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Abstract

This work presents a methodology to assess maintenance teams in the determination of

the degree of redundancy that an active component must have in order to minimize its sys-

tem life-cycle cost and in the definition of the corresponding maintenance plan schedule. The

minimal required data are three average costs and one reliability function. It is useful in a sys-

tem’s design phase, since in this situation data is usually scarce or inaccurate, but can also be

applied in the exploration phase. It is an adaptation of the classical Optimal Age Replacement

method combined with a redundancy allocation problem. A set of simple illustrative exam-

ples covering a variety of operating conditions is presented, demonstrating quantitatively the

applicability to a range of maintenance optimization decisions.
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1 Introduction

We denote here by component an element of hardware designed to provide a particular “sim-

ple” output, and by system an assembly or set of components working together to provide a

“more complex” output. Redundancy is a way to increase a system’s reliability and reduce its

components failure consequences. Systems where the costs of failure are minimal, do not jus-

tify the use of redundancy and in some extreme cases, not even employing preventive replace-

ment. In these cases the best solution is to repair after failure, usually known as run-to-failure.
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For significant failure and repair costs the use of redundancy is recommended, especially if the

component failure rate is decreasing or constant over time, since in this case, the preventive re-

placement does not reduce the risk of failure. Therefore, it is of key importance to know whether

the cost increase due to purchasing the redundancy, is compensated by a reduction of failure

and repair costs (Hsieh, 2005; Graves et al, 2000).

The practice of using redundancy revealed that system failures involving all or some of the

redundant components collectively, can occur in a dependent way (i.e. the failure of one some-

how influences and depends on the failure of the others), introducing a new failure mode in

the system analysis known as Common Cause Failures [CCFs], which reduces the benefits of

redundancy. A CCF is here understood as a (probabilistic) dependent failure (or unavailable

state) of two or more components in a parallel arrangement, due to a shared cause during the

system operation, resulting in the system shut-down. The CCF is the subset of all the possible

dependent events that are not explicitly detailed in a plant model (Mosleh et al, 1988, 1998).

Additionally, also paramount in system maintenance, is to be able to establish a mainte-

nance scheduling that in some way minimizes the costs or maximizes the reliability. In the

present work the goal is to develop a simple methodology for estimating the optimal redun-

dancy degree that an active component must have inside a system (i.e. solve the Redundancy

Allocation Problem [RAP]), together with the respective maintenance scheduling, in order to

minimize (in a probabilistic sense) the system’s expected life-cycle cost (Optimal Age Replace-

ment Problem [OARP]). Both the RAP and OARP are dealt with together. This represents an

extension of the methodology proposed in (Senju, 1957), (Glasser, 1967) and (Geurts, 1983) to

include the RAP. It is devised for a system (or a subsystem of a larger system or plant) built of

several components in a parallel arrangement and aims to be of simple application, require the

minimum data possible, and involve a cheap computational cost. It is interesting for employing

in the system design phase, but hopefully also useful afterwards. The existence of CCFs is also

accounted for. The necessary input consists of one reliability function and two average costs

for each component, and an average system failure cost. When CCFs are to be included in the

analysis, a CCF model must be selected and the necessary parameters provided.

Several strategies have been proposed to solve the OARP, with variations on how the repair

processes and costs are included and on the number of maintenance operations to do, see for

example, (Jardine, 1998),(Zhang and Jardine, 1998), (Usher et al, 1998), (Coolen-Schrijner and

Coolen, 2004, 2007),(Coolen-Schrijner et al, 2006), (Chien and Sheu, 2006; Chien, 2008a,b). A

multiplicity of optimization techniques (usually heuristic) to solve the RAP can be found in the

literature, like tabu search (Kulturel-Konak et al, 2003; Ouzineba et al, 2008), ant colony (Na-
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has et al, 2007), dynamic programming (Yalaoui et al, 2005), penalty guided immune algorithm

(Chen, 2006), Hooke-Jeeves pattern search (Wetter and Wright, 2003; Liu, 2006), and genetic al-

gorithms (Levitin et al, 1998; Levitin and Lisnianski, 2000; Nahas et al, 2008; Bartholomew-Biggs

et al, 2009). Most of these strategies for the RAP and OARP can be used in the framework pro-

posed in the present work, however some of these require a considerable amount of knowledge

about the features of the systems under analysis and are sometimes computationally demand-

ing. Here a simpler version is preferred since the concern is the connection of the OARP and RAP

ideas, and in a system’s design phase, when there is a great uncertainty about the system failure

data, the extra complexity of other possibly more accurate methodologies may not compensate

the lack of quality input data.

2 Proposed methodology

Consider a generic system S = {c1, c2, ..., cn} formed by a redundant parallel arrangement of n

components ci i = 1, 2, ..., n. If the system ordinary operation demands k components sharing

a common load, a system shut-down occurs when n− k+ 1) components fail. Let the following

input data be available (roman subscripts are names and italicized subscripts are enumeration

indexes):

• CAi - Acquisition cost: average fixed cost that results from the possession of one com-

ponent ci in a working system . For example, purchase price, operating permits, space,

etc.

• CPi - Preventive repair cost: average cost of repairing the defects of one component ci

prior to a failure occurrence, including all materials and labour costs.

• CF - Failure repair cost: average cost of in service failure occurrence. This cost includes

the cost of completely repairing or acquiring s = (n − k + 1) failed components, plus

all the hazard costs CH incurred from the system shut-down (loss of production, loss of

image, labour, materials, etc.), so CF = CH +
∑s
i=1 CPi.

• Let Tci be a continuous random variable denoting the time that component ci works with-

out any failure. For each component ci (or for each different type of components, if com-

ponents of the same type are considered equal), provide one function measuring the prob-

ability of component ci to be working until the time instant t ∈ R+, such as the failure

probability distribution function Fci(t), the failure probability density function fci(t), or

the reliability distribution function Rci(t).
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2.1 System probable operating time

During the system life, several repair events will occur, identified in the sequence by the enu-

meration index r = 1, 2, . . . ,m. Let Tr be a continuous random variable (Tr ≥ 0) indicating the

time the system operates until complete breakdown between repair event (r − 1) and r (r = 0

denotes the reference system operational starting point), so for each r it is adopted that Tr = 0

when event (r − 1) occurs . The total operating time (life) of the system until repair m is then

L =
∑m
r=1 Tr. Denote by t > 0 the actual time elapsed after repair (r − 1) until some other re-

pair or replacement r is done. In the interval between events (r − 1) and r, the system failure

probability distribution function Fr(t) = P {Tr ≤ t} = P
(
T
(r)
c1 ≤ t, T

(r)
c2 ≤ t, . . . ,T

(r)
cn ≤ t

)
, and

the reliability Rr(t) = P {Tr > t}, are related to the respective components life functions F (r)
ci (t)

(note that the superscript (r) is used to index a quantity that may change with r). These failure

functions F (r)
ci (t) may differ from one repair r to the following repair (r+ 1), and the differences

reflect the degree of perfection attained in the repair. If the repair is perfect, each component is

assumed in an as good as new condition, and then these functions are evaluated from the life

functions for new components. A component replacement is understood as a perfect repair, if

the replacing component is new.

During the system operation the maintenance schedule is such that:

• if Tr > t then some preventive maintenance has to be made at t

• if 0 < Tr ≤ t then the system shuts down without having been repaired in that period and

the system duration is Tr.

Adopting the policy of repairing at time t or after a failure at Tr, the system usage can be ex-

pressed by:

u(Tr, t) =

 Tr , 0 < Tr ≤ t

t , Tr > t
(1)

The system expected operating time, which is a mean time between repairs (MTBR) is there-

fore:

MTBRr(t) = E [u(Tr, t)] =
´ +∞
−∞ u(τ, t)fr(τ)dτ = t−

´ t
0
Fr(τ)dτ =

´ t
0
Rr(τ)dτ (2)

Here t is the operating time, but other counting unit that reflects a duration can be used such

as cycles, energy consumption, production units, etc.
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2.2 System operational cost

The system total acquisition cost depends on the redundancy specified (the subscript S is now

added to denote a system total cost):

CAS =

n∑
i=1

CAi (3)

in the general case of different but equivalent components (where diversity can be used to re-

duce common cause failures CCFs (Littlewood et al, 2001)), which simplifies to CAS = nCA1 for

equal components .

The probability of having the system completely operational by time t between repair events

(r−1) and r is given byRr(t) = P {Tr > t}, and therefore the system probable cost with preven-

tive maintenance during this period is given byC(r)
P =

(∑p
i=1 C

(r)
Pi

)
Rr(t), where p is the number

of components actually submitted to maintenance operations (p ≥ 1 and p = n if all the com-

ponents are overhauled). Denoting now by tr the operational time between events (r − 1) and

r, the system total probable cost with preventive maintenance until repair m is:

CPS =

m∑
r=1

C
(r)
P =

m∑
r=1

[(
p∑
i=1

C
(r)
Pi

)
Rr(tr)

]
(4)

The average probable expenditure with failures during the system life is given by:

CFS =

m∑
r=1

C
(r)
F P {Tr ≤ tr} =

m∑
r=1

C
(r)
F Fr(tr) (5)

The overall system operational probable cost corresponds to the sum of all these parts C =

CAS + CPS + CFS.

2.3 System cost optimization problem

In the well known optimal age replacement paradigm (Senju, 1957), the time t∗ for taking a

preventive maintenance operation is found by minimizing the system average probable opera-

tional cost per unit time in the long run:

ΦOARP(t) =
CPSR1(t) + CFSF1(t)

E [u(T1)]
(6)

In this work the same idea is pursued, but extending the original OARP by taking in account

the system acquisition cost CAS, the redundancy n, the number of preventive repairs m and

possible adjustments to the preventive maintenance and failure costs with time.
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2.3.1 The life-cycle cost optimization problem

In a system’s design phase, the available data is in general incomplete and inaccurate, based

on assumptions and rough estimations. In order to make inferences on the system operational

behaviour, it is useful to have a system model that requires a small amount of data and is com-

putationally cheap and simple. Helpful insights regarding the redundancy to select, the costs

implied by maintenance and a possible maintenance schedule that minimizes the average sys-

tem probable operational cost in the long run, can be obtained from the following optimization

problem:

Find {n∗,m∗, t∗1, t∗2, . . . , t∗m∗} that minimize the system average probable operational cost per

unit time given by the terms of the sequence:

Φm(n, t1, t2, . . . , tm) =
CAS + CPS + CFS∑m
r=1 MTBRr(tr)

=

∑n
i=1 CAi +

∑m
r=1

[(∑p
i=1 C

(r)
Pi

)
Rr(tr) + C

(r)
F (1−Rr(tr))

]
∑m
r=1

´ tr
0
Rr(τ)dτ

(7)

subject to:

n ≥ k ; m > 0 ; tr > 0 , r = 1, 2, . . . ,m ; 1 ≤ p ≤ n (8)

where p is the number of repaired components in the interval r to keep the system operational

(please note that if a system failure occurs,CF contains the cost of repairing the minimum num-

ber of components necessary for the system operation s = (n− k + 1), so the remaining (k − 1)

components that may be repaired will contribute to the preventive repair cost). The denomina-

tor is the sum of the MTBRr for each interval r, which provides a time measure of the system

probable usage.

Following the same idea other expressions can be devised and different constraints on tr

and on the total cost C can be assumed. The Eq.(7) is of general application and intended to

be relatively simple to evaluate. All the system intricacy is embedded in the reliability functions

Rr(tr), for which some specialized forms are provided for two classes of systems in subsection

2.4. More complex models can be more precise, but involve a greater amount of data and com-

putation. If there is lack of quality data, extra work will not pay off.

2.3.2 The maintenance interval optimization problem

Considering a system in actual operation, it is useful to estimate the time for the nextm intended

maintenance operations, and eventually the present adequate redundancy, that minimize the
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operational costs in the selected period. Let n0 ≥ k be the system’s actual implemented redun-

dancy, a new redundancy n can be estimated conducing to smaller costs, including the possi-

bility of selling the extra redundancy, by changing the acquisition term CAS in Eq.(7) to:

CAS =

max(n−n0,0)∑
i=n−n0

sign(i)CAi , CA0 = 0 ⇔ CAS =


−
∑(k+n0−n)
i=k+1 CAi n < n0

0 n = n0∑n
i=(n0+1) CAi n > n0

(9)

(sign(i) = 1 if i ≥ 0 and sign(i) = −1 if i < 0) and an index i ≤ n0 indicates that CAi is a selling

benefit instead of a cost.

Incorporating Eq.(9) in Eq.(7) leads to the following optimization problem:

Find {n∗,m, t∗1, t∗2, . . . , t∗m} the total number of redundant components and the time for the

next repair, which minimize the system average operational cost per unit time:

Φ(n, t1, t2, . . . , tm) =

∑max(n−n0,0)
i=n−n0

sign(i)CAi +
∑m
r=1

[(∑p
i=1 C

(r)
Pi

)
Rr(tr) + C

(r)
F (1−Rr(tr))

]
∑m
r=1

´ tr
0
Rr(τ)dτ

(10)

subject to:

n ≥ k ; tr − t̂r > 0 , r = 1, 2, . . . ,m ; 1 ≤ p ≤ n (11)

where t̂r > 0 is a constant representing the minimum time that the system is prescribed to work

during each maintenance interval. Other constraints can be considered.

As data is gathered for the system, better estimates and helpful insights can be obtained from

Eq.(10), that can be used together with assessment methodologies such as, for example, the one

presented by (Pérès and Noyes, 2003) , to assess the maintenance strategy being applied.

2.4 System reliability evaluation

Both Eq.(7) and Eq.(10) involve calculating the system reliability, which depends on the system

details. The evaluation procedure for the cases of independent and dependent failures are pre-

sented next.

In the proposed framework the CCFs are accounted in Eq.(7) through the system reliability

functions Rr(tr). To a great extent, the definitions and approach presented in (Mosleh et al,

1988, 1998) regarding CCFs, are adopted here. If a system with a configuration of k out of n is
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considered, then Rr(tr) must be derived from the partition of the failure event space of each

component ci in independent failure events (I), explicitly modelled dependent failure events

(E) and common cause failure events (C) (all the dependent events that are not detailed in the

system failure mode graph). To illustrate the derivations necessary for Eq.(7), and without loss

of generality, the simple case of k = 2 out of n = 3 is presented. Let Ci be the set of all the failure

events of component ci, which can be partitioned as Ci = CiI∪CiE∪CiC by the disjoint subsets of

the independent CiI, the explicitly modelled CiE and the CC CiC failures, and C̄i its complement

(no failure). Then the probability of failure of c1 , for example, is:

P(C1) = Q = P {C1I ∪ (C1E ∩ C2E) ∪ (C1E ∩ C3E) ∪ (C1C ∩ C2C) ∪ (C1C ∩ C3C)} =

= P(C1I) + P(C1E ∩ C2E) + P(C1E ∩ C3E)− P(C1E ∩ C2E ∩ C3E)+

+P(C1C ∩ C2C) + P(C1C ∩ C3C)− P(C1C ∩ C2C ∩ C3C)

(12)

and the probability of failure of the system is:

P(S) = P {(C1 ∩ C2) ∪ (C1 ∩ C3) ∪ (C2 ∩ C3)} =

= P
{

(C1 ∩ C2 ∩ C̄3) ∪ (C1 ∩ C3 ∩ C̄2) ∪ (C2 ∩ C3 ∩ C̄1) ∪ (C1 ∩ C2 ∩ C3)
}

=

= P {[(C1I ∩ C2I) ∪ (C1I ∩ C3I) ∪ (C2I ∩ C3I)] ∪ [(C1E ∩ C2E) ∪ (C1E ∩ C3E) ∪ (C2E ∩ C3E)]

[C1C ∩ C2C) ∪ (C1C ∩ C3C) ∪ (C2C ∩ C3C)]}

(13)

where the following expressions replicate for analogous terms:

(C1I ∩ C2I) = (C1I ∩ C2I ∩ C̄3) ∪ (C1I ∩ C2I ∩ C3I)

(C1C ∩ C2C) = (C1C ∩ C2C ∩ C̄3) ∪ (C1C ∩ C2C ∩ C3I) ∪ (C1C ∩ C2C ∩ C3C)
(14)

If the probability terms involved in Eq.(12) are known for each component, then the sys-

tem failure probability can be evaluated. This information is difficult to obtain and in practice

approximate models have to be considered. (Lundteigen and Rausand, 2007; Stott et al, 2010)

provide an overview of the consideration of CCFs in several industries.

2.4.1 Independent cause failures

This hypothesis can be a good approximation for some systems, and can also be used as a com-

parison to evaluate the impact of existing dependent failures. Without great loss of generality, if

all the system components have the same failure distribution P(Ci) = F
(r)
ci (tr) = Q ; i = 1, . . . , 3,

from Eq.(13) the system probability of failure for the case 2-out-of-3, is seen to be:
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P(S(I)) = P {(C1I ∩ C2I) ∪ (C1I ∩ C3I) ∪ (C2I ∩ C3I)} =

= P(C1I)P(C2I) + P(C1I)P(C3I) + P(C2I)P(C3I)− 2P(C1I)P(C2I)P(C2I) =

= Fr(tr) = 3Q2 − 2Q3

(15)

Just for the sake of completion, for k-out-of-n the system reliability can be found on the

literature to be (Rc is the components reliability):

(1− P(S(I))) = R(t) =

n∑
p=k

(
n

p

)
(Rc)

p
(1−Rc)

(n−p) (16)

2.4.2 Accounting for common cause failures

Since our objective is only to illustrate how Eq.(7) can be computed, to keep the presentation

as simple as possible, we will consider further simplifications, such as that the components are

similar (no diversity) and verify the symmetry assumption (Mosleh et al, 1988, 1998):

P(C1) = P(C2) = P(C3) = Q

P(C1I) = P(C2I) = P(C3I) = Q1

P {(C1C ∩ C2C)− (C1C ∩ C2C ∩ C3C)} = Q2

P(C1C ∩ C2C) = P(C1C ∩ C3C) = P(C2C ∩ C3C) = Q2 +Q3

P(C1C ∩ C2C ∩ C3C) = Q3

(17)

and that the explicit dependent failures are not included in the model P(CiE) = 0 , i = 1, 2, 3.

The β factor model (Fleming, 1975) is used for accounting the CCFs. Following (Mosleh et al,

1988, 1998), with the β factor model Q3 is a fraction of the single component probability of

failure, and it is assumed that when there is a CCF all the components in the CC group fail, so:

Q1 = (1− β)P(C1)

Q2 = 0

Q3 = βP(C1)

(18)

The system failure probability between repair events (r − 1) and r can be written as:

P(S) = 3(1− β)2Q2 − 2(1− β)3Q3 + βQ⇔

⇔ Rr(tr) = 1−
(

3(1− β)2
(
F

(r)
c1 (tr)

)2
− 2(1− β)3

(
F

(r)
c1 (tr)

)3
+ β

(
F

(r)
c1 (tr)

)) (19)

where β can also be made a βr and change between repairs (for other k and n another
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expression must be derived). However, from Eq.(19), and in contrast to Eq.(15), it is observed

that for Q = 1 we have P(S) = 3(1− β)2 − 2(1− β)3 + β < 1 for any β ∈ ]0, 1[, which does not

verify one of the main axioms of probability theory. This is so because the partition assumed in

Eq.(18) mixes failure events that happen only when having a system of redundant components

with all the failure events that may happen for a single component. Since Q is the component

total probability of failure, whether working alone or in a redundancy with any arrangement, Q

can not depend on the configuration of the system. Also CCFs just happen on redundant

systems, and so any partitioning of probabilities of failure can only be made at the system level

and depending on the system topology. Therefore in the examples we consider the partition

between independent failures and CCFs, but taken at the system level (in our point of view a

more coherent approach), substituting Eq.(19) by:

P(S) = (1− β)P(S(I)) + βQ⇔

⇔ P(S) = (1− β)
(
3Q2 − 2Q3

)
+ βQ

(20)

which can be shown to make the system always less reliable than Eq.(19) (∀n ∈ N1 ∧ β ∈ [0, 1] ;

0 ≤ (1− β)
n ≤ 1− β), within a small difference for most of Q ∈ [0, 1], so the computations are

always on the safety side.

It is observed from both Eq.(19) and Eq.(20) that the β model imposes a certain constraint

in the evaluation of the redundancy, since it includes the term βQ in the system probability of

failure, which is not affected by the degree of redundancy.

2.5 Some comments

The formalism presented in sections 2.1 and 2.3 is related with Renewal Theory (Cox, 1967) and

the limit theorems for the long run of renewal reward processes (Ross, 1997). Considering a

failure or repair r as a renewal, if Tr (r = 1, 2, . . . ,m . . .) are all independent and identically dis-

tributed with distribution Fr(t) = F (t) (with t restarted from 0 after each renewal), the system

restarts as brand new after each repair r and there are no CCFs, then we have a renewal reward

process and Eq.(7) represents an application of the sometimes called elementary renewal the-

orem for renewal reward processes, or limit theorem for renewal reward processes. By these

theorems, for each n, lim
t→+∞

Φ = E[Costs]/E[Tr] , the average “reward” (cost) per unit time is the

ratio between the mean cost and the mean time between failures. In the general case in which

Tr are not identically distributed or independent, we do not have a strict renewal reward pro-

cess, but Eq.(7) embodies the same idea of average of the renewal reward limit theorem and the
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strong law of large numbers, and in spite of not being under the conditions of those theorems,

an analysis of the structure of Eq.(7) indicates that in the long run a definite limit value exists, as

the examples in section 3 corroborate.

For positive costs (CAi ≥ 0) Φm is always positive, singular Φm → +∞ if t1 = 0, approaches

a constant value when all tr → +∞, and in general is not convex. However, due to the fact that

the numerator (total cost C(n, t1, . . .)) and denominator (sum of MTBRr(tr)) of Eq.(7) are non

decreasing functions of tr, in general for each n and m, or Φm has a global minimum for tr > 0,

or approaches a constant value for large tr. For Eq.(10) the behaviour when t1 → 0 is different if

some CAi < 0 because in this region Φm → ±∞ depending on the sign of the costs. To obtain a

feasible solution (system operating for some time) it is essential to apply at least a constraint on

t1. The examples in section 3 will illustrate this description.

2.6 Optimization procedure

This procedure depends on the intended accuracy, the number of variables involved and soft-

ware available. The optimization process is carried for each n and m only on the m variables

tr, otherwise the solver would have to be able to deal with a mixture of integer and continuous

variables. The following algorithm is used:

Algorithm 1 Optimization procedure
For n = 1, 2, . . .

For m = 1, 2, 3, . . .
use the previous solution as initial estimate
obtain t∗(n,m)

r that minimizes Φm(n, t1, . . . , tm) using a solver for m continuous variables
Select the best m solution for the present n

Select the best (n,m) solution

A single continuous variable optimization algorithm can also be used inside an iterative

loop, to find the minimum for each tr fixing the others to a constant value and using the new

value for the next iteration step, until convergence is achieved.

All the examples presented in section 3 were solved using the optimization subroutines in

the software Mathematica, because its variable arithmetic precision allowed to evaluate the

influences of the numerical computation over the proposed optimization problems (40 digits

were used in the computations). The examples in sections 3.1 and 3.2 were also solved using a

spreadsheet implementation in Excel, with this software available optimization solver, and also

part of the results of the example in section 3.2 were obtained using the open source software

Maxima. Essentially the same results were achieved with any of the software with no relevant

accuracy problems.
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3 Numerical examples and discussion

In this section several examples of application illustrating the proposed methodology are pre-

sented. These examples are made simple to be easily understood and reproducible. The pre-

sented methodology allows the use of any parametric or non parametric probability model. In

practice the probability distributions that best fits the components failure as a function of time

should be selected. The age replacement problem with Weibull distributions has been studied

by (Glasser, 1967), and a comparison with condition based replacement was made by (Geurts,

1983). Because of its flexibility the Weibull probability distribution with two adjusting parame-

ters (η > 0, α > 0) :

F (t) = 0 , t ≤ 0 ; F (t) = 1− exp

(
−
(
t

η

)α)
, t > 0 (21)

was also selected for use in this section numerical examples. The constant η (sometimes

termed characteristic life) represents a time scale for t. The constant α parametrizes the

evolution of the failure rate function with t (Rausand and Høyland, 2004) (also called the shape

parameter because its value defines the shape of the failure probability density function plot),

0 < α < 1 corresponds to a decreasing failure rate and α > 1 to an increasing failure rate.

For simplification all the costs are nondimensionalized to a reference preventive repair cost

CP1 = 1 monetary unit and the times to the time scale of the Weibull distribution η = 1 time

unit. The use of diversity is a preventive action to increase the reliability of a redundant system

to CCFs, and can be accounted for with the proposed framework, but to simplify the presen-

tation related with CCFs by using the β model, the components are considered all equal. It is

also assumed that explicitly modelled dependent failure events (denoted by CiE in section 2.4)

do not occur.

3.1 System of equal components in a 1-out-of-n configuration

If a maintenance strategy of resetting the system reliability to a predefined level after each repair

is considered (the failed/working items are all overhauled by equal, or replaced by new ones),

the system reliability function is always the same for each r and Eq.(7) simplifies to:

Φm(n, t1, t2, . . . , tm) =

∑n
i=1 CAi +

∑m
r=1 [CPR(tr) + CF (1−R(tr))]∑m
r=1

´ tr
0
R(τ)dτ

(22)

Since the components ci are assumed all equal and in equal status, for each i = 1, 2, . . . , n
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the failure functions F (r)
ci (t) = Fc1(t) = 1− exp (−(t/η)α), acquisition costsCAi = CA1 and main-

tenance costs CPi = CP1 are the same for each i = 1, . . . ,m, and CP = nCP1 . The influence of

the acquisition cost CA1, the maintenance cost CP1 and the hazard cost CH, considering com-

ponents with a decreasing failure rate α < 1 or increasing failure rate α > 1, on the optimal

redundancy n∗ and maintenance schedule t∗r , is analysed in two different cases.

3.1.1 Case 1 - System design for optimal redundancy and first time to repair assuming inde-

pendent failures

In this case m = 1. The corresponding system reliability is R(t1) = 1 − (Fc1(t1))
n, and Eq.(22)

renders:

Φ1(n, t1) =
n (CA1 + CP1) + CH (Fc1(t1))

n

´ t1
0

1− (Fc1(τ))
n
dτ

=
n (CA1 + CP1) + CH (1− exp (− (t1/η)

α
))
n

´ t1
0

1− (1− exp (− (τ/η)
α

))
n
dτ

(23)

where the cost of failure was written as CF = CH + nCP1, since the shut-down implies n

failures. This is one of the simplest forms that Eq.(7) can take. The data used in this example is:

η = 1, α = {9/10, 12/10, 2}, CP1 = 1, CA1 = {1, 10} and CH = {3, 60, 120}, which provides results

for cases where the acquisition and failure costs range from small to large values, and

decreasing and increasing failure rates. The corresponding results are presented in Table 1 and

Table 2. For each optimal value of n and t1 the corresponding value of Φ1(n∗, t∗1) is displayed, as

well as the optimal values of Φ1(n∗ ± 1, t1), for which in general t1 is found to be different from

t∗1. Since η = 1 sets the time unit, when t > 70 it is assumed in this and the following examples

that t→ +∞.

Table 1: Design of a 1oon system for optimal redundancy and first time to repair when only
independent failures are considered and the acquisition costs are CA1 = 1 .

α 9/10 12/10 2

CH 3 15 60 3 15 60 3 15 60
n∗ 2 5 8 2 3 5 1 2 3
t∗1 99K +∞ 2.362 1.446 6.124 0.995 0.846 0.865 0.624 0.584

Φ1(n∗ − 1, t1) 4.752 9.695 15.65 5.315 11.52 16.12 - 11.08 13.33
Φ1(n∗, t∗1) 4.328 9.573 15.63 5.172 10.57 15.85 5.19 9.12 12.80

Φ1(n∗ + 1, t1) 4.487 9.633 15.74 5.574 10.58 16.00 5.76 9.66 13.39
Φ1(n∗,+∞) 4.328 9.832 24.73 5.172 13.01 35.82 5.64 16.58 51.15
F (t∗1) [%] 100 54.46 10.22 99.97 25.02 5.45 52.65 10.39 2.416

MTBR1(t∗1) 1.617 1.898 1.415 1.353 0.923 0.837 0.690 0.610 0.582
MTBF 1.617 2.543 3.073 1.353 1.615 1.954 0.886 1.146 1.290

The results in Table 1 and Table 2 indicate that for small hazard costs CH ≤ 3 and for com-

ponents with a decreasing or approximately constant failure rate α ≤ 12/10, the optimal strategy
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is to consider run-to-failure or something close to that. For this case Φ1 approaches a constant

value as t1 → +∞ so that min Φ1(n, t1) = lim
t1→+∞

Φ1(n, t1), which is the global smaller value. The

influence of the components failure distribution functions over the optimal times to repair, is

greater than that of the hazard or acquisition costs, as can be seen for the different values of

α considered. A rough estimate of the optimal time to repair is around half of the value of the

MTBF or values less but close to MTBR, when Φ1 has a global minimum for finite t1 (no run-

to-failure). The values of t∗1 decrease with the increase of α, since the components become less

reliable with time, and with the increase ofCH because a failure would imply a large operational

cost. In some situations a repair may be recommend for F (t1) < 10%.

Table 2: Design of a 1oon system for optimal redundancy and first time to repair when only
independent failures are considered and the acquisition costs are CA1 = 10.

α 9/10 12/10 2

CH 15 60 120 15 60 120 15 60 120
n∗ 2 4 6 2 3 4 1 2 2
t∗1 99K +∞ 99K +∞ 1.926 99K +∞ 1.203 1.019 0.912 0.693 0.554

Φ1(n∗ − 1, t1) 24.71 46.37 61.85 27.64 54.05 66.96 - 52.18 73.22
Φ1(n∗, t∗1) 22.88 45.17 61.55 27.34 51.32 65.66 27.36 45.86 55.69

Φ1(n∗ + 1, t1) 23.93 45.23 62.05 29.83 52.27 66.83 30.82 49.60 57.48
Φ1(n∗,+∞) 22.88 45.17 67.76 27.34 57.59 90.86 29.34 71.57 123.93
F (t∗1) [%] 100 100 33.96 100 36.28 16.82 56.48 14.52 7.003

MTBR1(t∗1) 1.617 2.302 1.734 1.353 1.067 0.978 0.712 0.669 0.546
MTBF 1.617 2.302 2.745 1.353 1.615 1.805 0.886 1.146 1.146

Regarding the redundancy n, it is observed that for α ≤ 12/10 the redundancy is higher, since

as each equipment kind of maintains its reliability with time, increasing the redundancy con-

siderably lowers the system probability of failure. For larger values of CH higher redundancies

are obtained since in order to decrease the impact of the failure cost on the total cost the sys-

tem has to be made more reliable. However, Table 2 shows that an increase of CA1 lowers the

redundancy, because in this case this cost has greater impact than CH over the system global

cost.

3.1.2 Case 2 - System design for optimal redundancy and first time to repair considering

CCFs

This case is similar to the previous case but now considering the influence of CCFs using the β

model, as explained in section 2.4.2. The same data is used with β = 1/10 added. The results are

provided in Table 3. Globally it is observed that for the CCF model used and considering that a

fraction of 10% of the failures are due to CCFs, the changes relative to the independent case are

relatively small. A comparison of Table 3 and Table 2 indicates that the inclusion of CCFs tends
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to decrease the degree of redundancy, relative to the independent failures case, although that

reduction is verified only in the case of α = 12/10 and CH = 15. The costs increase for the CCF

case and the optimal times t∗1 are slightly higher than for the independent case when α < 2, but

are smaller when α = 2, in spite of the MTBF being always higher in the independent case. The

explanation for this results is related with the system failure probability distribution function,

which is now:

P(S) = P {(C1I ∩ · · · ∩ CnI) ∪ (C1C ∩ · · · ∩ CnC)} = F (t1) = (1− β)Qn + βQ ; Q = Fc1(t1) (24)

indicating that the CCFs penalize the system reliability by reducing the benefit of the redun-

dancy on the system reliability. Since having a redundancy implies an acquisition cost, if this

cost is not amortized by an increase of reliability, it is cheaper to reduce the redundancy and

run the system for a longer period between maintenances.

Table 3: Design of a 1oon system for optimal redundancy and first time to repair when CCFs are
considered using the β model with β = 1/10 and CA1 = 10.

α 9/10 12/10 2

CH 15 60 120 15 60 120 15 60 120
n∗ 2 4 6 1 3 4 1 2 2
t∗1 99K +∞ 99K +∞ 2.161 99K +∞ 1.272 1.065 0.912 0.692 0.548

Φ1(n∗ − 1, t1) 24.710 48.682 68.611 - 56.982 74.617 - 52.179 73.223
Φ1(n∗, t∗1) 23.706 47.764 68.251 27.640 54.982 73.698 27.365 48.509 60.439

Φ1(n∗ + 1, t1) 25.126 48.043 68.696 28.199 56.270 75.041 31.700 53.269 64.094
Φ1(n∗,+∞) 23.706 47.764 72.215 27.640 60.103 95.428 29.338 73.225 126.804
F (t∗1) [%] 100 100 46.274 100 43.374 23.6606 56.484 16.815 8.648

MTBR1(t∗1) 1.561 2.177 1.781 0.941 1.073 0.982 0.712 0.661 0.536
MTBF 1.561 2.177 2.576 0.941 1.547 1.719 0.886 1.120 1.120

3.2 Design of a redundant system in a 2-out-of-n configuration

This example represents a system design phase problem, where for a certain configuration, the

redundancy to allocate and an approximate maintenance schedule to use, minimizing the aver-

age implementation and operational life-cycle costs, are to be found. The same global assump-

tions concerning the components and system failure distributions considered in example 3.1

are made here, but Eq.(7) is evaluated form repair times, assuming costs and failure distribution

functions changing between repairs r . The maintenance and hazard costs are assumed increas-

ing by a fraction of the original costs as C(r)
P1 = C

(1)
P1 (1 + εP (r − 1)) ; C(r)

H = C
(1)
H (1 + εH (r − 1)),

and the Weibull failure distribution function time scale is reduced as ηr = η (1− ε(r − 1)),
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where εP, εH, ε ∈ [0, 1] (other variations with r could be considered). The reduction in η sim-

ulates imperfect repairs. The concrete numerical values used were CAi = CA1 = 15, C(1)
P1 = 1,

C
(1)
H = {60, 120}, εP = 1/20, εH = 1/10, ε = 1/10 and C(r)

F = C
(r)
H + sC

(r)
P1 with s = (n− k + 1).

3.2.1 Case 1- Life-cycle cost optimization considering only independent failures

For this specific case of 2oon configuration, the system failure distribution function is given by

F (t) = nQ(n−1)−(n−1)Qn. The results obtained are presented in Table 4 and Table 5. Additional

(“intermediate”) optimal values for n∗ ± 1 and m∗ ± 1 are presented in Table 6 for comparison.

The Tables 4 and 5 include values for a time of nominal system complete failure defined

here as Fr(t99%) = 99/100, and which gives an idea of the system probable life and quantify the

meaning of a run-to-failure and of the +∞ appearing in the tables (used here for values one

order of magnitude or more, greater than t99%). For some situations, usually m = 1 (just one re-

pair) when α < 1, the corresponding (“intermediate”) optimal solution is run-to-failure. How-

ever run-to-failure means that the system will only work in average during a period close to the

MTBF, or in extremely rare cases until a time close to t99%, which is much less than the dura-

tion of the system in operational conditions given by the problem “global” optimal solution, as

a comparison of the different optimal values in the Tables 4 and 5 with the Table 6 shows.

Table 4: Design of a 2oon system for optimal life-cycle cost considering only independent fail-
ures, CAi = 15, CH = 60 .

r 1 2 3 4 5 6 7 8

ηr 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3

C
(r)
P1 1 1.05 1.10 1.15 1.20 1.25 1.30 1.35

α C
(r)
H 60 66 72 78 84 90 96 102

9/10

n∗ = 11, m∗ = 7, Φm∗(n∗, t∗1, . . . , t
∗
m∗) = 50.901, C(n∗, t∗1, . . . , t

∗
m∗) = 341.639

t∗r 1.886 1.476 1.167 0.920 0.716 0.542 0.393 -
t∗r/ηr 1.886 1.640 1.459 1.314 1.193 1.084 0.983 -

MTBRr(t
∗
r) 1.692 1.380 1.118 0.895 0.702 0.536 0.390 -

t
(r)
99% 5.010 4.509 4.008 3.507 3.006 2.505 2.004 1.503

MTBFr 2.202 1.981 1.761 1.541 1.321 1.101 0.881 0.660
Fr(t

∗
r) [%] 41.80 29.38 20.69 14.51 10.05 6.795 4.405 -

2

n∗ = 5, m∗ = 7, Φm∗(n∗, t∗1, . . . , t
∗
m∗) = 44.081, C(n∗, t∗1, . . . , t

∗
m∗) = 137.873

t∗r 0.721 0.618 0.524 0.437 0.357 0.282 0.213 -
t∗r/ηr 0.721 0.687 0.655 0.624 0.595 0.564 0.533 -

MTBRr(t
∗
r) 0.711 0.612 0.520 0.435 0.355 0.282 0.213 -

t
(r)
99% 1.850 1.665 1.480 1.295 1.110 0.925 0.740 0.555

MTBFr 1.095 0.985 0.876 0.766 0.657 0.547 0.438 0.328
Fr(t

∗
r) [%] 9.118 6.981 5.327 4.029 2.997 2.172 1.507 -

The tables also include the total cost C of the operation since in general there are budget
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objectives or constraints. It is interesting to note similar costsC are attained for the solutions in

Tables 4 and 5.

The optimal values found indicate different redundancies, but the same number of repairs

m = 7, with the corresponding optimal times decreasing with r. This trend in t∗r and value for

m is a consequence of the reduction in η, for which the values of t∗r/η provide some insight, and

the increase of the hazard cost CH, which imply maintaining increasing reliability with time to

not penalize the global cost. Topically the values t∗r are close to MTBFr/2 and well estimated by

the equation tr −MTBRr(tr) = 0, for the examples shown.

As for the previous example, the parameter α has a determinant influence over the optimal

redundancy n∗. For α = 9/10 redundancy compensates, but for α = 2 the same redundancy

n∗ = 5 and almost the same solution is found for CH = 60 and CH = 120. The increasing failure

rate dominates the effect of the costs in the solution.

Table 5: Design of a 2oon system for optimal life-cycle cost considering only independent fail-
ures, CAi = 15, CH = 120 .

r 1 2 3 4 5 6 7 8

α C
(r)
H 120 132 144 156 168 180 192 204

9/10

n∗ = 13, m∗ = 7, Φm∗(n∗, t∗1, . . . , t
∗
m∗) = 59.990, C(n∗, t∗1, . . . , t

∗
m∗) = 379.408

t∗r 1.567 1.298 1.069 0.870 0.696 0.540 0.401 -
t∗r/ηr 1.567 1.442 1.336 1.243 1.160 1.080 1.003 -

MTBRr(t
∗
r) 1.516 1.268 1.052 0.861 0.690 0.537 0.399 -

t
(r)
99% 5.237 4.713 4.189 3.666 3.142 2.618 2.095 1.571

MTBFr 2.394 2.155 1.915 1.676 1.437 1.197 0.958 0.718
Fr(t

∗
r) [%] 17.69 12.82 9.310 6.727 4.796 3.334 2.222 -

2

n∗ = 5, m∗ = 7, Φm∗(n∗, t∗1, . . . , t
∗
m∗) = 49.310, C(n∗, t∗1, . . . , t

∗
m∗) = 136.559

t∗r 0.629 0.542 0.462 0.387 0.317 0.252 0.191 -
t∗r/ηr 0.629 0.602 0.578 0.553 0.528 0.504 0.478 -

MTBRr(t
∗
r) 0.625 0.540 0.460 0.386 0.316 0.252 0.191 -

t
(r)
99% 1.850 1.665 1.480 1.295 1.110 0.925 0.740 0.555

MTBFr 1.095 0.985 0.876 0.766 0.657 0.547 0.438 0.328
Fr(t

∗
r) [%] 4.197 3.235 2.485 1.893 1.418 1.035 0.724 -

For CH = 120 the optimal solution implies smaller probabilities of failure Fr(t∗r) and in gen-

eral smaller times of operation than forCH = 60. The reliability must be maintained at a certain

level or CH penalizes the operational cost.

Table 6 indicates that there are very similar solutions. So there are several options that can

be considered by the designer, which may be more appropriate with respect to some constraint

or objective that was not included directly in the analysis.
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Table 6: Design of a 2oon system for optimal life-cycle cost considering only independent fail-
ures. Values for comparison between other cases of n and m, CAi = 15, CH = 60 and CH = 120.

α n m Φ C t1 t2 t3 t4 t5 t6 t7 t8

9/10

CH = 60
2 1 186.82 91.00 99K +∞ - - - - - - -

10 7 51.05 315.80 1.760 1.369 1.076 0.844 0.653 0.492 0.355 -
11 1 106.74 235.00 99K +∞ - - - - - - -
11 6 51.12 323.78 1.893 1.480 1.170 0.922 0.717 0.543 - -
11 8 51.48 360.91 1.903 1.487 1.174 0.925 0.719 0.544 0.395 0.266
12 7 50.99 367.70 2.008 1.579 1.254 0.993 0.775 0.590 0.430 -

2

2 1 128.73 58.46 0.545 - - - - - - -
4 7 44.58 115.32 0.614 0.520 0.436 0.359 0.289 0.226 0.168 -
5 1 110.90 98.39 0.938 - - - - - - -
5 6 44.58 130.26 0.723 0.620 0.525 0.438 0.358 0.283 - -
5 8 44.43 145.85 0.722 0.619 0.5247 0.438 0.357 0.283 0.214 0.150
6 7 45.20 161.22 0.809 0.698 0.595 0.500 0.411 0.328 0.250 -

9/10

CH = 120
2 1 310.00 151.00 99K +∞ - - - - - - -

12 7 60.02 355.28 1.471 1.214 0.997 0.810 0.645 0.499 0.369 -
13 1 134.78 290.51 2.718 - - - - - - -
13 6 60.46 359.20 1.573 1.302 1.072 0.873 0.697 0.541 - -
13 8 60.56 400.96 1.574 1.302 1.073 0.873 0.698 0.541 0.402 0.277
14 7 60.16 405.01 1.659 1.377 1.137 0.929 0.744 0.579 0.431 -

2

2 1 178.55 61.19 0.375 - - - - - - -
4 7 51.165 114.24 0.521 0.444 0.374 0.310 0.251 0.196 0.147 -
5 1 126.073 97.30 0.789 - - - - - - -
5 6 49.903 128.99 0.630 0.543 0.463 0.388 0.318 0.252 - -
5 8 49.679 144.48 0.630 0.543 0.462 0.387 0.316 0.252 0.191 0.135
6 7 49.790 159.69 0.717 0.622 0.533 0.450 0.371 0.297 0.227 -

If it was considered that for each r the repair was perfect (the repaired component is new

or as good as a new one) and the costs were maintained equal and constant, this optimization

problem would render as solution equal values t1 = t2 = . . . = tm for each n.

3.2.2 Case 2 - Life-cycle cost optimization considering CCFs

The same data of the previous case is used but considering now the CCFs modelled with the β

model and setting β = 1/10. The corresponding results appear in Table 7, Table 8 and Table 9.
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Table 7: Design of a 2oon system for optimal life-cycle cost considering CCFs using the β model
with β = 1/10, CAi = 15, CH = 60 .

r 1 2 3 4 5 6 7 8

α C
(r)
H 60 66 72 78 84 90 96 102

9/10

n∗ = 11, m∗ = 6, Φm∗(n∗, t∗1, . . . , t
∗
m∗) = 57.459, C(n∗, t∗1, . . . , t

∗
m∗) = 363.309

t∗r 2.100 1.597 1.240 0.963 0.739 0.552 - -
t∗r/ηr 2.100 1.774 1.550 1.376 1.232 1.104 - -

MTBRr(t
∗
r) 1.712 1,389 1,118 0.889 0.692 0.523 - -

t
(r)
99% 5.039 4.535 4.031 3.527 3.023 2.519 - -

MTBFr 2.087 1.878 1.669 1.461 1.252 1,403 - -
Fr(t

∗
r) [%] 55.58 40.67 30.17 22.69 17.25 13.23 - -

2

n∗ = 4, m∗ = 7, Φm∗(n∗, t∗1, . . . , t
∗
m∗) = 48.759, C(n∗, t∗1, . . . , t

∗
m∗) = 124.449

t∗r 0.623 0.524 0.436 0.356 0.284 0.218 0.159 -
t∗r/ηr 0.623 0.582 0.545 0.509 0.473 0.436 0.398 -

MTBRr(t
∗
r) 0.606 0.513 0.428 0.351 0.281 0.216 0.158 -

t
(r)
99% 1.828 1.645 1.462 1.279 1.097 0.914 0.731 0.548

MTBFr 0.985 0.887 0.788 0.690 0.591 0.493 0.394 0.296
Fr(t

∗
r) [%] 12.30 9.589 7.479 5.806 4.460 3.362 2.453 -

Globally it is observed that relatively to the independent failures case, the average costs in-

crease and the number of repairs m decreases or the redundancy n decreases. For α = 9/10 the

redundancy is the same, the number of repairs decreases to m∗ = 6, the optimal repair times t∗r

increase and the probability of failure increases Fr(t∗r). For α = 2 the optimal repair times t∗r de-

crease and the probability of failure increasesFr(t∗r). This is a consequence of using the β model

and Eq.(20), where the term βQ penalizes the system reliability to a point where increasing the

redundancy does not improve the reliability sufficiently to compensate the involved acquisition

cost, as was also observed and explained in the first example 3.1. Other CCF models will affect

the system reliability differently, but always implying a tendency for a reduction relative to the

independent failures case.
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Table 8: Design of a 2oon system for optimal life-cycle cost considering CCFs using the β model
with β = 1/10, CAi = 15, CH = 120 .

r 1 2 3 4 5 6 7 8

α C
(r)
H 120 132 144 156 168 180 192 204

9/10

n∗ = 13, m∗ = 6, Φm∗(n∗, t∗1, . . . , t
∗
m∗) = 72.951, C(n∗, t∗1, . . . , t

∗
m∗) = 434.240

t∗r 1.710 1.394 1.133 0.911 0.718 0.548 - -
t∗r/ηr 1.710 1.549 1.416 1.301 1.197 1.096 - -

MTBRr(t
∗
r) 1.547 1.285 1.058 0.859 0.681 0.523 - -

t
(r)
99% 5.250 4.725 4.200 3.675 3.150 2.625 2.100 -

MTBFr 2.260 2.034 1.808 1.582 1.356 1.130 0.904 -
Fr(t

∗
r) [%] 29.582 22.958 18.177 14.637 11.954 9.871 - -

2

n∗ = 4, m∗ = 6, Φm∗(n∗, t∗1, . . . , t
∗
m∗) = 58.813, C(n∗, t∗1, . . . , t

∗
m∗) = 120.210

t∗r 0.526 0.444 0.370 0.302 0.240 0.184 - -
t∗r/ηr 0.526 0.493 0.463 0.431 0.400 0.368 - -

MTBRr(t
∗
r) 0.518 0.439 0.366 0.300 0.239 0.183 - -

t
(r)
99% 1.828 1.645 1.462 1.279 1.097 0.914 0.731 -

MTBFr 0.985 0.886 0.788 0.689 0.591 0.492 0.394 -
Fr(t

∗
r) [%] 6.583 5.205 4.117 3.243 2.525 1.926 - -

Table 9: Design of a 2oon system for optimal life-cycle cost considering CCFs using the β model.
Comparison between other n and m values for β = 1/10, CAi = 15, CH = 60 and CH = 120 .

α n m Φ C t1 t2 t3 t4 t5 t6 t7 t8

9/10

CH = 60
2 1 167.40 91.00 99K +∞ - - - - - - -

10 6 57.59 337.54 1.968 1.485 1.145 0.884 0.674 0.499 - -
11 1 112.62 235.00 99K +∞ - - - - - - -
11 5 58.24 340.00 2.128 1.613 1.250 0.970 0.743 - - -
11 7 57.82 388.39 2.113 1.605 1.244 0.966 0.741 0.553 0.394 -
12 6 57.57 389.10 2.229 1.704 1.330 1.038 0.801 0.601 - -

2

2 1 125.03 58.84 0.568 - - - - - - -
3 6 52.37 93.66 0.490 0.401 0.325 0.259 0.201 0.150 - -
4 1 108.53 84.01 0.839 - - - - - - -
4 6 48.83 116.98 0.623 0.524 0.436 0.356 0.284 0.218 - -
4 8 49.50 132.15 0.626 0.527 0.438 0.358 0.285 0.219 0.160 0.106
5 7 49.34 151.74 0.731 0.623 0.524 0.434 0.350 0.273 0.202 -

9/10

CH = 120
2 1 277.78 151.00 99K +∞ - - - - - - -

12 6 73.15 407.82 1.611 1.308 1.059 0.848 0.665 0.505 - -
13 1 143.92 303.15 3.018 - - - - - - -
13 5 73.73 401.95 1.719 1.400 1.138 0.915 0.721 - - -
13 7 73.70 468.54 1.719 1.400 1.138 0.914 0.721 0.550 0.399 -
14 6 72.97 460.47 1.804 1.475 1.203 0.971 0.768 0.589 - -

2

2 1 173.73 61.39 0.387 - - - - - - -
3 6 64.89 94.41 0.392 0.323 0.262 0.209 0.162 0.121 - -
4 1 128.46 84.48 0.684 - - - - - - -
4 5 60.05 112.48 0.530 0.447 0.372 0.304 0.242 - - -
4 7 58.87 128.15 0.526 0.444 0.370 0.302 0.240 0.184 0.133 -
5 6 58.96 148.50 0.635 0.543 0.457 0.378 0.304 0.235 - -
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3.3 Maintenance interval optimization problem

In this example the system in analysis uses a 3-out-of-n0 configuration, where n0 = {4, 5, 6, 10}

cases are studied. The same global assumptions present in the previous examples are main-

tained, but in this example it is investigated if the implemented redundancy is the one leading

to the best average cost in the near future system operation. Only independent failures are con-

sidered. The redundancy can increase or decrease and Eq.(10) is used to evaluate the optimal

times and average costs for the next m = 2 repairs, considering the time constraints:

t1 >
2

3
MTBF1 ; t2 >

3

5
MTBF2 (25)

where MTBFr is the medium time between failures corresponding to the failure distribution

Fr(tr) during interval r. Other constraints could be considered such as F̂r − Fr(tr) ≥ 0. If the

redundancy increases (n > n0) then the acquisition cost is CAi = 10, otherwise if the redun-

dancy is decreased (n < n0) CAi = 5 and is considered a selling benefit, i = 1, 2, . . . ,max(n, n0).

Since for n < n0 CAi is affect by a negative sign in Eq.(10), the times tr must be constrained to

be greater than a minimum feasible value, otherwise the optimal solution is to sell the complete

system. The remaining data is: CH = {60, 120}, εP = εH = 0, ε = 1/20 (η is reduced linearly with

r) and α = 12/10. The Table 10 and Table 11 present the optimal values found.

Table 10: Optimal redundancy and m = 2 maintenance schedule for a 3oon system considering
only independent failures and an initial redundancy of n0 with CH = 60.

n0 4 5 6 10
m 1 2 1 2 1 2 1 2

n∗ 6 6 6 6
Φ2 50.163 41.123 32.083 14.004
C 55.492 45.492 35.492 15.492
t∗r 0.627 0.537 0.627 0.537 0.627 0.537 0.627 0.537

MTBFr 0.941 0.894 0.941 0.894 0.941 0.894 0.941 0.894
t99% 2.123 2.017 2.123 2.017 2.123 2.017 2.123 2.017

Fr(t
∗
r)[%] 23.167 17.337 23.167 17.337 23.167 17.337 23.167 17.337

n∗NC 5 4 5 8
ΦNC2 47.553 27.834 18.815 8.864
CNC 30.598 5.382 7.334 7.383
t∗NCr 0.343 0.316 0.102 0.093 0.203 0.188 0.431 0.404

All the optimal times found correspond to active time constraints (the values of this con-

straint are relatively high) and the optimal redundancy can be greater or smaller than n0. For

CH = 60 the same redundancy is predicted for the different situations. For comparison a life-

cycle optimization like the one presented in section 3.2.1, was performed using the present ex-

ample’s data without the time constraints, and the optimal redundancy for CH = 60 is found
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to be n = 11, involving m = 12 repairs at times t1 = 0.920, t2 = 0.861, t3 = 0.804, t4 = 0.747,

t5 = 0.692, t6 = 0.638, t7 = 0.585, t8 = 0.533, t9 = 0.483, t10 = 0.433, t11 = 0.385, t12 = 0.338,

corresponding to an average cost of Φ = 39.914 and a total cost of C = 292.714. The differences

between the two problems are the acquisition costs, which here depend on n0, and therefore are

smaller, and the time constraints. The solutions are quite different. For n0 = 10, using the time

constraints in Eq.(25) for the first two repair intervals and analysing for different redundancies

n and number of repairs m, it was found that for n < n0 min
tr

Φm increases for each n and m and

so the “global” minimum value happens for n = 6 andm = 2, the case in Table 10. If n = n0 = 10

the there is a “global” minimum Φ3 = 20.133 for m = 3 corresponding to t1 = 0.889, t2 = 0.760

(time constraints are active) and t3 = 0.616. For n > n0 there are “global” minimal values for

Φm but with higher values than for n = n0, for instance for n = 11 and m = 5 Φ5 = 22.845 at

t1 = 0.937, t2 = 0.801 (constraints are active), t3 = 0.698, t4 = 0.648 and t5 = 0.602. For an initial

redundancy of n0 = 10 and based on the results obtained, if the system duration it to be greater

than the time constraints, then the redundancy n0 should be maintained.

Additionally the tables present the optimal values found for the non constrained case for

comparison (subscript NC). In the non constrained case the optimal times are much smaller

and the redundancy, and consequently the cost, are also smaller. Although not presented in the

tables, for the non constrained case m = 1 and n < n0 the cost is negative and t1 → 0, which is

not feasible.

Table 11: Optimal redundancy and m = 2 maintenance schedule for a 3oon system considering
only independent failures and an initial redundancy of n0 with CH = 120.

n0 4 5 6 10
m 1 2 1 2 1 2 1 2

n∗ 9 8 8 9
Φ2 64.562 57.546 50.396 28.276
C 97.859 80.488 70.488 42.859
t∗r 0.836 0.715 0.776 0.663 0.776 0.663 0.836 0.715

MTBFr 1.254 1.191 1.164 1.106 1.164 1.106 1.254 1.191
t99% 2.450 2.328 2.358 2.240 2.358 2.240 2.450 2.328

Fr(t
∗
r)[%] 15.445 9.859 17.485 11.742 17.485 11.742 15.445 9.859

n∗NC 6 5 5 8
ΦNC2 59.191 37.835 23.502 10.093
CNC 44.010 14.662 7.232 7.306
t∗NCr 0.390 0.362 0.202 0.187 0.160 0.148 0.374 0.351
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4 Conclusions

The proposed procedure produces results considered feasible and realistic for the application

in practical cases. It is a framework useful in assisting maintenance decisions, especially in a

design phase, which is relatively simple to implement and requires minimum data. It is based

solely on the idea of a probabilistic average cost and that may be its limitation in some situa-

tions. The set of examples presented demonstrates the type of results that can obtained and

used in maintenance optimization operations.

The methodology can be extended to include predictions for multiple repairs, considering

changes in the maintenance strategy after each repair (different scenarios). However this leads

to a combinatorial optimization problem that can be very difficult or demanding to solve.
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