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Abstract A Mobile Ad Hoc Network (MANET) is characterized to be a network
with free, cooperative, and dynamic nodes, self-organized in a random topology,
without any kind of infrastructure, where the communication between two nodes
usually occurs using multihop paths. The number of hops used in the multihop path
is an important metric for the design and performance analysis of routing protocols
in MANETs. In this paper, we derive the probability distribution of the hop count of
a multihop path between a source node and a destination node, fixed at a known dis-
tance from each other, and when a fixed number of nodes are uniformly distributed
in a region of interest. This distribution is obtained by the Poisson randomization
method. To obtain the multihop path, we propose a novel routing model in which
the nearest distance routing protocol is analyzed. Numerical results are obtained to
evaluate the performance of the nearest distance routing protocol.

1 Introduction
When the source and destination nodes of a MANET are at a distance greater than
the transmission range, the communication between them is made via a multiple
hop path that is determined by the routing protocol (cf., e.g., [8]). One of the most
popular strategies a node can use to decide to which neighbor node it should forward
a given packet is the nearest distance routing protocol (NR), for which the packet is
forwarded to the nearest relay node in the direction of the destination node.

As stated in [7] and references therein, one of the most important metrics to
evaluate the performance of routing protocols is the number of hops of the multihop
path. In [1], we have derived the hop count distribution for the one-dimensional
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scenario with relay nodes uniformly distributed between the source and destination
nodes. However, the derivation of the hop count distribution in a two-dimensional
scenario must take into account, among other factors, the transmission range and the
routing protocol, aside from the node spatial distribution. The interaction of these
characteristics turns the derivation of the hop count distribution a difficult task. This
is the reason why, despite its importance, there are few analytical studies on the
subject and most of them just consider single link models (cf. [5] and [10]) and/or
approximation results (cf. [4] and [7]).

In [5] relay nodes are assumed to be distributed according to a Poisson process
and the distribution of the distance from the source to the furthest neighbor node
within transmission range is derived. The analysis was extended in [10] to a model
where a finite number of relay nodes are uniformly distributed in a region of interest,
but again only assuming a single link model. Few papers focus their analysis in more
than a single link. In [4], an approximation for the relationship between the number
of hops and the distance between the source and the destination nodes is derived,
and an approximation for the probability of existence of a multihop path between
the source and destination nodes is derived in [7].

In [9] one of the few closed-form results on the hop count distribution is de-
rived for the case in which nodes are randomly distributed according to a Poisson
process, for both one-dimensional and two-dimensional networks, and using three
routing protocols: the nearest, the furthest and the random routing protocol. How-
ever, the average hop length has to be used and estimated, turning the obtained
results approximations of the exact hop count distribution.

In this paper, we derive the exact hop count probability distribution with an arbi-
trary number of hops, when the source and destination nodes are fixed, at a known
distance form each other, and a known and fixed number of relay nodes are uni-
formly distributed in a region of interest. To obtain the multihop path, we propose a
novel propagation model where the routing region of each relay node is defined by
a given angular span and a radius equal to the transmission range. Since the angular
span depends on the distance between the emitter and destination nodes, we call this
model the dynamic propagation model,. Inside each routing region, we use the NR
protocol to choose the relay node to forward the packet.

The mathematical analysis of the problem of an existing path on a random set of
points, with the source and destination nodes at known locations, is often called a
navigation problem. Within this literature, the paper [2] proposes a model with the
nearest routing protocol using routing regions with a fixed angular span. The authors
proved that when the number of random nodes is large enough, almost surely exists
a path between the source and the destination nodes.

As far as we know, our results are the first exact analytical results for the hop
count distribution with an arbitrary number of hops in a two-dimensional scenario,
when a finite number of relay nodes are uniformly distributed in an area of interest.
These results are suitable to use when the number of hops is not too large, because
the dynamic angular span decreases when the source or relay nodes are far way from
the destination node. However, in MANETs the number of hops between the source
and destination nodes cannot be large due to the small duration of multihop paths
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with a large number of hops [6]. In dense networks that does not constitute a problem
since the multihop path is similar to a path on a straight line. Note that the usage
of the position-based protocols requires that a node knows its own geographical
position and the geographical position of the destination node, but the localization
problem of the nodes are not focused in this paper. We also should note that we
consider the transmission range of each node constant, not taking into account the
SINR (signal-to-interference noise ratio), which will be the scope of future research.

The outline of this paper is the following. In Section 2 we describe the dynamic
propagation model. In Section 3 we derive the hop count distribution for the NR pro-
tocol. In Section 4 we present some numerical results to evaluate the performance
of the NR protocol. Finally, in Section 5, we conclude the paper.

2 Model Description
We consider an ad hoc network with the source node fixed at the origin and the
destination node fixed at a distance L from the source node. A multihop path with
m hops is defined as an existing path from the source to the destination node using
exactly m relay nodes. Denote by Xi,1≤ i≤ m, the location of the relay node i of a
multihop path, with these nodes ordered according to their distance to the origin, and
let X0 = (0,0) and Xm+1 = (L,0) denote the locations of the source and destination
nodes, respectively. Note that, without loss of generality, we have assumed that the
destination node is located in the x-axis. Given a fixed transmission range R, 0<R<
L, equal for all nodes, nodes i and j are connected with zero hops if ‖Xi−X j‖< R.

We assume that the locations of the source node, the destination node, and all
relay nodes of the multihop path belong to a compact set Ω ⊂ R2, with area B. The
set Ω is defined by an isosceles triangle with one vertice at the origin (0,0) with
associated angle φ0 = 2arctan(R/L), and the height of the triangle lies on the hori-
zontal axis and is equal to L. The definition of the set Ω is needed to avoid analytical
intractability and preclude that a given multihop path loops around the destination,
see [8]. For efficient routing progress towards the destination, we consider that each
relay node transmits within a routing region limited by the transmission radius R
and an angular span oriented to the destination node. The angular span φi of relay
node i is chosen in a dynamic way, being dependent on the location Xi of the relay
node, and is such that it originates a triangle with vertices at points (L,R), (L,−R)
and Xi, increasing when it gets closer to the destination node and decreasing when
the relay node gets further away from the destination node. This is the reason why
we denominate the model as the dynamic propagation model. Within each routing
region the relay node chosen to forward the packet will be the nearest relay node
from the emitter node. The polar coordinates of the location of relay node i relative
to the location of relay node i−1 are denoted by (ri,θi), assuming that−π ≤ θi≤ π .
In Figure 1 we can observe a multihop path with 3 hops using the NR protocol and
the dynamic propagation model. Note that if a given node is in the range of the
destination node, they will connect directly.
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Fig. 1 Dynamic propagation model with the NR protocol for a path with 3 hops.

3 Hop Count Distribution
To describe the routing regions of each relay node, we make a translation and rota-
tion of the plane to locate the origin of the new plane at the current emitter node (in
this case at relay node i), with horizontal axis being the line drawn from the emitter
node to the destination node. For a relay node i located at Xi, the routing region
relative to Xi is denoted by Ai ≡A (Xi,Xm+1,φi) and, at each hop, an angular slice
of a circular disk with radius R and with area φi

2 R2 is covered (see Figure 2). More
precisely, the routing region of relay node i relative to Xi is defined by

Ai ≡A (Xi,Xm+1,φi) =
{
(r,θ) : 0 < r < R,−φ

−
i ≤ θ ≤ φ

+
i
}
.

The angular span φi is dynamic and depends of the location of the relay node. Given
(ri,θi) and the distance from relay node i− 1 to the destination node, di−1, the
distance from relay node i to the destination node, di, is given by the function

di ≡ f (di−1,ri,θi) =
√

(di−1− ri cosθi)2 +(ri sinθi)2, 1≤ i≤ m,

with d0 = L. The angle φi of relay node i can then be written as a function of di−1
and (ri,θi), φi ≡ φ(di−1,ri,θi), and is given by

φi = arcsin
(

R− sign(θi)bi

s+i

)
+ arcsin

(
R+ sign(θi)bi

s−i

)
,

where bi = ri sinθi, so that |bi| is the minimum distance between Xi and the axis
that goes from Xi−1 to Xm+1, and s±i =

√
(di−1− ri cosθi)2 +(R∓ sign(θi)bi)2 is

the distance between Xi and (L,±R); see Figure 2. Using geometric arguments, we
can show that φi = φ

+
i + φ

−
i , where φ

+
i is the angle formed by the points (L,R),

Xi and Xm+1, being given by φ
+
i = arcsin

(
R−sign(θi)bi

s+i

)
+ sign(θi)arcsin

(
bi
di

)
, and

φ
−
i is the angle formed by the points (L,−R), Xi and Xm+1, being given by φ

−
i =

arcsin
(

R+sign(θi)bi
s−i

)
− sign(θi)arcsin

(
bi
di

)
.

Denote by Vi the vacant region of relay node i, defined to be the subset of the
routing region of relay node i that has no relay nodes. That is, since the relay node
selected is the closest one from the emitter node, the vacant region of relay node i
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Fig. 2 Routing regions and angular spans of relay nodes i−1 and i.

is given by the set of points that are closer to i than relay node i+1, having an area
Vi =

φi
2 r2

i+1; see Figure 3.
The hop count probability distribution is obtained by using Poisson randomiza-

tion, [3], consisting in randomizing the number of relay nodes by assuming that
relay nodes are distributed in Ω according to a Poisson process with rate λ . A pre-
cise argument for the spatial Markov property in more general spaces can be found
in [11]. By conditioning in the number of relay nodes that lie in Ω , the results for the
case in which a fixed and known number of relay nodes are uniformly distributed
in Ω pops up. Denote by lm = (l1, l2, . . . , lm) the vector of relative locations of the
m relay nodes, with li = (ri,θi), and let dlm = dθmdrmdθm−1drm−1 . . .dθ1dr1. Recall
that B denotes the area of Ω .
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Fig. 3 Routing regions and
vacant regions of relay nodes
i−1 and i.

Theorem 1. Given that there are n relay nodes uniformly distributed on Ω , the
probability that the hop count is equal to m, for a multihop path selected by the
dynamic propagation model with the NR protocol, is given by

P(M = m|N = n) =
∫

Nm

n!
(n−m)!

1
Bm

(
1−1

B

m−1

∑
i=0

Vi

)n−m m

∏
i=1

ri dlm (1)

with K ≤m≤ n and Nm =
{

lm : li = (ri,θi)∈Ai−1, i = 1,2, . . . ,m,dm < R≤ dm−1

}
.
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Proof. We first derive the joint location density of the m relay nodes of the multi-
hop path. For that, fix (r1,θ1) ∈ A0 =

{
(r′1,θ

′
1) : 0 < r′1 < R,− φ0

2 < θ ′1 <
φ0
2

}
and

define V0=
{
(r′1,θ

′
1) : 0 < r′1 < r1,− φ0

2 < θ ′1 <
φ0
2

}
and V ε

0 ={(r′1,θ ′1) : r1 ≤ r′1 <

r1 + ε1,θ1 ≤ θ ′1 < θ1 + ε2}. Denote by N(A) the number of points of the Poisson
process in A. By the independent increment property of a Poisson process, we have

P(N(V0) = 0,N(V ε
0 )> 0) = P(N(V0) = 0)P(N(V ε

0 )> 0)

= e−λ
φ0
2 r2

1

(
1− exp

(
−λ

∫ r1+ε1

r1

∫
θ1+ε2

θ1

rdrdθ

))
= e−λ

φ0
2 r2

1 λ

∫ r1+ε1

r1

∫
θ1+ε2

θ1

rdrdθ +o(ε1ε2).

The density of the location of the first relay node being at (r1,θ1) is given by

h(r1,θ1) = limε1,ε2→0+
P(N(V0)=0,N(V ε

0 )>0)
ε1ε2

= λ r1e−λ
φ0
2 r2

1 .
To derive the density location of the first two relay nodes, we make a rota-

tion and translation of the plane in order to place the origin of the new plane
at (r1 + ε,θ1) with horizontal axis being the line drawn from (r1 + ε,θ1) to the
destination node. Proceeding in a similar way to the one used to derive the den-
sity of the location of the first relay node, one may conclude (see [6]) that the
density of the locations of the first two relay nodes being (r1,θ1) and (r2,θ2) is

h(r1,θ1,r2,θ2) = λ 2r1r2e−λ
φ0
2 r2

1 e−λ
φ1
2 r2

2 .
Proceeding in the same manner until the m-th relay node is connected with no

hops with the destination node, we obtain the joint density of the locations of the m

relay nodes of the multihop path, h(lm) = λ me−λ ∑
m
i=1

φi−1
2 r2

i ∏
m
i=1 ri, where the node

locations are in Nm and the last relay node is m because dm < R≤ dm−1. Integrating
h(lm) over the set Nm = {lm : li = (ri,θi) ∈ Ai−1, i = 1,2, . . . ,m,dm < R ≤ dm−1},
we obtain the probability that the hop count is m for the nearest distance routing
protocol, when the relay nodes are randomly distributed according to a Poisson
process:

P(M = m) =
∫

Nm

λ
me−λ ∑

m
i=1

φi−1
2 r2

i
m

∏
i=1

dlm. (2)

Multiplying equation (2) by eλB, where B is the area of Ω , we obtain

eλBP(M = m) = eλB
∫

Nm

λ
me−λ ∑

m−1
i=0 Vi

m

∏
i=1

ri dlm

=
∫

Nm

λ
m

∞

∑
n=0

(λB)n

n!

(
1− 1

B

m−1

∑
i=0

Vi

)n m

∏
i=1

ri dlm

=
∞

∑
n=m

(λB)n

n!

∫
Nm

n!
(n−m)!

1
Bm

(
1− 1

B

m−1

∑
i=0

Vi

)n−m m

∏
i=1

ri dlm
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where the change between the sum and the integral follows by the dominated con-
vergence theorem. On the other hand, conditioning on the value of N, which is
Poisson distributed with mean λB, by the total probability law eλBP(M = m) =

∑
∞
n=m P(M = m|N = n) (λB)n

n! . Since the coefficients of (λB)n

n! in the previous two
expressions for eλBP(M = m) must match, the result follows. ut

4 Numerical Results

In this section we evaluate the performance of the dynamic propagation model for
the NR protocol. We scale all parameters with respect to the distance between the
source and destination nodes assuming that L= 1, leading the set Ω to have area B=
RL. Therefore, depending on the value of R, for 1/(K + 1) < R ≤ 1/K, K ∈ N, we
have multihop paths with a minimum number of hops equal to K. The results were
obtained by numerical integration using a Monte Carlo algorithm. Despite the multi-
dimensional integration, it is relatively simple and not too much time consuming the
calculation over 6 hops, which is a very large number of hops for a MANET [6].

Figure 4 shows the connectivity probability with the minimum number of hops
K, K = 1,2,3, with the NR protocol and for different values of the number of nodes.
We can observe that when the number of nodes increases the minimum hop count
probability decreases and approaches the value 0, and so the NR protocol is inef-
fective in a dense network because it cannot transmit with a high probability with
the minimum number of hops. For the same number of relay nodes, the hop count
probability with the minimum number of hops decreases as K increases.
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Fig. 4 Connectivity probabil-
ity with the minimum number
of hops.

In Figure 5, we obtain the hop count probability with different values of the
number of hops. We consider R = 0.3, and K = 3,4,5,6, and observe that, when
there is a small number of nodes, the NR protocol with K + 1 = 4 hops has the
highest probability, whereas when there is a large number of nodes, the hop count
probability with K + 3 = 6 has the highest probability. Again the probability with
the minimum number of hops K with the NR protocol is very ineffective, since it
has the smallest probability. Despite that, all probabilities (K = 3,4,5,6) approach
zero with the increase of the number of nodes, and the probabilities obtained for
paths with a large number of hops are generally larger than the ones obtained for
paths with a smaller number of hops.
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5 Conclusion
In this paper we focused on the connectivity in two-dimensional wireless ad-hoc
networks. We have assumed that the source and the destination nodes are fixed,
at a known distance from each other, and that a fixed and known number of relay
nodes are uniformly distributed in a region of interest. To find a multihop path, we
proposed a novel model called the dynamic propagation model. Using this model,
we derived the hop count probability distribution when the multihop path chosen
follows the nearest distance routing protocol. As far as we know, these are the first
exact analytical results for the hop count probability distribution. The numerical
results derived allowed us to conclude that the NR protocol is not suitable for dense
networks.
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