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1. Introduction

During the 20th century, human expected lifetimes have increased considerably in many coun-
tries. Mortality improvements are naturally viewed as a positive change for individuals and as a
substantial social achievement of developed countries. However, this structural change poses a serious
challenge for the planning of public retirement systems, the long term risk management of supplemen-
tal pension plans as well as for the pricing and reserving for life insurance companies. Historically,
actuaries have been calculating premiums and mathematical reserves using a deterministic approach,
by considering a deterministic mortality intensity, which is a function of the age only, extracted from
available (static) lifetables and by setting a ‡at (“best estimate”) interest rate to discount cash ‡ows
over time. Since neither the mortality intensity nor interest rates are actually deterministic, life in-
surance companies are exposed to both …nancial and mortality (systematic and unsystematic) risks
when pricing and reserving for any kind of long-term living bene…ts, particularly on annuities. In
particular, the calculation of expected present values requires an appropriate mortality projection in
order to avoid signi…cant underestimation of future costs.

In order to protect the company from mortality improvements, actuaries have di¤erent solutions,
among them to resort to projected (dynamic or prospective) lifetables instead of static lifetables (see,
e.g., Pitacco (2004), Wong-Fupuy and Haberman (2004) and Bravo (2007) for a detailed review on this
subject). Since the future mortality is actually unknown, in this paper we assume that an appropriate
description of the demographic (and …nancial) risks requires a stochastic model, as is it has recently
been proposed by several authors, .e.g., Milevsky and Promislow (2001), Dahl (2004), Bi¢s (2005),
Cairns et al. (2006), Schrager (2006) and references therein.

By modelling the mortality intensity as a stochastic process, we expect to obtain a more accurate
description of the liabilities of life insurance companies. In addition, a stochastic mortality model
contributes to a proper quanti…cation of systematic mortality risk (also called longevity risk) faced
by insurance companies. Stochastic mortality models also provide an adequate framework for the
development longevity risk hedging tools, namely mortality-linked contracts such as longevity bonds or
mortality derivatives. In this paper, we use doubly stochastic processes (also known as Cox processes)
in order to model the random evolution of the stochastic force of mortality of an individual aged  in
a manner that is common in the credit risk literature. The model is then embedded into the well know
a¢ne term structure framework, widely used in the term structure literature, in order to derive closed-
form solution for survival probability. The paper is organized as follows: Section 2 brie‡y describes the
mathematical tools used in this paper. Section 3 develops and new model for the mortality intensity
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by considering a standard interest rate model, modi…ed in order to include both positive and negative
mortality jumps. We derive analytical solutions for the survival probability and calibrate the model
to a matrix of data. Finally, Section 4 concludes.

2. Mathematical framework

We are given a …ltered probability space (­F FP) and concentrate on an individual aged 

at time 0 Following the pioneering work of Artzner and Delbaen (1995) in the credit risk literature
and the proposals by Dahl (2004) and Bi¢s (2005) among others in mortality area, we model his/her
random lifetime as an F-stopping time  admitting a random intensity  Speci…cally, we consider 
as the …rst jump-time of a nonexplosive F-counting process  recording at each time  ¸ 0 whether
the individual has died ( 6= 0) or survived ( = 0)  The stopping time  is said to admit an
intensity  if the compensator of  does, i.e., if  is a nonnegative predictable process such thatR 
0 ()  1 for all  ¸ 0 and such that the compensated process  =

n
 ¡

R 
0 () :  ¸ 0

o

is a local F-martingale. If the stronger condition 
³R 
0 ()

´
 1 is satis…ed, then  is an

F-martingale.
From this, we derive

(1)  (+¢ ¡j F) = 

µZ +¢


()

¯̄
¯̄ F

¶

based on which we can write

(2)  (+¢ ¡j F) = ()¢+  (¢)

an expression comparable with that of the instantaneous probability of death ¢+ derived in the
traditional deterministic context.

By further assuming that  is a Cox (or doubly stochastic) process driven by a sub…ltration G
of F with F-predictable intensity  it can be shown, by using the law of iterated expectations, that
the probability of survival up to time  ¸  on the set f  g  is given by

(3) P (   j F) = 
h
¡

 
 ()

¯̄
¯ F

i

Readers who are familiar with mathematical …nance and, in particular, with the interest rate
literature, can without di¢culty observe that the right-hand-side of equation (3) represents the price
at time  of a unitary default-free zero coupon bond with maturity at time    if the intensity  is
to represent the short-term interest rate.

One of the main advantages of this mathematical framework is that we can approach the survival
probability (3) by using well known a¢ne-jump di¤usion processes. In particular, an R-valued a¢ne-
jump di¤usion process  is an F-Markov process whose dynamics is given by

(4)  = ( )+ () +
X

=1




where  is a F-standard Brownian motion in R and each component  is a pure-jump process
in R with jump-arrival intensity

©
 () :  ¸ 0

ª
and time-dependent jump distribution  on

R An important requirement of a¢ne processes is that the drift  :  ! R the instantaneous
covariance matrix T :  ! R£ and the jump-arrival intensity  :  ! R+ must all have an
a¢ne dependency on  . The convenience of adopting a¢ne processes in modelling the mortality
intensity comes from the fact that, for any  2 C for given  ¸  and an a¢ne function  de…ned
by  ( ) = 0 ()+ 1 () ¢ under certain technical conditions (see (Du¢e et al. (2003)), we have:

(5) X (   ) $ 
h
¡

 


()¢

¯̄
¯F

i
= ()+()¢



where  (¢) 
=  (¢;  )   (¢) 

=  (¢;  ) satisfy generalized Ricatti ordinary di¤erential equations,
that can be solved at least numerically and, in some cases, as we will see below, analytically.

3. Mortality intensity as a stochastic process

Turning now to the problem of modelling adequately the dynamic of mortality, we develop a new
model for the mortality intensity by considering the classic Ornstein-Uhlenbeck equation (without the
mean-reverting component) and by adding a jump component. Formally, the process () is given
by:

(6) () = ¡() +  () + () (0) = ¹

where ¹  0   0,  ¸ 0  () is a standard Brownian motion and where () is a compound
Poisson process, independent of  , with constant jump-arrival intensity  ¸ 0 and jump sizes that
are random variables double asymmetric exponentially distributed with density (Kou (2002)):

(7)  () = 1

µ
1

1

¶

¡ 
1 If¸0g + 2

µ
1

2

¶


2 If0g

where 1 2 ¸ 0 1+2 = 1 represent, respectively, the probabilities of a positive (with average size
1  0) and negative (with average size 2  0) jump. By setting 1 = 0 we are interested only on
the importance of longevity risk (e.g. Bi¢s (2005)).

In the spirit of (5) let us now assume that the survival probability ¡+() is represented by
an exponentially a¢ne function. By applying the framework described above, we have that:

(8) ¡+() ´ A()+B( )¢()

where  =  ¡  It can be shown that the solution to this problem admits the following Feynman-Kac
representation:

 ( ())

½
¡ _A() ¡ _B()() ¡ ()B() +

2

2
B2()+

(9) +

µ
1

1 ¡ 1B()
+

2
1 + 2B()

¡ 1

¶
¡ ()

¾
= 0

where  ( ()) =¡ +() and where () and () are solutions to the following system of
ODEs’:

_B() = ¡B() ¡ 1(10)

_A() = B() + 

µ
1

1 ¡ 1B()
+

2
1 + 2B()

¡ 1

¶
(11)

with boundary conditions:

(12) B(0) = 0 A(0) = 0

where _B() = 
 B() _A() = 

 A().
By solving the system (10)-(11)-(12), we get the following closed-form solutions for A() e B() :

B() =
¡(¡) ¡ 1


(13)

A() =

·
¡ + 

µ
1
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+
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¡ 2
¡ 1

¶¸
( ¡ ) ¡ B ()(14)

+

½
1 ln (1 ¡ 1B())

+ 1
+
2 ln (1 + 2B())

¡ 2

¾



de…ned for

1 ¡ 1B()  0 and 1 + 2B()  0

We observe that the model stipulates a decreasing (deterministic) trend for the mortality inten-
sity, around which random ‡uctuations occur due to the stochastic component and due to the jump
component. The model assumes that both negative and positive jumps can be registered in mortality,
a feature that contrasts with similar models that are interested in sudden improvements in mortality
(e.g. due to medical advances) only. We think this gives us a more realistic description of reality, in
which unexpected increases in mortality can occur, caused e.g., by natural catastrophes or epidemics.
The model o¤ers a nice analytical solution, easy to use in pricing and reserving applications within
the life insurance industry. The calibration of this model to di¤erent Portuguese mortality tables (not
reported here) provided us very good …ts of the survival probabilities ¡+.

4. Concluding remarks

In this paper we have described the evolution of mortality by using Cox processes. The mortality
intensity has been described as an a¢ne-jump di¤usion process with jump sizes that are random
variables double asymmetric exponentially distributed. We derive closed-form solutions for the survival
probability. We investigate the applicability of these processes in describing the individual mortality,
and provide a …rst calibration to the Portuguese population.
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