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Abstract: The combination of changing climate and anthropogenic activities is increasing the probability of
wildfire around the world. When fires occur in riparian zones, associated tree mortality can add wood directly to
streams or wood may fall to the forest floor and remain there for some time before being transported into stream
channels. Wood provides critical structure for aquatic macroinvertebrates, so our objectives were to assess the
effects of wood burn status, conditioning, and their interaction on macroinvertebrate community composition,
taxon and functional diversity, and trait affinities. We conducted a field experiment with pieces of freshly cut wood
(length = 10 cm, diameter ≈ 7.5 cm) for which we first manipulated burn status (burned, unburned) and then,
conditioned by placing burned and unburned wood directly into streams (no conditioning) or by leaving pieces in
streams (water conditioning) or on the forest floor (soil conditioning) for a year before submergence. We used
distance-based redundancy analysis to assess community structure by wood treatments and linear mixed-effects
modeling to assess effects of wood treatments on taxon and functional diversity and trait affinity. Changes in wood
quality resulting from fire may not alter macroinvertebrate community structure. Taxonomic and functional pat-
terns of stream invertebrate colonization did not differ between burned and unburned wood, even after a year of
incubation in the stream or on the forest floor. Conditioning status affected taxonomic composition, taxon and
functional diversity, and trait affinities of wood invertebrate communities. The terrestrial legacy of soil condition-
ing was clearly important in structuring macroinvertebrate assemblages. Our results suggest that macroinverte-
brate communities may be more sensitive to fire effects on the dynamics of wood input than to effects of fires on
the wood itself.
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Changing climate and anthropogenic activities are syner-
gistically increasing the probability of fire around the
world (Moriondo et al. 2006, Flannigan et al. 2009, Moreira
et al. 2011). As a consequence, the effects of fire disturbance
on aquatic ecosystems have received increasing attention
(Resh et al. 1988, Gresswell 1999, Romme et al. 2011, Ver-
kaik et al. 2013). Forest wildfires promote recruitment of
wood to aquatic ecosystems in many regions (Zelt andWohl
2004, Arseneault et al. 2007, Jones and Daniels 2008, Vaz
et al. 2011, 2013a, b).Wood from riparian trees may be in-
jured by fire and then directly enter stream channels, or
wood may fall to the forest floor and remain there until it
moves laterally into stream channels during floods or from

eroding banks. The mechanism by which wood enters
the channel (i.e., directly or after some time on the forest
floor) may affect the condition or quality of fire-derived
wood for stream biota, such as benthic macroinver-
tebrates (Cummins and Klug 1979, Mihuc and Minshall
1995), but no investigators have examined the interplay
between wood burn status and conditioning in structur-
ing the composition and function of epidendric macroin-
vertebrate assemblages.

Wood can be characterized by its structural and chem-
ical properties. Structure reflects bark type (e.g., loose-
ness), holes, protrusions, grooves, small depressions, crev-
ices, cracks, and availability of interstitial spaces (O’Connor
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1991, Mathooko and Otieno 2002). Chemically, wood has
high C∶N and C∶P (relative to leaves) and large quantities
of cellulose, lignocellulose, and lignin (Gulis et al. 2004).
Bark can contain defensive compounds, such as polyphe-
nols and terpenes (Sakai 2001, Gonçalves et al. 2007). The
physical and chemical properties of wood are thermally de-
graded during fires >300°C. Bark is primarily affected and
becomes loosely attached, softened, or removed. Charred
wood results from incomplete combustion via surface oxi-
dation in the form of smoldering (nonflaming) that depo-
lymerizes cellulose. Char (black C) is chemically heteroge-
neous and biologically inert. Degradation of lignin occurs
at ∼225 to 450°C, and at ∼450°C production of volatile
compounds is complete. Water and extractants (namely
lipids and terpenoid hydrocarbons) are lost from burned wood,
but volatilization of repellent compounds (Schniewind 1989,
Gama et al. 2007, Hyde et al. 2011) may make burned wood
more attractive than unburned wood to colonizing organisms.

Soil conditioning and water conditioning differ in terms
of fungal and bacterial colonization, but both precondi-
tion wood and facilitate colonization by organisms (Wong
et al. 1998). In terrestrial environments, soil-conditioned
wood decomposes relatively rapidly and decomposition is
enhanced by fungi and to a lesser extent by bacteria. Brown-
and white-rot fungi are 2 major kinds of decay fungi. Brown-
rot fungi degrade cellulose and hemicellulose, whereas
white-rot fungi degrade lignin and cellulose. Soft-rot fungi
affect the outer surface of wood, especially in fissures under
wet conditions (Bucher et al. 2004, FPL 2010). In water,
microbial colonization of wood is a slow phenomenon that
affects the surface of the wood (Harmon et al. 1986). Some
fungi that colonize wood prior to submergence in water
may survive and continue to produce fruiting bodies (An-
derson et al. 1978). Within 2 wk, epixylic biofilms deve-
lop and coat the submersed wood, forming organic layers
of fungi, bacteria, algae, extracellular polysaccharides, and
trapped seston (Golladay and Sinsabaugh 1991, Couch and
Meyer 1992). Most fungi in freshwaters carry out soft-rot
on wood surfaces (Zare-Maivan and Shearer 1988), and
basidiomycetes, which degrade lignin, are rare and usually
absent.

Colonization of wood by stream macroinvertebrates is
primarily a surface phenomenon, resulting from food and
substrate affinities. Despite the recalcitrant (Spänhoff and
Gessner 2004) and refractory nature of wood, several taxa
ingest wood fragments (Pereira et al. 1982), and a few can
digest (assimilate) wood (Monk 1976). As biofilms con-
tinue to develop over time, the wood is mechanically soft-
ened and its nutrient content and palatability increases
(Anderson et al. 1978, Phillips and Kilambi 1994). Colo-
nizing microorganisms and associated fine detritus also
provide food for numerous aquatic invertebrates (Ander-
son 1982, Winterbourn 1982, Anderson et al. 1984, Tank
et al. 2010). Lock et al. (1984) refers to biofilms accrued
during conditioning as transducers of energy and matter

that act as intermediates of polymer metabolism (e.g., cel-
lulose) and are readily assimilated by stream invertebrates
(Golladay and Sinsabaugh 1991, Hax and Golladay 1993,
Eggert and Wallace 2007). Temporal modifications of wood
structure and quality result in macroinvertebrate–wood in-
teractions accompanied by shifts in community and biotic
trait composition (Johnson et al. 2003).

Several investigators have examined the effects of wild-
fire on stream macroinvertebrates (Minshall et al. 1997,
Minshall 2003, Vieira et al. 2004, Robinson et al. 2005,
Malison and Baxter 2010, Oliver et al. 2012), but none ad-
dressed the role of fire-derived wood in stream function.
Knowledge regarding interactions between macroinverte-
brates and allochthonous inputs is based mainly on leaf-
litter studies (Wallace et al. 1997, Gessner et al. 1999, Graça
2001, Gulis et al. 2006, Casas et al. 2011), but leaf and
wood decomposition differ greatly (e.g., Hax and Golla-
day 1993). Others have addressed the structural effects of
wood, e.g., effects on flow patterns and retention (Entrekin
et al. 2009, Testa et al. 2011) on macroinvertebrate com-
munities in streams (Wallace et al. 1995, Hilderbrand
et al. 1997, Lemly and Hilderbrand 2000, Warren and
Kraft 2006). Last, some researchers have specifically ex-
amined the colonization of submerged wood by macro-
invertebrates (Magoulick 1998, Collier and Halliday 2000,
Collier and Smith 2003, Kaller and Kelso 2007, Lyon et al.
2009, Ballinger et al. 2010), but results have been incon-
sistent making generalizations difficult (Kaller and Kelso
2006).

We conducted a field experiment in which we manipu-
lated the burn status (burned, unburned) and types of con-
ditioning (water, soil, none) of small, uniform-sized pieces
of freshly cut wood. Our objectives were to assess the ef-
fects of wood burn status, conditioning, and their in-
teraction on macroinvertebrate community composi-
tion, taxon and functional diversity, and trait affinities
(after Tachet et al. 2010). We hypothesized that: 1) col-
onization patterns would differ between burned and un-
burned wood because of physical, chemical, and nutri-
tional degradation of burned wood; 2) colonization patterns
would differ between conditioned (water, soil) and uncon-
ditioned wood because of the greater decay and prevalence
of microorganisms on the surface of conditioned wood;
and 3) colonization would differ between water- and soil-
conditioning. We expected conditioned wood to have
the greatest taxonomic and functional diversity, and a
higher prevalence of shredders (see Cummins and Klug
1979), and we expected more scrapers on wood that was
conditioned in water (Hall et al. 2001).

METHODS
Site description

We worked in 3 unregulated 3rd-order streams (Strahler
1957) with 3 different upland forest types in each of 3 sepa-
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rate subbasins of the Tagus River in east-central Portugal:
Fouvel, Alferreira, and Rio Frio. Geology at the streams
was mainly characterized by siliceous rocks with low min-
eralization (INAG 2008). The area has gentle relief, and
land cover is dominated by forests, shrublands, and agri-
culture. The local climate is Mediterranean with hot, dry
summers and cool, wet winters. Mean annual precipita-
tion is 512 mm (Fig. 1), and mean annual temperature is
15.8°C (range: 9°C in December–January to 23°C in July–
August).

The Fouvel subbasin (drainage area = 50 km2) is domi-
nated by cork oak (Quercus suber) managed by an agro-
forestry system called montado (dehesa in Spain). The Al-
ferreira subbasin (59 km2) has pure stands of eucalyptus
(Eucalyptus globulus) planted for paper pulp production.
The Rio Frio subbasin (37 km2) has pure stands of mari-
time pine (Pinus pinaster) grown for timber. The sub-
basins experienced extensive wildfires (66, 92, and 71%
burned area) between 2003 and 2007. After these fires, the
amount of large wood in 3rd-order streams across the re-
gion was remarkably low: 2.8, 2.9, and 5.3 pieces/100 m in
subbasins dominated by cork oak, eucalyptus, and mari-
time pine, respectively. About 70% of this wood, including
pieces of the dominant managed tree species (Vaz et al.
2011, 2013b), was burned.

The streams generally have neutral–basic waters and
are intermittent with stretches that remain dry for several
months in a seasonal sequence of floods and droughts.
The natural discharge regime is primarily precipitation-
dominated with highest discharge occurring during au-
tumn and winter. Discharge responds rapidly to precipita-
tion events, which can result in major changes in flow over
relatively short periods of time (Raven et al. 2009). Chan-
nel gradients at the study reaches were gentle (∼1–2%).
The Fouvel reach (lat 39°35′45.65″N, long 7°36′23.98″W,
151 m asl) had a treeless, sparsely vegetated riparian zone.
This site was dominated by cobble and pebble substrates,
interspersed with some boulders in the main channel and

bedrock outcrops in one margin. The Alferreira (lat 39°28′
3.81″N, long 7°51′17.46″W, 127 m asl) and Rio Frio (lat
39°29′55.37″N, long 8°3′35.60″W, 100 m asl) reaches had
similar riparian vegetation, dominated by ash (Fraxinus
angustifolia), alder (Alnus glutinosa), and black poplar
(Populus nigra). The Rio Frio site also had silver wattle
(Acacia dealbata) trees. The Alferreira reach was domi-
nated by pebble and gravel substrates and Rio Frio mainly
by gravel. Both reaches had some boulders in the main
channel. During the study, maximum wetted widths were
7.22, 7.01, and 5.98 m, at Fouvel, Alferreira, and Rio Frio
reaches, respectively, with corresponding minimum water
depths of 28, 40, and 30 cm.

Wood burning and preconditioning
We used the dominant wood species in each subbasin

as the species examined in the stream reach. We obtained
freshly cut wood pieces with bark (length = 10 cm, diame-
ter ≈ 7.5 cm, volume ≈ 442 cm3) of cork oak (mean mass =
212 g), maritime pine (344 g), and eucalyptus (398 g)
(Fig. 2A). For each species, a replicate comprised 10 wood
pieces (1 set). We used 54 sets of wood for the entire ex-
periment: 18 sets each of cork oak, eucalyptus, and mari-
time pine.

We randomly selected 9 sets of each species (27 sets)
and burned them at the Reaction to Fire Testing Labora-
tory, National Laboratory for Civil Engineering, in Lisbon,
with a Single Burning Item EN 13823 (Fig. 2B). Pieces
were burned for 20 min at 750°C (burner heat release =
25 kW/h, gas flow to burner = 539 mg/s). Mass lost mea-
sured immediately after burning was 26% for cork oak, 48%
for maritime pine, and 54% for eucalyptus.

We randomly assigned 3 burned and 3 unburned sets
of each species to 3 conditioning treatments: soil, water,
and none. Soil-conditioned sets were left undisturbed on
bare soil (slope = 5%) with some low grasses (Fig. 2C, D)
from 23 July 2010 to 15 April 2011 at the Institute of

Figure 1. Local daily precipitation for the duration of the experiment (17 April 2010–26 May 2011). The rain gauge is 53, 29, and
12 km from Fouvel, Alferreira, and Rio Frio stream reaches, respectively.
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Agronomy campus (lat 38°42'42.00"N, long 9°11'20.13"W,
93 m asl). Soil was clay to clay loam with medium and
wide cracks when dry (vertisol; IUSS 2006). Sets were ar-
ranged randomly in a 1 × 1-m regular grid (distance among
sets ≤ 80 cm). During conditioning, local mean daily tem-
perature 5 cm above ground was 16.8°C (11.4–23.3°C),
mean daily air humidity was 71.4% (56.8–81.8%), and
mean daily solar insulation was 7.2 h (2.9–12.4 h). Water-
conditioned sets were submerged in plastic mesh bags
(described below) in the stream reaches for 1 y between
spring 2010 and spring 2011. Unconditioned sets were

freshly cut in spring 2011 and underwent no further con-
ditioning other than burning (described above).

Field and laboratory procedures
During the colonization step, we piled the pieces of

each set irregularly in plastic mesh bags (mesh = 1.5 ×
1.5 cm) (Fig. 2E). The bags prevented wood pieces from
being swept away, but had large enough mesh to allow
access of most invertebrates. On 17 April 2010, we placed
the first sets in the water to be colonized for ∼1 y (water

Figure 2. Photographs of the experimental setting showing freshly cut wood pieces (length = 10 cm; diameter ≈ 7.5 cm) from cork
oak (A), burning process at the Reaction to Fire Testing Laboratory using a Single Burning Item (B), soil conditioning of unburned
wood (C) soil conditioning of burned wood (D), mesh bags (mesh = 1.5 × 1.5 cm) with wood (E), and mesh bags with wood secured
in the stream with a nylon cable (F).
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conditioning). At each reach, we secured 3 burned and 3
unburned sets to a nylon cable in an alternating arrange-
ment with bags spaced ∼80 cm apart (Fig. 2F). The bags
were submerged in a line, and each bag was anchored
to the stream bed with a boulder. On 29 April 2011, we
added the sets that had undergone soil conditioning or
no conditioning, mounted <1.5 m from the first sets on
nylon cables. Thus, at each ∼11-m reach, another 12 bags
were added and submerged, tethered in a random arrange-
ment and spaced as above for a total of 18 sets/reach. Twelve
sets assigned to water conditioning (6 at the cork oak reach,
3 each at the eucalyptus and maritime pine reaches) were
destroyed and lost during winter floods.

On 26 May 2011, we collected the bags in buckets
filled with stream water (1 bag/bucket). We separated all
macroinvertebrates in each bag from the 10 wood pieces
with a soft brush and a water spray bottle. Thus, all in-
vertebrates on the 10 wood pieces combined constituted
1 sample. Visual assessment of the wood provided evi-
dence that burning decreased the coating of epixylic bio-
film and that decay of wood sets that had undergone soil
conditioning or water conditioning was greater than de-
cay of unconditioned wood. We filtered the water in each
bucket through a 500-μm mesh sieve to collect any re-
maining macroinvertebrates in the sample. We also used a
kick-net (500-μm mesh net, aperture = 30 cm) to collect a
sample from the substrate at the previous location of each
bag. We used this sample to characterize the reach in a
different way to allow us to detect, for example, taxa that
were not captured by the wood/mesh bags. Immediately
after collection, we preserved macroinvertebrates, detached
smaller pieces of wood, and loose bark with 70% ethanol
in 1-L plastic flasks. We also characterized the location of
each bag and recorded 3 stream microhabitat features:
depth (cm), bed substrate (gravel, pebbles, cobbles), and
flow type (imperceptible, unbroken waves, broken waves,
rippled). We defined bed substrates and flow types as in
the River Habitat Survey Manual (EA 2003).

Upon returning to the laboratory, we cleaned and fil-
tered (500-μm mesh sieve) samples and hand-picked all
macroinvertebrates for identification with the aid of a
microscope at 10× magnification. We identified macroin-
vertebrates to lowest-feasible taxonomic level (mostly fam-
ily or genus) with available keys (e.g., Tachet et al. 2010,
Oscoz et al. 2011) and counted them. We used absolute
abundances/sample in all analyses.

Macroinvertebrate traits
We assigned ecological trait composition of each sam-

ple according to the traits database published by Tachet
et al. (2010), which uses a fuzzy-coding procedure to
describe the link between a taxon and categories within
21 traits (Usseglio-Polatera 1991, Chevenet et al. 1994,
Usseglio-Polatera et al. 2000). In the database, each taxon

is assigned a score that describes its affinity to each cate-
gory of a given trait. Scores range from 0 (no affinity) to 3
or 5 (high affinity). The range of taxon-trait scores (0–3 or
0–5) depends on the available information in the literature
and on the number of categories describing the trait. We
used only the 5 traits that potentially influence wood colo-
nization via food (food, feeding habits) or substrate affini-
ties (maximal potential size, substrate preference, locomo-
tion and substrate relation). We considered all categories
describing each trait. After applying the scores to our data,
we transformed the range of each taxon–trait category
link by rescaling it between 0 and 1.

Functional diversity and taxon diversity
We quantified functional diversity, i.e., the overall dif-

ference in terms of traits among taxa within a wood set
with the Rao index of diversity (Botta-Dukát 2005, Lepš
et al. 2006, De Bello et al. 2009, Lavorel et al. 2008). The
Rao index represents the probability of picking 2 individ-
uals in a community that differ in their ecological func-
tion. If the proportion of the ith taxon in a community is
pi and the dissimilarity of taxon i and j is dij, the Rao in-
dex has the form

Functional diversity ¼ ∑
t

i¼1
∑
t

j¼1
di jpi p j; (Eq. 1)

where t is the number of taxa in the community and dij
varies from 0 (2 taxa having the same traits) to 1 (2 taxa
having different traits). To convey taxon diversity, we used
the Simpson index of diversity expressed as 1 minus Simp-
son index of dominance

D ¼ 1−∑
t

i¼1
p2i : (Eq. 2)

Data analysis
Community by wood treatments We analyzed commu-
nity composition in relation to explanatory variables by
distance-based redundancy analysis (db-RDA; Legendre
and Anderson 1999, McArdle and Anderson 2001), based
on Bray–Curtis dissimilarities (Bray and Curtis 1957) on un-
transformed abundances, with the capscale algorithm in
the R package vegan (version 2.0-5; Dixon 2003, Oksanen
et al. 2012). We used wood burn status (burned, unburned),
conditioning (water, soil, none), the burn status × condi-
tioning interaction, and habitat variables (water depth,
streambed substrate, flow type) as predictors. We assessed
final models with a forward variable selection procedure.
We entered predictors one at a time, recorded their pseudo-
F and significance values, and chose the most significant
predictor. Then we entered all other independent variables
and chose the next most significant (F-test with anova com-
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mand in vegan; p-values generated by permutation using
p < 0.05 criteria). The procedure stopped when no signif-
icant term could be added. As a measure of overall db-
RDA fit, we used the pseudo-F ratio obtained by permu-
tation tests (permutest command in vegan). Colonization
conditions varied according to the site, so we first ran a
db-RDA model applied to the entire data set (sites com-
bined) but with permutations stratified within sites, and
then ran a separate model per site. The procedure can ac-
commodate an unbalanced design, but p-values close to
the 0.05 must be interpreted with special caution (Borcard
et al. 2011).

We quantified the contributions of each taxon to the
average Bray–Curtis dissimilarity between treatments (% con-
tribution) with a similarity percentages analysis (SIMPER;
simper command in vegan; Clarke 1993). Taxon composi-
tion could differ among sites, so we ran SIMPER between
treatments only within sites.

Taxa diversity, functional diversity, and trait affinity by
wood treatments We acrsin√(x)-transformed taxon di-
versity, functional diversity, and trait affinity data to sat-
isfy assumptions of normality before analysis. Groups of
3 conditioning treatments and 2 burn status treatments
were nested within each site (one site/forest type: cork oak,
eucalyptus, maritime pine), so we used a linear mixed-
effect models (LMM) with site as a random factor (ran-
dom intercept) for the analysis of response variables. We
fitted a separate LMM to taxon diversity, functional di-
versity, and to each trait category with the above set of
explanatory variables, and used the nlme package in R
(version 3.1-104, R Project for Statistical Computing,
Vienna, Austria; Pinheiro et al. 2012) to fit each model.
In all cases, we started with a model with all 5 variables
(burn status, conditioning, bed substrate, flow type, and
depth) and the burn status × conditioning interaction in
the fixed part of the model. We used backward elimina-
tion (Zuur et al. 2009) to remove each main term in turn,
and then at each step, we applied the likelihood ratio test
of nested models. We evaluated model adequacy by plot-
ting residuals vs fitted values and explanatory variables.

RESULTS
We identified 79 macroinvertebrate taxa in the wood

sets. Chironomidae was the most represented taxon (62%),
followed byHabrophlebia (13%),Choroterpes (3%), Ephem-
erella (3%), Baetis (3%), and Elmidae (3%). Other taxa were
less represented (≤1%). Taxon composition differed among
sites. For example, Choroterpes and Ephemerella were ab-
sent from eucalyptus and cork oak sites, respectively. Tri-
choptera and Plecoptera were rarely present in cork oak site
samples, and Gastropoda did not occur at the eucalyptus
site. Wood bags captured all taxa present in the kick-net
samples at all sites (Appendix S1).

Community by wood treatments
Wood burn status was not selected for any of the 4 fi-

nal db-RDA models (forward-selection, α ≤ 0.05; Table 1).
Thus, wood burn status was not considered a significant
predictor of community composition, whether we evalu-
ated sites in combination or separately. In contrast, wood
conditioning was a significant predictor of community com-
position in all cases, even though the water-conditioning
treatment was absent at the cork oak site. The burn status ×
conditioning interaction also was not a significant predic-
tor, indicating that the effect of conditioning probably was
comparable for burned and unburned wood.

Community composition differed between conditioned
(soil, water) and unconditioned wood sets when all
sites were considered (Fig. 3A) and at each site separately
(Fig. 3B–D). Community composition differed significantly
between unconditioned and soil-conditioned wood at each
site. However, differences between communities on water-
and soil-conditioned wood depended on site (no differ-
ences when sites were combined, partial overlap at the eu-
calyptus site, different at the maritime pine site).

The taxon that contributed most to all significant dis-
similarities between conditioning treatments within sites
was Chironomidae, followed by Habrophlebia (except at
the cork oak site) (Tables 2, 3, 4). Chironomidae was more
abundant in unconditioned wood in all pairwise compar-

Table 1. Final distance-based redundancy analysis models
(db-RDA) for macroinvertebrates on wood treated with no,
soil, or water conditioning at all sites combined (analysis
stratified by site) and separately for each site. At the cork oak
site, data were available only for no and soil conditioning.
Numbers in parentheses are pseudo-F values, p-values were
generated by 999 permutations and p = 0.01 in the 4 models.

Variable df MS F p

Sites combined (3.58)

Conditioning 2 1.10 5.89 0.01

Streambed substrate 3 0.67 2.40 0.01

Water depth 1 0.23 2.49 0.01

Residuals 33 3.09

Cork oak site (5.71)

Water depth 1 0.47 7.82 0.01

Conditioning 1 0.21 3.60 0.02

Residuals 9 0.53

Eucalyptus site (5.20)

Conditioning 2 1.03 6.36 0.01

Water depth 1 0.23 2.88 0.02

Residuals 11 0.89

Maritime pine site (4.21)

Conditioning 2 0.54 4.21 0.01

Residuals 12 0.77
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isons involving this wood treatment. Other taxa that con-
tributed >5% of the dissimilarity between at least 1 pair
of conditioning treatments within sites were Choroterpes,
Baetis, Ephemerella, Elmidae, Thaumaleidae, Psychodidae,
and Psychomyiidae (Appendix S2).

Taxon diversity, functional diversity, and trait affinity
by wood treatments

Wood burn status was not a significant predictor of
taxon or functional diversity, nor, in general, of trait affin-
ity (Table 5). Wood conditioning was a significant predictor
of taxon diversity, functional diversity, and of trait affinity
for 23 categories among the traits assessed. The burn sta-
tus × preconditioning interaction was always dropped dur-
ing the model-selection processes, indicating that the effect
of conditioning was independent of burn status. Fitted val-
ues for taxon diversity and functional diversity were lower
for unconditioned wood than for soil- or water-conditioned
wood and did not differ between soil- and water-conditioned
wood (Fig. 4).

Pairwise comparisons of fitted trait affinity between
wood conditioning treatments generally revealed that un-

conditioned wood differed significantly from the other 2
treatments (Fig. 5). In 20 of the 23 categories, the confi-
dence intervals of mean trait affinity on unconditioned
wood did not overlap with the trait affinity on wood with
soil or water conditioning (Fig. 5), i.e., trait affinities dif-
fered significantly. Macroinvertebrates colonizing wood
were characterized as follows based on food or substrate
affinities.

Food Fewer shredders and more filter-feeders, predators,
and parasites occurred on unconditioned than on condi-
tioned wood. Macroinvertebrates tended to feed less on
living microphytes, and more on microorganisms, detritus
<1 mm, dead animals ≥1 mm, living microinvertebrates,
and living macroinvertebrates on unconditioned than on
conditioned wood.

Substrate affinities Only 2 of the 7 maximal potential
size categories of macroinvertebrates (1–2 and 2–4 cm;
Tachet et al. 2010) tended to be more prevalent on uncon-
ditioned than on conditioned wood. Unconditioned wood
was colonized by macroinvertebrates with less affinity to
twigs/roots as preferred substrate and more affinity to
mud, microphytes, sand, or flags/boulders/cobbles/peb-
bles. Macroinvertebrates colonizing water-conditioned wood
had higher affinity for permanent or temporary attachment
to substrates than for other locomotion/substrate categories,
whereas unconditioned wood tended to have macroinver-
tebrates with more interstitial or burrower habits than

Figure 3. Distance-based redundancy analysis (db-RDA) or-
dination plots for macroinvertebrates on burned and unburned
wood at all sites combined (A), and cork oak (B), eucalyptus (C),
and maritime pine (D) sites. Percentages next to axis titles are
% variance explained by axis. Ellipses indicate where 95% of
sampling units with the same conditioning (none, soil, water) are
expected to occur. Water-conditioning data were absent for the
cork oak site and sample size was reduced at eucalyptus and
maritime pine sites.

Table 2. Output of similarity percentages analysis at the cork
oak site showing taxa responsible for 90% of the overall average
dissimilarity between the macroinvertebrate communities on
wood with no or soil conditioning. Bold highlights the condi-
tioning treatment in which the taxon was more abundant.
Ctr% = % contribution to the overall dissimilarity between con-
ditioning treatments. No data were available for water condi-
tioning at the cork oak site.

Taxon
Mean

abundance
Overall

dissimilarity (%) Ctr%

Comparison Soil None 47.6

Chironomidae 117.5 256.5 56.3

Elmidae 21.7 10.7 7.2

Choroterpes 27.2 20.0 5.9

Thaumaleidae 0.5 12.2 5.2

Psychodidae 0.5 12.0 5.2

Naididae 0.8 5.2 2.1

Cloeon 0.5 4.3 1.8

Centroptilum 4.8 3.7 1.5

Dixidae 1.3 2.7 1.4

Procloeon 1.5 3.7 1.3

Dytiscidae 2.3 3.5 1.1
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preconditioned wood. Macroinvertebrates having higher
crawler affinity were most prevalent on soil-conditioned
wood followed by unconditioned and water-conditioned
wood. Full water swimmers were more prevalent on un-
conditioned wood than on soil-conditioned wood, whereas
macroinvertebrates on water-conditioned wood had an in-
termediate affinity for this trait category.

DISCUSSION
Burned stream wood and macroinvertebrates

The data did not support our 1st hypothesis that pat-
terns of stream macroinvertebrate colonization would dif-
fer in response to wood burning. Central to our expecta-
tion was the nutritional depletion of burned wood, in line
with the observed decreased coat of biofilm. We were not
able to measure biofilm growth (e.g., chlorophyll a), but
the nutritional depletion of other burned allochthonous
inputs is recognized in the literature. For example, Mihuc
and Minshall (1995) found that only 1 macroinvertebrate
taxon was able to grow when fed burned organic matter.
In addition, Gama et al. (2007) reported a reduction in nu-
tritional quality of fire-exposed leaves relative to normal
eucalyptus leaves in a central Portugal stream. However,
the diversity and macroinvertebrate abundance were simi-
lar between treatments (Gama et al. 2007). Our study fol-
lowed the same trend, in which alteration of stream wood
quality by fire did not appear to be a determinant of mac-
roinvertebrate colonization. The degree of xylophagy dif-
fers among regions (Benke and Wallace 2003), and our re-
sults suggest colonization by predominantly nonxylophages

Table 3. Output of similarity percentages analysis at the euca-
lyptus site showing taxa responsible for 90% of the overall aver-
age dissimilarity between themacroinvertebrate communities on
wood with no, water, or soil conditioning. Bold highlights the
conditioning treatment in which the taxon wasmore abundant.
Ctr% = % contribution to the overall dissimilarity between condi-
tioning treatments. No differences were detected between commu-
nities on wood with soil and water conditioning.

Taxon
Mean

abundance
Overall

dissimilarity (%) Ctr%

Comparison Water None 61.2

Chironomidae 85.3 386.5 68.4

Habrophlebia 61.0 54.0 7.6

Ephemerella 0.3 33.2 7.3

Psychomyiidae 21.3 0.5 5.0

Comparison Soil None 60.7

Chironomidae 88.8 386.5 71.3

Habrophlebia 29.0 54.0 9.0

Ephemerella 21.3 33.2 6.2

Baetis 7.0 17.3 3.3

Table 4. Output of similarity percentages analysis at the mari-
time pine site showing taxa responsible for 90% of the overall
average dissimilarity between the macroinvertebrate communi-
ties on wood with no, water, or soil conditioning. Bold high-
lights the conditioning treatment in which the taxon was more
abundant. Ctr% = % contribution to the overall dissimilarity
between conditioning treatments.

Taxon
Mean

abundance
Overall

dissimilarity (%) Ctr%

Comparison Water None 38.2

Chironomidae 95.0 119.0 37.0

Habrophlebia 41.3 38.8 11.9

Baetis 22.0 5.7 10.8

Simuliidae 6.7 0.7 4.0

Lumbricidae 5.3 0.0 4.1

Physa 0.0 5.0 3.3

Choroterpes 0.0 4.5 3.1

Polycentropodidae 5.3 3.5 2.8

Elmidae 0.3 4.5 2.8

Hydropsychidae 3.0 0.0 1.8

Beraeidae 0.0 2.5 1.8

Dixidae 1.0 2.0 1.6

Rhyacophila 2.3 0.0 1.4

Leuctridae 2.0 0.0 1.3

Ephemerella 2.3 1.3 1.3

Comparison Soil None 45.2

Chironomidae 44.5 119.0 49.6

Habrophlebia 55.5 38.8 18.5

Choroterpes 10.5 4.5 5.2

Baetis 5.5 5.7 3.6

Elmidae 7.7 4.5 3.0

Physa 1.7 5.0 2.8

Polycentropodidae 5.0 3.5 1.8

Beraeidae 0.7 2.5 1.5

Dixidae 0.5 2.0 1.5

Centroptilum 1.3 0.3 1.2

Ephemerella 2.2 1.3 1.2

Comparison Water Soil 46.5

Chironomidae 95.0 44.5 33.7

Habrophlebia 41.3 55.5 12.7

Baetis 22.0 5.5 10.3

Choroterpes 0.0 10.5 6.3

Elmidae 0.3 7.7 4.6

Lumbricidae 5.3 0.0 3.9

Simuliidae 6.7 0.3 3.8

Polycentropodidae 5.3 5.0 2.7

Hydropsychidae 3.0 0.0 1.8

Rhyacophila 2.3 0.0 1.3

Ephemerella 2.3 2.2 1.3

Leuctridae 2.0 0.0 1.2

Dytiscidae 0.0 1.7 1.1

Centroptilum 0.0 1.3 1.0

Lumbriculidae 1.0 1.2 1.1

Physa 0.0 1.7 0.9

Hydraena 1.7 0.0 1.0

Philopotamidae 1.3 0.0 0.8
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(sensu Hoffmann and Hering 2000). Like Gama et al. (2007),
we suggest that invertebrates colonizing wood may use it
more as substratum than as food. Our results showed that
fire-induced changes in quality of allochthonous inputs
per se may not alter the structure of macroinvertebrate
communities. In his review regarding responses of macro-
invertebrates to fire, Minshall (2003) noted that most re-
sults support the conclusion that fire is not detrimental to
sustained maintenance of diverse and productive aquatic
ecosystems. Our results align well with Minshall’s state-
ment that “there is no fire crisis” (Minshall 2003, p. 159).

Taxon responses
Our 2nd hypothesis that preconditioning would lead to

changes in macroinvertebrate community assembly was
clearly supported, independent of wood burn status. The

number of individuals was consistently higher and was
composed of a higher proportion of chironomids on un-
conditioned than on conditioned wood (Appendix S1).
Chironomids are frequently among the first colonizers of
submerged wood (McLachlan 1970, Nilsen and Larimore
1973, Spänhoff et al. 2000). As expected, greater taxon and
functional diversity was found on conditioned than on un-
conditioned wood. This difference might be the result of
the more advanced state of decay, higher prevalence of
microorganisms, or greater microhabitat diversity on the
surface of conditioned than of unconditioned wood. We
suggest that the decrease in the relative dominance of
chironomids (Cummins and Klug 1979) and coexistence
of more taxa (O’Connor 1991) might have been a conse-
quence of greater resource availability on conditioned than
on unconditioned wood. Collier and Halliday (2000) doc-
umented dominant species with varying preferences for

Table 5. Significance levels for fixed terms in optimal linear mixed-effects models predicting taxon or functional diversity and trait
affinity by wood burn status (burn) and conditioning (cond) type. Only those trait categories where the effect of wood conditioning
was significant are shown. Sub = streambed substrate. Blank cells were terms dropped during the model selection process.
*** = <0.001, ** = <0.01, * = <0.05.

Variable Response

Model predictors

R2Cond Burn Burn × Cond Sub Flow Depth

Diversity Taxon diversity *** ** 0.44

Functional diversity *** * 0.41

Trait Trait category

Maximal potential size 2–4 cm *** * 0.45

1–2 cm *** 0.41

Substrate (preferendum) Mud *** 0.50

Twigs/roots * 0.17

Microphytes *** 0.44

Sand *** ** 0.61

Flags/boulders/cobbles/pebbles ** ** 0.46

Locomotion and substrate relation Permanently attached *** ** 0.43

Temporarily attached *** * 0.41

Interstitial *** ** 0.51

Burrower *** *** 0.62

Crawler *** * 0.51

Full water swimmer ** ** * 0.13

Food Living macroinvertebrates *** 0.34

Living microinvertebrates *** ** 0.54

Dead animal ≥ 1 mm ** ** 0.35

Living microphytes * 0.13

Detritus < 1 mm * ** 0.53

Microorganisms ** * 0.36

Feeding habits Parasite *** * ** 0.61

Predator *** * 0.49

Filter-feeder *** * 0.47

Shredder * * 0.40
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wood at different stages of decay, and their findings sug-
gested invertebrate community succession with increasing
wood decay. In our study, chironomids were the major
pioneer taxon on unconditioned wood, whereas more di-
verse but less dense communities were attained on water-
and soil-conditioned wood.

Wood that entered the stream after some time on the
forest floor was colonized by macroinvertebrates differ-
ently than wood that entered the channel directly. This
terrestrial legacy had already been hypothesized (see An-
derson et al. 1984), but it has never been tested explicitly
in a multiple-factor experimental setting. Some authors
have addressed the effect of the stage of decay of stream
wood on macroinvertebrates but the decay process (e.g.,
terrestrial, aquatic, or both) has rarely been controlled.
In general, authors of observational studies and single-
factor experiments have reported relationships between
wood decay and diversity, richness, or density (Benke
and Wallace 2003). For instance, invertebrate richness
may increase with decay (Braccia and Batzer 2001, Bal-
linger et al. 2010), and density may vary (Collier and Hal-
liday 2000) or be unrelated to decay (Braccia and Batzer
2001). Based on some of these studies and on their own
findings, Kaller and Kelso (2006) stressed the difficulty of
making generalizations about the effect of decay on mac-
roinvertebrates. We think that part of the difficulty arises
from limited tracking of crucial features in the decay of
sampled wood, such as decay time, age, size, species, and
waterlogging period. We controlled these variables and
were able to measure the effects of wood conditioning on
the structure of stream invertebrate communities.

The invertebrate community on wood after 1 y of sub-
mergence (water-conditioning) differed from the commu-
nity on unconditioned wood colonized over 1 mo. A time
series analysis is beyond the scope of our study, but we
suggest that this result indicates a possible shift in com-
munity composition over the 1-y period. For instance, the
community on water-conditioned wood probably had more
chironomids a month after initial submergence. On the
other hand, macroinvertebrate communities did not differ
markedly between water- and soil-conditioned wood even
though the duration of in-stream colonization varied be-
tween the 2 conditioning treatments (1 y vs 1 mo). Com-
munities on water- and soil-conditioned wood had similar
diversities (taxon and functional) at the eucalyptus andmari-
time pine sites, and community composition differed signifi-
cantly only at the maritime pine site. If invertebrate com-
munities do undergo succession during water-conditioning
(Collier and Halliday 2000), we suggest that the first stage of
that succession can be influenced by soil conditioning, al-
though the progress of succession would be site-specific.
Our ability to draw inferences regarding water conditioning
would have been stronger had we been able to include data
from the cork oak site. More work is necessary to shed light
on these possibilities.

Trait responses
We quantified trait affinities to examine the influence

of wood treatments on macroinvertebrate communities.
Taxonomy-based metrics are often poor tools for identi-
fying the mechanisms underlying patterns, whereas mod-
eling trait responses allowed us to better understand how
the functional role of communities was constrained (Woos-
ter et al. 2012). Shredders usually select the most condi-
tioned material (Cummins and Klug 1979), and as ex-
pected, taxa with higher shredding affinity were associated
with conditioned wood. However, our prediction of higher
prevalence of scrapers on water- than on soil-conditioned
wood was not supported. We based our prediction on the
expectation that periphyton growth would be greater on
water- than on soil-conditioned wood (Oliver et al. 2012),
but the conditioning period might have been too short for
us to detect a response (Golladay and Webster 1988, Hall
et al. 2001).

Less specialized feeders with a large breadth of food
requirements (Oliver et al. 2012) prevailed on uncondi-
tioned wood. For example, the higher proportion of preda-
tors on unconditioned than on conditioned wood might
be explained by the greater abundance of macroinver-
tebrates (potential prey) on unconditioned wood (Malison
and Baxter 2010). Also, filter-feeders do not depend on
biofilm accrual because their food is produced elsewhere
in the system and is delivered by drift (Benke and Wallace
2003). Thick biofilms may inhibit filter-feeders from mak-
ing firm attachments to the underlying substrate. Con-

Figure 4. Mean (±95% CI) fitted values for the optimal
mixed-effects models predicting taxon or functional diversity
by type of wood conditioning.
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versely, taxa with shredder and living microphytes affini-
ties were correlated within wood sets (mean rs > 0.8) and
were more common on conditioned than unconditioned
wood, a result consistent with previous work on the rela-
tionship between microphyte abundance and the number
of shredders on stream wood (Spänhoff et al. 2006). Mac-
roinvertebrates preferring wood substrates (twigs/roots)
prevailed on the conditioned wood, whereas taxa prefer-
ring some other substrates prevailed on the unconditioned
wood. This result lends support to the notion that use of
unconditioned wood was opportunistic. Overall, food and
substrate affinities were similar between water- and soil-
conditioned wood, except for ‘locomotion and substrate
relation’. Most individuals did not use the wood for per-
manent attachment, although the affinity for attachment
was higher on water-conditioned wood than on soil-
conditioned or unconditioned wood. Interstitial, burrower,
and full water swimmer affinities were high on uncon-
ditioned wood, a pattern that further suggests opportunis-
tic use of this wood (e.g., refuge or perching habitat).

In our study, wood conditioning, whether in the stream
or on the forest floor, was important to macroinvertebrate
taxa and trait responses. In contrast, Pitt and Batzer (2011)
found that conditioning had minimal influence on how
wood was used by macroinvertebrates in streams in the
southeastern USA. Kaller and Kelso (2006) suggested that
stream invertebrates readily used all incoming wood re-
gardless of its condition, and they invoked opportunistic
colonization as the primary mechanism explaining similar
assemblages on wood with various conditioning. In disen-
tangling this contradiction between our results and those
reported by others, we first note that our systems differ
markedly from those where most other related work has
been conducted. Some studies were conducted in sand- or
silt-dominated streams and in the absence of stable rocky
materials, so wood may have been the only stable habitat
available. Such circumstances would decrease the impor-
tance of conditioning. However, in all of our study streams,
macroinvertebrates had other stable substrates that were
readily available, so reliance on wood per se may have been

Figure 5. Mean fitted values (vertical ticks) and ±95% confidence intervals (horizontal bars) for the optimal mixed-models pre-
dicting trait affinity by wood conditioning treatment. One model was run for each category within traits. Only those trait categories
where the effect of wood conditioning was significant are shown.
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less pronounced, and preconditioning would acquire greater
importance as biofilms become a more important direct food
source.

Concluding remarks
We worked in 3 common southern European fire-

prone forest types where tree mortality associated with
fire contributes riparian and upland wood to stream eco-
systems (Vaz et al. 2011, 2013a, b) every year. We re-
sponded to a need and to an opportunity and conducted
a first study of the effect of fire-derived wood on the struc-
ture of stream macroinvertebrate communities. In contrast
to our expectations, taxonomic or functional patterns of
stream macroinvertebrate colonization did not differ sub-
stantially between burned and unburned wood, even after
a year of incubation in the stream or on the forest floor.
This finding is an important contribution to our under-
standing of how wildfire structures aquatic communities
and it can be used to guide postfire stream and riparian
management operations that take ecosystem function into
account. In conclusion, when fire affects riparian trees,
the path by which fallen wood enters the stream has a
greater influence on colonization by epidendric macroin-
vertebrates than whether the wood has been burned. Ul-
timately, biotic rather than abiotic conditioning influences
invertebrate communities on wood following fire, and this
fact has implications for the response of the entire stream
food web.
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