Índice de Figuras

Capitulo I

Figura 1. Divisão do Maciço Ibérico (Adaptado de Lotze, 1945)	Página 6
Figura 2. Modelo tectonostratigráfico proposto por	
Julivert et al. (1974)	Página 7
Figura 3. Sequência estratigráfica do Grupo do Douro. Adaptado	
de Dias <i>et al.</i> (2013).	Página 15
Figura 4. Sequência estratigráfica ordovícica do Grupo	
Trás-os-Montes. Adaptado de Sá <i>et al.</i> (2005).	Página 18
Figura 5. Esquema geológico simplificado do Batólito das Beiras,	
com a distribuição dos granitóides variscos (Azevedo e Valle	
Aguado, 2006, modificado de Azevedo <i>et al.,</i> 2005).	Página 21
Figura 6. Principais zonas de cisalhamento que actuaram	
durante a D₃ ao nível do Maciço Ibérico. Localização dos sectores	
onde afloram rochas de alto grau metamórfico, como o CAFCR-L	
(Complexo Anatéctico de Figueira de Castelo Rodrigo-Lumbrales).	
Modificado de Ribeiro <i>et al.</i> (2009).	Página 24
Figura 7. Quadro síntese com as principais datações das fases de	
deformação e de eventos magmáticos e metamórficos associados.	
Modificado de Dallmeyer <i>et al.</i> (1997).	Página 25
Figura 8. Principais domínios estruturais do autóctone da ZCI e as	
setas a vermelho representando as vergências das estruturas D ₁	
(Dias e Ribeiro, 2013 e referências inclusas).	Página 26

Capitulo II

Figura 1. Mapa Litológico simplificado do Complexo Anatéctico de Figueira de Castelo Rodrigo-Lumbrales. A ocidente o limite são granitóides tardi-pós-D₃ (não marcados), enquanto que a oriente o limite é mais difuso, perdendo-se ora por contacto com intrusões tardi-pós-D₃ora devido a cobertura. Tanto a Norte como a Sul os limites são bem definidos, a Sul no contacto com a formação de Poiares-Castelo Rodrigo através da ZCJPC (não marcado) e a Norte com as unidades do Supergrupo Dúrico-Beirão através da ZCHuebra (não marcado). Adaptado e modificado de Silva e Ribeiro (2000) e Villar *et al.* (2000). Página 45 Figura 2. Mapa simplificado da Magna 475 – Lumbrales (Villar *et al.*, 2000), enfatizando as principais machas graníticas.

1. Granitos pré-hercínicos; 2. Granitos pré-sin D2; 3. Granito de

Lumbrales; 4. Granito 'traquitóide' de La Merchana; 5. Granito de	
Arribes; 6. Granito de La Redonda; 7. Granito de Saucelle;	
8. Granito de Bañobarez; 9. Granito Villar del Ciervo.	Página 48
Figura 3. Esboço geológico da região de Lumbrales-Ledesma	
(Figuerola e Parga, 1968).	Página 53
Figura 4. Mapa geológico de Lumbrales segundo Carnicero (1982).	
Detalhe das isógradas metamórficas.	Página 53

Capitulo III

Figura 1. Esboço com as principais estruturas na faixa Porto –	
Viseu – Salamanca, envolventes à Zona de Cisalhamento de Juzbado	
– Penalva do Castelo. A. Sector de Penalva do Castelo; B. Sector de	
Figueira de Castelo Rodrigo; C. Sector de Lumbrales; D. Sector de	
Juzbado. Adaptado de Iglesias e Ribeiro (1981b).	Página 57
Figura 2. Mapa simplificado do sector de Penalva do Castelo.	
Adaptado e modificado de Gonçalves <i>et al.</i> (1990) e Valle Aguado	
et al. (2005).	Página 60
Figura 3. Mapa geológico do sector de Figueira de Castelo Rodrigo,	
detalhe do Ordovícico. Adaptado de Ribeiro e Silva (2000).	Página 61
Figura 4. Mapa Geológico Simplificado do sector de Lumbrales.	
Modificado de Villar <i>et al.</i> (2000).	Página 62
Figura 5. Mapa Geológico Simplificado do sector de Juzbado	
(Ledesma). Adaptado de Rodríguez Fernández et al. (2000).	Página 63
Capitulo IV	
Figura 1. Mapa de localização da amostragem realizada no âmbito	
deste estudo, com base na Carta Geológica de Portugal à escala	
1:500 000.	Página 70
Figura 2. Estromatito com intercalações de paleossoma e	
leucossoma centimétricas a milimétricas. Predomínio do	
componente leucossomático.	Página 72
Figura 3. Diatexito com elevado grau de fusão parcial,	
evidenciando elevada fluidez, como seja o desenvolvimento de	
uma dobra ptigmática, em termos migmatíticos.	Página 72
Figura 4. Resíduo mesossomático, herdando uma estrutura	
prévia; as intercalações de leucossoma apresentam um aspecto	
fibroco, nodondo indicar a proconca do cilimanito	Dágina 72

Figura 6. Venito que é intersectado por um canal extracção e	
alimentação granítico externo e posterior.	Página 72
Figura 7. Agmatito, com individualização de encraves por quebra	
da estrutura original da rocha devido ao incremento de neossoma.	Página 72
Figura 8. Textura granolepidoblástica dos metatexitos, com a	
associação mineral mais predominante.	Página 73
Figura 9. Textura foliada frequentemente identificada nos	
metatexitos, associada a forte colorização da biotite.	Página 73
Figura 10a. Textura fibrosa associada ao intercrescimento de	
biotite e moscovite. Possível substituição de fibrolite. 4b.	
sem nicóis cruzados.	Página 73
Figura 11. Crescimento secundário da moscovite.	Página 73
Figura 12. Sericitização da moscovite e cloritização intensa da	
biotite.	Página 73
Figura 13. Textura granolepidoblástica dos diatexitos, com	
evidencias de catclase, presente nos agregados de quartzo-	
plagioclase, bem como nas deformações das micas.	Página 75
Figura 14. Intercrescimento simpletítico de quartzo-plagioclase.	Página 75
Figura 15. Textura lepido a lepidogranoblástica, com foliação dada	
pelo alinhamento de biotites e moscovites.	Página 75
Figura 16. Subgranulação do quartzo, com recristalização por	
migração de fronteira de grão.	Página 75
Figura 17. Textura granolepidoblástica de grão médio, com	
predomínio de biotite como mica principal. Deformação das	
maclas na plagioclase	Página 75
Figura 18. Cloritização associada à substituição de biotite,	
frequente nos neossomas.	Página 75
Figura 19. Unidade calcoco-silicatada anfibolítica, intercalada	
numa unidade diatexítica.	Página 77
Figura 20. Ocorrência de Horneblenda, em cristais de grande	
dimensão , em equilíbrio com a restante mineralogia.	Página 77
Figura 21. Ocorrência de Horneblenda-Hedenbergite-Almandina	
em equilíbrio; b. em nicóis cruzados.	Página 77
Figura 22. Titanite com grande desenvolvimento associado à	
horneblenda, que se apresenta em algum desiquilíbrio.	Página 77
Figura 23. Granada disseminada, sem zonamanento e sem orla de	
reacção visível.	Página 77
Figura 24. Textura granolepidoblástica associada a «ocelos» ricos	
em biotite e em actinolite. Lina de tracejado a separar o domínio	
do «ocelo» da restante textura.	Página 78
Figura 25. Deformação associada a plagioclas e recristalização do	

quartzo.	Página 78
Figura 26a. Associação de biotite, actinolite e clinopiroxena, com	
evidente desequilíbrio da clinopiroxena e da anfíbola; b. em nicóis	
paralelos.	Página 78
Figura 27. Detalhe de recristalização do quartzo por GBM e	
<i>bulging (o)</i> . Alinhamento de biotite e moscovite, mimetizando	
uma foliação pouco penetratica com acahatamento.	Página 81
Figura 28. Presença de microclina nos granitos deformados, com	
crescimento de moscovite secundária.	Página 81
Figura 29. Fenómeno de cloritização da biotite nos granitos	
deformados.	Página 81
Figura 30. Ocorrência de pertites (exsolução de albite).	
Crescimento de megacristais de moscovite. Granitos com	
deformação intermédia.	Página 81
Figura 31. Ocorrência de elevado zircão a que se associam	
radio-halos.	Página 81
Figura 32. Intercrescimento de quartzo e plagioclase (mirmequite).	Página 81
Figura 33. Textura de grão grosseiro fortemente afectada por	
fracturação intragranular (seta a vermelho).	Página 82
Figura 34. Textura não deformada associada a este tipo de	
granitos; Ocorrência de abundante apatite.	Página 82
Figura 35. Desenvolvimento de mirmequites nas imediações de	
feldspato potássico; fracturação com preenchimento por quartzo	
e alguma moscovite (seta a verm.).	Página 82
Flgura 36. Granito essencialmente moscovítico de tendência	
porfiróide. Desenvolvimento de microclina (FK) em megacristais.	Página 82
Figura 37. Textura granoblástica da unidade Opc, que pode, nos	
termos mais filíticos, dar lugar a uma textura granolepidoblástica.	
Evidente achatamento do quartzo.	Página 83
Figura 38. Desenvolvimento de dobramento sin-D ₃ , associado à	
foliação milonítica.	Página 83
FIgura 39. Quartzo com grãos lobados, evidenciando migração	
por fronteira de grãos e localmente <i>bulging</i> , interpretado como	
resultado de recristalização dinâmica.	Página 83
Figura 40. Cataclase associada a um episódio tardio relativamente	
à recristalização.	Página 83
Figura 41. Foliação S1 afectada por um crenulação, sendo que a	
titanite encontra-se concordante com essa foliação e já a	
turmalina ocorre como mineral pós-tectónico.	Página 83
Figura 42. Crescimento pós-tectónico da turmalina,c com nicóis	
paralelos.	Página 83

Figura 43. Crescimento sin-tectónico (D ₃) de andaluzite/cordierite em metatexitos.	Página 84
Figura 44. Moscas de andaluzite/cordierite em metatexitos, pós-tectónicas (D ₃).	Página 84
Capitulo V	
Figura 1. Variação composicional das anfíbolas (valores médios) para os diferentes litótipos.	Página 90
Figura 2. Gráfico de variação composicional associada às piroxenas analisadas (médias). Figura 3. Variação composicional dos litótipos analisados (médias)	Página 91
no gráfico Ab-An-Or. Figura 4. Variação composicional das biotites analisadas (médias)	Página 92
para os diferentes litótipos.	Página 92
Capitulo VI	
Figura 1. Diagrama de fácies e zonas com a projecção das amostras analisadas e proposta de uma trajectória de retrogradação com base nas observações petrográficas. **calculado com GrtB; ***	
calculado com GrtC. Adaptado de Nelson (<i>website</i>). Figura 2. Diagrama de volume de melt produzido por cm ³ de moscovite, biotite ou estaurolite em função da percentagem de	Página 103
água presente no <i>melt</i> . Adaptado de Spear <i>et al.</i> (1999). Figura 3. Grelha de pressões e temperaturas determinadas para o sistema NaKFMASH, em que as linhas a tracejado correspondem à percentagem de H ₂ O dissolvida no melt e a linha a pontilhado as razões de Fe e Mg na granada; projecção das subestimativas de pressão e temperatura calculadas a partir do THERMOCALC.	Página 104
Adaptado de Spear <i>et al.</i> (1999). Figura 4. Diagrama T- X CO ₂ esquemático, exemplificativo da forma típica das reaccões de desidratação na presença de CO ₂ .	Página 105
Modificado de Winter (2010).	Página 106

Capitulo VII

Figura 1. Mapa geral das principais estruturas associadas ao CAFCR-L, com a localização dos subsectores A – Azêvo, B – Colmeal, C – Penha de Águia, D – Nave Redonda-Almofala, E – Olmedo de

Camaces e F – Escalhão.	Página 110
Figura 2. Mapa estrutural do sector Azêvo da região de Figueira de	
Castelo Rodrigo. Detalhe com os dados estruturais principais do	
sector em análise.	Página 111
Figura 3. Inversão de flanco das dobras D ₁ , evidenciado pela	
relação S ₁ – S ₀ ; detalhe da quase transposição de S ₁ e S ₀ nos	
níveis mais pelíticos.	Página 113
Figura 4. Forte crenulação da xistosidade S ₁ , resultando numa	
lineação de intersecção l₂ quase sub-horizontal.	Página 114
Figura 5. Dobras isoclinais apertadas associadas a uma foliação	
milonítica penetrativa.	Página 114
Figura 6. Aspectos cinemáticos nas unidades mais filíticas, com o	
desenvolvimento de bandas c/s-c', com cinemática esquerda.	
Sector do Azêvo.	Página 114
Figura 7. Observação de aspectos cinemáticos a afectar os	
quartzitos mais filíticos, como o desenvolvimento de bandas c/s-c',	
com cinemática esquerda. Sector do Azêvo.	Página 114
Figura 8. Necking associado a boudinage dos leitos quartzíticos	
numa matriz filítica. Sector do Azêvo.	Página 114
Figura 9. Mapa estrutural da área em estudo com o detalhe da	
estrutura no sector Colmeal, que se extende do rio Côa à Serra da	
Marofa.	Página 115
Figura 10. Espessa bancada de quartzito com evidência de	
estruturas primárias, como estratificação e estratificação cruzada.	
Estas estruturas permitem identificar o topo da camada como	
estando em baixo, indicando inversão da camada.	Página 116
Figura 11. Observações de estruturas associadas à fase de	
deformação D1; a. dobras menores, com o desenvolvimento de	
uma foliação S1 pouco inclinada; b. Skolithos indicando	
movimentação sinistrógira associada a planos de cisalhamento D1	
reactivando a estratificação.	Página 117
Figura 12. Mapa estrutural da área em estudo com o detalhe da	
estrutura no sector Penha de Águia.	Página 118
Figura 13. Encraves de quartzito "restítico" numa massa de	
quartzito recristalizado.	Página 118
Figura 14. Dobramento D1 onde se observa com clareza as	
superfícies de estratificação, apesar do elevado grau de	
recristalização.	Página 114
Figura 15. Esquema interpretativo das múltiplas variações de	
deformação associadas à mesma fase de deformação.	Página 119
Figura 16. Foliação milonítica muito penetrativa, associado a	

dobramento de pequena amplitude. Sector de Penha de Águia	
(Oeste). Detalhe do dobramento apertado dos níveis quartzíticos,	
numa matriz com um comportamento fluido.	Página 120
Figura 17. Marcador cinemático sigmóide quartzoso com	
indicação de cinemática esquerda. Sector de Penha de Águia	
(Oeste).	Página 120
Figura 18. Dobramento associado à foliação milonítica, com o	
desenvolvimento de dobras em bainha, com transporte para Oeste.	
Sector de Penha de Águia (Oeste).	Página 120
Figura 19. Projecção estereográfica em círculo de área igual; à esq.	
do subsector A, com estratificação transposta por S ₃ , a que se	
associa uma lineação de estiramento, X ₃ , ligeiramente mergulhante	
ora para Este ora para Oeste; à dta. do subsector B, com uma	
foliação S ₃ muito penetrativa a que se associa uma X ₃ mergulhante	
para Este.	Página 122
Figura 20. Clivagem de solução por pressão nas unidades	
quartzíticas; a. detalhe da clivagem; b. interpretação da clivagem	
a azul a rejeitar níveis de uma foliação anterior, marcados a	
amarelo. Sector de Penha de Águia.	Página 121
Figura 21. Dobramento apertado na banda de cisalhamento,	
associado à foliação milonítica. Sector de Penha de Águia.	Página 121
Figura 22. Eixos das dobras com mergulhos oscilantes, indicando	
dobramento de uma dobra anterior, sendo o segundo dobramento	
síncrono com o movimento cisalhante. Sector de Penha de Águia.	Página 121
Figura 23. Foliação milonítica e lineação de estiramento associada,	
dobradas por uma crenulação de grande amplitude, possivelmente	
tardi-varisca. Sector de Penha de Águia.	Página 121
Figura 24. Clivagem de crenulação a afectar a foliação milonítica,	
compatível com uma fase de deformação tardi-varisca. Sector de	
Penha de Águia.	Página 121
Figura 25. Mapa estrutural da área em estudo com o detalhe da	
estrutura no sector de Nave Redonda - Almofala.	Página 123
Figura 26. Projecção estereográfica em círculo de área igual; à esq.	
do subsector A, com estratificação NW-SE, a que se associa uma X_3	
bastante mergulhante para Oeste ou Noroeste; à dta. do subsector	
B, com uma estratificação E-W, a que se associa uma X ₃ ora bastante	
mergulhante para Oeste ora muito mergulhante para Sudoeste.	Página 124
Figura 27. a. Nível de conglomerado do Câmbrico, com evidências	
de deformação dúctil; b. Esquema interpretativo da cinemática	
associada à deformação cisalhante. Sector de Nave Redonda-	
Almofala.	Página 125

Figura 28. a. Dobramento de unidades quartzíticas, com um	
nível de descolamento; b. Esquema interpretativo da fotografia	
a., com indicação do mergulho e direcção da lineação de	
estiramento, que se mantém aproximadamente paralela ao eixo	
de dobramento. Sector de Nave Redonda-Almofala.	Página 125
Figura 29. Marcadores cinemáticos esquerdos associados à	
foliação milonítica pouco penetrativa. Sector de Nave Redonda-	
Almofala.	Página 125
Figura 30. Lineação de estiramento com evidências de	
dobramento por dobras com eixo vertical, norteadas. Sector de	
Nave Redonda-Almofala.	Página 125
Figura 31. Projecção estereográfica em círculo de área igual	
correspondente ao subsector C; estratificação E-W (ainda que se	
observe alguma dispersão na direcção) a que se associam X₃	
pouco mergulhantes ora para Este ora para Oeste.	Página 126
Figura 32. Mapa estrutural da área em estudo com o detalhe da	
estrutura no sector de Olmedo de Camaces.	Página 127
Figura 33. Projecção estereográfica em círculo de área igual; à esq.	
estratificação E-W a que se associam X₃ pouco mergulhantes ora	
para Oeste para o subsector A; dta. estratificação E-W a ESE-WNW	
com X₃ mergulhantes para Sudoeste para o subsector B.	Página 128
Figura 34. Skolithos em bancada quartzítica com evidente	
deformação cizalhante, como indicado com a seta a amarelo;	
Plano da imagem representa S0, pelo que o topo da bancada	
avança para ENE enquanto que a base para WSW, compatível	
com uma cinemática esquerda-cavalgante ISkolitho (60°, S50°W).	Página 128
Figura 35. Mapa geológico simplificado do Sector de Escalhão,	
com re-interpretação da zona de cisalhamento anteriormente	
referida como Quinta dos Boais, e com referência à zona de	
migmatitos identificada, sendo que o seu prolongamento, por não	
ter sido observado, não foi delimitado. A nomenclatura dos granitos	
seguida foi baseada na carta geológica 15-B, ainda que se tenha	
colocado () a nomenclatura geral deste estudo, seguindo Ribeiro e	
Silva (2000). Modificado de Silva e Ribeiro (1994).	Página 129
Figura 36. Critérios cinemáticos esquerdos associados a foliação	
milonítica. Sector Escalhão.	Página 131
Figura 37. Dique aplítico a intersectar a unidade metatexítica com	
lineações de estiramento distintas; o aplito só apresenta X3b,	
indicando o seu carácter posterior em relação à X3a. Sector	
Escalhão.	Página 131
Figura 38. Bandado sedimentar do encaixante em grau	

metamórfico baixo (zona da biotite), dado pela intercalação de	
níveis calcossilicatados com pelíticos. Sector Escalhão.	Página 131
Figura 39. Criérios cinemáticos dúcteis num granitóide, com	
bandas C-S associadas a cinemática esquerda. Sector Escalhão.	Página 131
Figura 40. Critério cinemático dúctil na unidade metatexítica, com	
o desenvolvimento de sigmóides com geometria cizalhante	
sinistrógira. Sector Escalhão.	Página 131
Figura 41. Laminação das dobras D1 associada a uma S3 mais	
penetrativa. Sector Escalhão.	Página 132
Figura 42. Dobras isoclinais amplas D_1 , com um S_1 espaçado,	
pouco penetrativo. Sector Escalhão.	Página 132
Figura 43. Bloco esquemático interpretativo da cinemática e	
campo de tensões envolvido na génese de <i>boudins</i> .	Página 133
Figura 44. Boudins assimétricos concordantes com cinemática	
esquerda.	Página 133
Figura 45. Mullions simétricos em faces perpendiculares à	
lineação de estiramento, como resultado do achatamento.	Página 133

Capitulo VIII

Figura 1. Evolução tectono-magmática realizada para o batólito das Beiras, segundo Azevedo e Valle Aguado (2013), com trajectórias P-T-t e cortes esquemáticos para os vários estádios evolutivos. A evolução do CAFCR-L deverá ser integrada no mesmo contexto evolutivo, à luz dos novos dados adquiridos e com base nas interpretações realizadas.

Figura 2. A. Zonamento tectonoestratigráfico do orógeno Varisco, colocando em evidência o Arco Ibero-Armoricano (AIA; a pontilhado). Adaptado de Weil et al. (2010); B. Reconstituição esquemática do orógeno durante o Devónico Inferior-Médio, com a marcada anisotropia da ZCJPC a cinza; C. Reconstituição esquemática do AIA durante o tardi-varisco. BAOC - Complexo Ofiolítico de Beja-Acebuches; NWIA – Terrenos Alóctones do NW da Ibéria. Modificado de Ribeiro et al. (1995). Página 139 Figura 3. Modelo evolutivo em regime transpressivo do tipo desligamento para o CAFCR-L e ZCJPC, com representação esquemática do final do Carbónico (não considerando os cavalgamentos tardios mais frágeis). A cor das estruturas está associada à fase de deformação em que foram geradas e a dimensão da fase de deformação é proporcional à intensidade dessa fase de deformação na região de Figueira de Castelo

Página 138

Rodrigo-Lumbrales; X3 - lineação de estiramento da D3. No topo	
(Corpándoz o Azpiroz, 2000). O osquemo pão obedece o rozãos	
(Fernandez e Azpiroz, 2009). O esquerra nao obedece a razoes	
	Pagina 141
Figura 4. Modelo evolutivo em regime transpressivo do tipo	
desligamento para o CAFCR-L e ZCJPC, com representação	
esquemática do final do Carbónico (fase D3 tardia). A cor das	
estruturas está associada à fase de deformação em que foram	
geradas e a dimensão da fase de deformação é proporcional à	
intensidade dessa fase de deformação na região de Figueira de	
Castelo Rodrigo-Lumbrales; X3 - lineação de estiramento da D3.	
No topo superior direito, um diagrama transpressivo triclínico	
oblíquo tipo (Fernández e Azpiroz, 2009). O esquema não obedece	
a razões geométricas de escala.	Página 142
Figura 5. Esquema simplificado da evolução durante a D3b; A.	
formação de estruturas mais frágeis a Norte; B. numa fase mais	
tardia, reactivação das estruturas prévias da ZCJPC, como	
desligamentos ou como cavalgamentos desligantes sinistrógiros	
(cavalgamento de Santa Bárbara) ou cavalgamentos puros	
(Nave Redonda, não representado) out of sequece.	Página 143
Figura 6. Cinemática associada ao tardi-varisco em Figueira de	
Castelo Rodrigo (sector Colmeal), com rejogo frágil-dúctil dos	
desligamentos esquerdos, provocando dobras de arraste de	
expressão cartográfica e um padrão cartográfico de orientação	
ENE-WSW.	Página 144