adjustment ofthe models in terms of their ability to predi
t future weights of the animal under study.Table 1. Maximum likelihood estimates and 95% 
on�den
e intervals (one animal)for a for b for σ LX

c = 0 (Gompertz) 407.1 ± 60.5 1.472 ± 0.354 0.2259 ± 0.0355 −338.12

c = 1/3 422.4 ± 81.6 1.096 ± 0.525 0.5248 ± 0.0827 −337.88

Observed weight
Gompertz (c=0)
c=1/3

     Age (years)

W
e
i
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Figure 1. Estimated 
urves for 
=0 (Gompertz) and 
=1/3, when σ = 03. Parameter estimation for several independent pathsLet us 
onsider now several paths of the sto
hasti
 pro
ess 
orresponding to di�erent animals ofthe same type and raised under similar 
onditions. Assume we have data on m animals. The size ofanimal number j (j = 1, 2, ...,m) is observed at the times (
ounted from birth) 0 = tj0 < tj1 < ... < tjnjand is, respe
tively, Xj0 = X(tj0),Xj1 = X(tj1), ...,Xjnj
= X(tjnj

). Let Yjk = Y (tjk) = g(Xjk). Let
xj =

(

xj0, xj1, ..., xjnj

) be the ve
tor of of observed values of Xj =
(

Xj0,Xj1, ...,Xjnj

) and let
yj =

(

yj0, yj1, ..., yjnj

), with yjk = g(xjk) (j = 1, 2, ...,m; k = 1, 2, ..., nj). Assume that g is known.For animal (traje
tory) number j we 
an obtain its log-likelihood LYj
by pro
eeding as in (4):

LYj
(p) = −

nj

2
ln

(

2πσ2

2b

)

−
1

2

nj
∑

k=1

ln
(

1−e−2b∆tjk

)

−
b

σ2

nj
∑

k=1

(

yjk− A− (yj,k−1−A) e−b∆tjk

)2

1 − e−2b∆tjk
,(5)with ∆tjk = tjk − tj,k−1. From the independen
e, the overall log-likelihood for the m animals is

LY1,...,Ym(p) =
m
∑

j=1

LYj
(p).(6) The maximum likelihood estimator p̂ is obtained by maximization of LY1,...,Ym, again using nu-meri
al te
hniques. The estimators are asymptoti
ally Gaussian with mean ve
tor p and varian
e-
ovarian
e matrix Σ = F−1. The Fisher information matrix F is the sum of the Fisher information



matri
es of the individual traje
tories, whi
h expressions we already know. Repla
ing p by p̂, we 
anagain obtain an estimation of Σ and, therefore, approximate 
on�den
e intervals for the parameters.We have applied the pro
edure for the sto
hasti
 Bertalan�y-Ri
hards model, for the parti
ular
ases c = 0 and c = 1/3, to m = 5 animals of the same strand raised under similar 
onditions. Oneof them was the animal 
onsidered in the previous se
tion (with 79 observations) and the other fouranimals have 38 observations ea
h.The estimated asymptoti
 varian
e-
ovarian
e matri
es for p̂ were
Vc=0 =





0.00201 −0.00257 −0.00002

−0.00257 0.00965 0.00008

−0.00002 0.00008 0.00014



 Vc=1/3 =





555.65 −1.7451 −0.0311

−1.7451 0.0115 0.0002

−0.0311 0.0002 0.0006



 .Table 2 shows the maximum likelihood estimates (and the 
orresponding value of LX1,...,Xm)together with the approximate 95% 
on�den
e intervals.Table 2. Maximum likelihood estimates and 95% 
on�den
e intervals (�ve animals)for a for b for σ LX1,...,X5

c = 0 (Gompertz) 352.4 ± 28.3 1.708 ± 0.193 0.2534 ± 0.0234 −958.84

c = 1/3 384.1 ± 46.2 1.147 ± 0.211 0.5062 ± 0.0468 −941.854. Con
lusionsSto
hasti
 di�erential equation models for the growth of individual animals were 
onsidered andparameter estimation pro
edures were developed for the 
ase of several traje
tories (several animals),where observations of the animal size may be made at di�erent times for di�erent animals. An illustra-tion is shown for 
attle data provided by C. Roquete using the sto
hasti
 Bertalan�y-Ri
hards modelwith c = 0 (Gompertz model) and c = 1/3. Estimation pro
edures for the 
ase where di�erent animalsmay have di�erent randomly 
hosen A parameters will appear shortly in an up
oming paper.A
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