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1. Introduction

Let N = N(t) be the size (number of individuals, density, biomass) of a population (of animals,

plants, bacteria, cells) at time t ≥ 0 and assume the initial population size N(0) = N0 > 0 is known. A

general density dependent growth model assumes that the per capita growth rate (abbrev. growth rate)

has the form 1
N

dN
dt = f(N), where f(·) : (0,+∞) 7→ (−∞,+∞) is a continuously differentiable function

such that the limit f(0+) := limN↓0 f(N) exists (may be infinite) and F (0+) := limN↓0 F (N) = 0 (no

spontaneous generation), where F (N) = Nf(N) is the total growth rate of the population.

In a randomly varying environment, the growth rate 1
N

dN
dt will have an ”average” value f(N) and

random perturbations that we approximate by σε(t), where ε(t) is a standard white noise (formally

the generalized function derivative of the standard Wiener process W (t)) and σ is the noise intensity.

The resulting stochastic differential equation (SDE) model is 1
N

dN
dt = f(N) + σε(t) or

dN(t) = F (N(t))dt + V (N(t))dW (t),(1)

where V (N) = σN . Equation (1) is equivalent to the stochastic integral equation

N(t) = N0 +

∫ t

0
F (N(s))ds +

∫ t

0
V (N(s))dW (s).(2)

We will assume also that f , besides the above assumptions, is such that the boundaries N = 0 and

N = +∞ are unattainable (so that the solution of the SDE exists, is unique and has values in (0,+∞))

and the moments required in this paper do exist (see Braumann, 2007a, for mild sufficient conditions).

Models of this sort have been proposed in the literature with specific forms of the function f .

Levins (1969) was the pioneer work. Beddington and May (1977) launched the harvesting models,

where a harvesting term is added to the growth equations. A list of references can be seen in Braumann

(1999a,b), where, for non-harvesting and harvesting models respectively, the properties of the general

model with arbitrary f (satisfying only reasonable assumptions) were studied, including conditions

for non-extinction and for the existence of a stationary probability density.

There is, however, a problem with these models. The second integral in (2) cannot be defined as

a classical Riemann-Stieltjes integral because the Wiener process W (t) is of unbounded variation. If

we consider a sequence of decompositions 0 = t0,n ≤ t1,n ≤ ... ≤ tn,n = t (n = 1, 2, ...) with diameters

converging to zero, the Riemann-Stieltjes sums
n
∑

i=1
V (N(τi,n)) (W (ti,n) − W (ti−1,n)) have different

mean square (m.s.) limits depending on the choice of the intermediate points τi,n ∈ [ti−1,n, ti,n].

Among the many possible choices, two stand out in the literature.

One is the non-anticipative choice τi,n = ti−1,n that defines the Itô integral. Itô calculus has nice

probabilistic properties but does not satisfy ordinary rules. In particular, it satisfies a different chain

rule of differentiation. Namely, if Y (t) = h(t,N(t)), with h(t, x) of class C1,2, we get

(I) dY =

(

∂h(t,N)

∂t
+

∂h(t,N)

∂x
F (N) +

1

2

∂2h(t,N)

∂x2
V 2(N)

)

dt +
∂h(t,N)

∂x
V (N)dW(3)



instead of the usual rule (applicable to Stratonovich calculus)

(S) dY =

(

∂h(t,N)

∂t
+

∂h(t,N)

∂x
F (N)

)

dt +
∂h(t,N)

∂x
V (N)dW.(4)

We have used ”(I)” or ”(S)” to distinguish between the Itô and the Stratonovich calculi. The Strato-

novich integral is, under adequate regularity conditions, the m.s. limit of
n
∑

i=1

(

V (N(ti−1,n)) + V (N(ti,n))

2

)

(W (ti,n) − W (ti−1,n)) .

This integral anticipates (”guesses”) a bit into the future and does not have the nice probabilistic

properties of the Itô integral. The Itô and Stratonovich calculi are the ones commonly used in the

literature. For more details on them, see, for instance, Arnold (1974) or Øksendal (2003).

The problem is that the solutions of SDE depend on the stochastic calculus used. For instance,

when f(N) ≡ r (Malthusian model), we have, under Stratonovich calculus, that extinction occurs

with probability one if the ”average” growth rate r is negative and extinction has zero probability of

occurring if r is positive. This behavior is similar to the deterministic case (σ = 0). However, if one

uses Itô calculus, extinction occurs with probability one when r < σ2/2. Will a population with small

(smaller than σ2/2) positive ”average” growth rate r be extinct ir not?

The answer depends on the calculus used and this is a source of controversy and mistrust.

The same question can be asked for a general strictly decreasing function f , since Braumann

(1999a) has shown, for Stratonovich calculus, that extinction occurs with probability one if f(0+)

(”average” growth rate at low population sizes) is negative and occurs with zero probability (there

is even a stationary probability density) if f(0+) is positive. However, for Stratonovich calculus the

criteria is whether f(0+) is smaller or larger than σ2/2.

There are recommendations, based on some limit theorems, on which calculus to use depending

on whether generations are discrete and noise is white in discrete time (Itô calculus) or generations

are continuous and noise is slightly colored (Stratonovich calculus) but reality is more complex than

that. A paper resolving partially the controversy in the asymptotic regime is Braumann (1983). The

resolution of the controversy in the Malthusian example just mentioned is in Braumann (2003). The

full resolution of the controversy for models of type (1) with arbitrary f is in Braumann (2007a)

(see also Braumann, 2007b, for the case of harvesting models), as well as references on the history of

the controversy. A brief account is made on Section 2. However, we have only considered the case

of constant noise intensity σ. Here, in Section 3, we extend the resolution to cases where the noise

intensity σ(N) might vary with population size.

2. The resolution of the controversy for constant noise intensity

We will show that the controversy is due to the wrong presumption that f(x), taken as the

”average” growth rate when population size has size x, means the same average under the two calculi.

To avoid such semantic confusion upon which rests all the controversy in the literature, we will use fi

and fs to denote f according to whether we use Itô or Stratonovich calculus.

Of course, for the deterministic model dN
dt = F (N) = Nf(N), the (per capita) growth rate R(x)

when population size is x at time t, is by definition R(x) := 1
x

(

dN
dt

)

N=x
= 1

x lim∆t↓0
N(t+∆t)−x

∆t = f(x).

However, for the stochastic models, N(t + ∆t) is a random variable and so is R(x). So, we look

for an average growth rate. Let us consider the arithmetic average, which is the usual expected value.

Of course, since we are considering the situation that at time t the population size is x, we should

take the expectation conditioned on that knowledge. Let us denote it by Et,x[...] = E[...|N(t) = x].

Then, the arithmetic average growth rate when population size is x at time t, is defined by

Ra(x) :=
1

x
lim
∆t↓0

Et,x[N(t + ∆t)] − x

∆t
.(5)



We could, however, consider the geometric average growth rate defined by

Rg(x) :=
1

x
lim
∆t↓0

exp (Et,x[ ln N(t + ∆t)]) − x

∆t
.(6)

Consider the Itô and the Stratonovich SDE

(I) dN(t) = fi(N(t))N(t)dt + σN(t)dW (t)(7)

(S) dN(t) = fs(N(t))N(t)dt + σN(t)dW (t).(8)

The solutions (see Arnold, 1974) are homogeneous diffusion processes with common diffusion coefficient

b(x) := lim
∆t↓0

Et,x[(N(t + ∆t) − x)2]

∆t
= V 2(x) = σ2x2(9)

and drift coefficients, respectively

ai(x) := lim
∆t↓0

Et,x[N(t + ∆t) − x]

∆t
= fi(x)x(10)

as(x) := lim
∆t↓0

Et,x[N(t + ∆t) − x]

∆t
= fs(x)x +

1

4
db(x)/dx = (fs(x) + σ2/2)x.(11)

Therefore, from (5), (10), and (11), we obtain the arithmetic average growth rate when popula-

tion size is x at time t, respectively for the Itô SDE (7) and the Stratonovich SDE (8):

Ra(x) =
1

x
ai(x) = fi(x)(12)

Ra(x) =
1

x
as(x) = fs(x) + σ2/2.(13)

If one makes the change of variable Y = ln N , applying to equations (7) and (8) the chain rules

(3) and (4), one obtains (I) dY = (fi(e
Y ) − σ2/2)dt + σdW (t) and (S) dY = fs(e

Y )dt + σdW (t),

respectively. So, with y = ln x, the drift coefficients lim∆t↓0
Et,x[Y (t+∆t)−y]

∆t for Y are, respectively,

fi(e
y) − σ2/2 and fs(e

y). Therefore, from (5), one obtains the geometric average growth rate when

population size is x at time t, respectively for the Itô SDE (7) and the Stratonovich SDE (8):

Rg(x) = fi(x) − σ2/2(14)

Rg(x) = fs(x).(15)

Conclusion: Contrary to what has been presumed in the literature, f(x) means two different

”average” growth rates under the two calculi. It is the arithmetic average growth rate

under Itô calculus and the geometric average growth rate under Stratonovich calculus.

Taking into account the difference between the two averages, the results of the two calculi completely

coincide. In fact, the apparently different solutions of the Itô SDE (7) and the Stratonovich SDE (8)

are indeed the same, namely the homogeneous diffusion process with diffusion coefficient (9) and drift

coefficient xRa(x). They looked different because, instead of using a concrete average growth rate, we

were expressing them in terms of an unspecified ”average” wrongly assumed to be the same average

under the two calculi. For the particular case of strictly decreasing growth rate f , extinction will occur

for both calculi when the geometric average growth rate at low population sizes Rg(0
+) is negative.

3. The case of density-dependent noise intensities

We now consider the generalization to a density-dependent noise intensity σ(N), assumed to be

a positive continuously differentiable function for N > 0 such that σ(0+) exists and V (0+) = 0, where

V (N) = σ(N)N . The diffusion and drift coefficients are now

b(x) = V 2(x) = σ2(x)x2(16)

ai(x) = fi(x)x(17)

as(x) = fs(x)x +
1

4

db(x)

dx
=
(

fs(x) + σ2(x)/2 + xσ(x)σ′(x)/2
)

x.(18)



We obtain for the arithmetic average growth rate when population size is x at time t

Ra(x) = ai(x)/x = fi(x)(19)

Ra(x) = as(x)/x = fs(x) + σ2(x)/2 + xσ(x)σ′(x)/2,(20)

respectively for the Itô SDE and the Stratonovich SDE. So, the arithmetic average growth rate is still

fi(x) for the Itô SDE. However, fs(x) is no longer the geometric average growth rate.

The function φ(x) =
∫ x
c

1
zσ(z)dz (where c is an fixed arbitrary positive constant) is strictly

increasing for x positive, and so it has an inverse φ−1. Let us consider the φ-average growth rate

Rφ(x) :=
1

x
lim
∆t↓0

φ−1 (Et,x[φ(N(t + ∆t))]) − x

∆t
.(21)

Notice that, when σ(x) is a constant σ, this is just the geometric average.

Under Stratonovich calculus, Y = φ(N) satisfies the SDE (S) dY = fs(φ−1(Y ))
σ(φ−1(Y )) dt + dW (t), and

so, in terms of Y , the drift coefficient is lim∆t↓0
Et,x[Y (t+∆t)−y]

∆t = fs(φ−1(y))
σ(φ−1(y)) , where y = φ(x). Therefore,

Et,x[Y (t + ∆t)] = y + fs(φ−1(y))
σ(φ−1(y)) ∆t + o(∆t). Apply φ to both sides, expand about y and notice that

dφ−1(y)
dy = 1

dφ(x)/dx = xσ(x) to obtain φ−1 (Et,x[Y (t + ∆t)]) = x + xfs(x) + o(∆t). From (21) we get

Rφ(x) = fs(x).(22)

Thus, for Stratonovich calculus, fs(x) is the φ-average growth rate. Again, taking into account

the difference between the arithmetic and the φ-average, the results of the two calculi coincide.

4. Conclusion

We have extended the resolution of the controversy on whether to use Itô or Stratonovich calcu-

lus when modeling population growth in a random environment to the case of density-dependent noise

intensities. Again we show that what was thought to mean the ”average” growth rate meant really dif-

ferent types of averages, the arithmetic average under Itô calculus and a φ-average under Stratonovich

calculus (coinciding with the geometric average for the case of constant noise intensity). Taking into

account the difference between the two averages, the two calculi give completely coincidental results.
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