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Existéncia e Regularidade de Minimizantes
para Integrais em Dimensao 1 do Célculo das Variagoes

com Lagrangiano Nao-convexo Auténomo

Maria Clara da Palma Carlota

Resumo

Nesta dissertacio apresentamos novas condi¢des que provamos serem suficientes para
garantir a existéncia, e alguma regularidade, de minimizantes para integrais simples
auténomos nao-convexos

b b
/ e(z(t), < (8)) dt, / L(z(t), 2 (t) dt,
a a
com £:R xR — [0,+00] (resp. L :R™xR® — [0,+00]), na classe das fungdes
absolutamente contfnuas z : [a,b] — R (resp. =z : [a,b] = R*) com z(a) = A,
z(b)=B.

O lagrangiano £ : R x R — [0,4+00] pode: ter £(s,-) ndo-convexa (mesmo em
¢ = 0), assumir o valor +oo livremente, ou ser nio-boreliano. De facto, impombs
apenas as seguintes hipéteses bdsicas: £(-) é £ ® B—mensursvel com £(s,-) semicon-
tfnua inferiormente e superlinear. Para um tal lagrangiano €(-), mostramos existéncia e
regularidade sob mais uma hipétese extra a ser escolhida entre virias possibilidades.

~ Relativamente ao lagrangiano L(-), este pode ser e.g. semicontinuo inferiormente e
superlinear; e substituimos a hipétese usual de convexidade pela hip6tese mais geral de
“almost convexity ”, que no caso superlinear radial L (s,|v|) é automaticamente satisfeita
quando L (s,-) é convexa no zero.

No que diz respeito ao caso escalar, os resultados foram obtidos generalizando os resul-
tados de A. Ornelas para o caso 0—convexo, £**(-,0) = £(-,0); nomeadamente usando
a bimonotonia. Esta propriedade de regularidade foi a base de partida para conseguirmos
provar os resultados aqui apresentados.

Relativamente ao caso vectorial, os resultados foram obtidos usando reparametrizagoes,
e aplicando os referidos resultados de bimonotonia a tais reparametrizacdes.

Apresentamos também algumas aplicagdes destes resultados para provar a existéncia de
minimizantes em exemplos concretos onde nao se podem aplicar resultados j& conhecidos.

Palavras chave: cslculo das variagdes, integrais ndo-lineares ndo-convexos, propriedades
de regularidade.



Existence and regularity of minimizers
for 1-dim integrals of the calculus of variations

with nonconvex autonomous lagrangian

Maria Clara da Palma Carlota

Abstract

In this thesis we present new conditions which we prove to be sufficient to
guarantee existence, and some regularity, of minimizers for nonconvex autonomous 1-dim
integrals

b b
/ae(:z;(t),:z'(t)) dt, /L(w(t),x'(t)) dt

with £: R xR — [0,+00] (resp. L :R" x R* — [0,400]) among the absolutely
continuous functions z : [a,b] = R (resp. z:[a,b] > R™) with z(a)=A4, z(b)= B.

The lagrangian £: RxR — [0,+00] may: have £(s, -) nonconvex (evenat {=0),
assume +oo values freely, or be non-Borel. Indeed, our only basic hypotheses are: £(-)
is’ £ ® B—measurable and has £(s, -) lower semicontinuous and superlinear. For such
£(-), we prove existence and regularity under an extra hypothesis to be chosen among
several possibilities.

As to L(-), it may be e.g. superlinear lower semicontinuous; and we replace
convexity by almost convexity, an hypothesis which in the radial superlinear case L (s, |v])
is automatically satisfied when L (s,-) is convex at zero.

Concerning the scalar case, our results have been obtained by generalizing the results
of A. Ornelas for the 0—convex case, £**(-,0) =£(-,0); namely using bimonotonicity.
This regularity property has been the starting basis to reach the results here presented.

As to the vector case, our results have been obtained by using reparametrizations, and
by applying the bimonotonicity results to such reparametrizations.

We also present some applications of these results to show existence of minimizers in
concrete examples, not covered by previous results.

Key words: calculus of variations, nonconvex nonlinear integrals, regularity properties
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Chapter 1

Introduction

Consider the classical problem of the calculus of variations: minimize the integral

b
/ L(t, =), 2 @) dt on X%y, (L.1)

where X% 5, n > 1, isthe class of AC (absolutely continuous) functions z : [a,b] —
R™ satisf);ing boundary conditions z(a) = A, z(b) = B. (In the scalar case n=1
we will use X4 p instead of X} p.)

The aim of this thesis is to prove new suf ficient conditions guaranteeing existence
and regularity of minimizers for the problem (1.1) when the lagrangian L(-) is
autonomous, i.e., does not depend on the variable ¢ (time):

L:R"xR" — [0, +00].
(In the scalar case we will use ¢(-) instead of L(-).)

A classical example is the brachistochrone (or path of quickest descent) problem
which consists in the following: given two points in the vertical plane « = (a,B) and
B=(b,B) (A< B), find the curve C joining o and B such that a material point,
starting at o, will glide from « to B along C, under the force of gravity only, in
least time (neglecting frictional effects). Labelling the horizontal axis with ¢ and the
vertical axis with s, and assuming s to be positive downwards, well known mechanical
arguments lead to the conclusion that the curve C should be the graph of a minimizer
of the integral (1.1) with the lagrangian

Vite
Vs— A~

The solution is the (unique) cycloid with a vertical cusp at « and passing through 3.
One could argue that the calculus of variations was born in June 1696, when Johann
Bernoulli presented this problem to the international mathematical community, as a
challenge.

e(81£) =



Chapter 1. Introduction

The first approach to solve problem (1.1) was what we can call an indirect method,
based on the naive idea they had that (1.1) always has a solution y(-) : to determine
it, one looks for conditions that minimizers must satisfy (necessary conditions) and
then eliminate possible candidates until eventually they become reduced to a unique y (-).
But this method can fail due to several reasons, one of them being because problem (1.1)
may have no solutions.

In 1915 Leonida Tonelli ([T]) presented a direct approach to problem (1.1), the
so called direct method of the calculus of wvariations. Indeed, he realized that by
transferring to the integrals of the calculus of variations the Ascoli-Arzela compactness
and Baire semicontinuity theorems for real functions, he could obtain an existence theory.
The reasoning to prove existence of minimizers for the integral (1.1) is the following:
prove that it is Isc (lower semicontinuous) with respect to the weak topology of Xip
and then show that there exists a minimizing sequence (y,(-)) which converges weakly
to some y(-) € X7 p. Indeed, in such case we have:

inf  [PL(z(t),2(t) dt< [PLy@),y ) dt <

z()EX]
<liminf [*L(ya (t), ¥, (8)) dt:= inf [°L(z(t), &' () dt.
n—00 z(.)exx,B

If L(:) islsc with superlinear growth, i.e.
L(s,&) 2 0(€) V(s,8) with  6(r)/r — +o0 as r— +oo,

and £ — L (s,§) is convex then these conditions are satisfied. Indeed, lower semicontinuity
and convexity ensure the weak sequential lower semicontinuity of the integral (see e.g.
[De G}, [O11], [Io]), while the superlinear growth ensures the relative compactness of
minimizing sequences (see e.g. [Bu Gi Hi], [Ek Te], [C]).

Though these hypotheses are sufficient to get existence of minimizers, they are not
necessary, as simple examples show. For instance, if ¢: R — [0,+00] is a lsc function,
not necessarily convex or with superlinear growth, for which ¢oepi£(-) (i.e. the closed
convex hull of the epigraph of £(-)) has only bounded faces, then it is easy to see that
for any A, B € R there exists a minimizer for the integral

b
/Z(x'(t)) dt on Xap,

which, moreover, is Lipschitz continuous.

Therefore, in the last years several authors investigated the possibility of eliminating
the hypotheses of convexity and / or superlinearity and of weakening the regularity required
on L(-).

Concerning the scalar convex case, the regularity hypotheses on the lagrangian have
been much weakened by [De G Bu Dal M] and [Amb|: they proved that to obtain wesk

2



Chapter 1. Introduction

sequential lower semicontinuity of the integral one does not need to impose £(-) to be
lsc, it suffices to ask £(-) to be only £ ® B — measurable (as in [Roc We, 14.34])
with £(-,0) Ilsc, provided the slope at zero is integrable, ie. there exists m(-) in
L}, (R) for which

£(s,6) 2 £(s,0)+m(s) £ Vs, &. (1.2)
Therefore for such a convex £(-) with superlinear growth there exist minimizers for the
integral

b
/ £ (z(t), 2 (1) dt on Xap.
a
Even though this hypothesis is quite weak, in [Or 3] it was proved that (1.2) may

still be weakened, namely replaced by any one of the following hypotheses: either A = B;
or £(-) is lsc at (s,0) Vs; or £(-) is integrably bounded near zero, i..

3L,M:R— (0,+00), Ix M€ LY(A,B): £(s,8)<l(s) V[|¢l < M( ) Vs; (1.3)
or else, more generally, £(-) is approzimable with integrable slopes at zero, i..:

VneN 3F¢,: R—[0,n] lsc with (¢,(s)) €(s,0) Vs, (1.4)

3m, () € L'(A,B) : 0(s,€) > ¢n(8) + mn(s) & vs,&.  (15)

This hypothesis (1.4)+(1.5) is weaker than (1.2) even in the case of a constant sequence
— ie ¢, (s) =£(s,0) and m, (s) =m(s) Vn — because m(-) needs to be integrable
only along co {A,B}, instead of on any bounded interval (even if the minimizer may
have values outside of co {A,B}). Moreover, (1.4)+ (1.5) is also weaker than either
(1.3) or the hypothesis of £(-) being Isc at (s,0) Vs.

The above considerations concern the convex case, i.e., £(s,-) convex. But also
this hypothesis may be weakened. Indeed, a series of papers have been devoted to the
progressive weakening of the hypotheses allowing existence of minimizers to be proved in
the nonconvex case (see e.g. [O12], [Au Ta], [Marc], [Ray], [Ce Co|, [Ce Mari],
[Am Ce|, [Am Mari}], [Marq Or]). In all of these papers ( except for [Ray], see (3. 11) )
existence has been proved for £(-) of sum —type, ie.

€(s,§) = ¥(s) + p(s) h(¢) (1.6)

with p(-) =1, imposing on the lsc 9 (-) different geometric restrictions. In the last one
([Marq Or]) v (-) is assumed concave — monotone, namely: % (-) is concave (resp.
monotone) along each interval of an open set C (resp. M) with C|JM =R; while
in [Am Ce], ¥ (-) should satisfy the following: Vs € R 3 open nonempty interval,
with an extremity at s, where ¥ (-) decreases strictly (in case h**(0) < h(0)) as the
distance from s increases.

Afterwards it was shown that these geometric restrictions on the lagrangian may be
weakened under the extra hypothesis of 0 — convezity :

2(-,0)=£"(-,0), (1.7)

3



Chapter 1. Introduction

where £**(-) is the bipolar, defined by epi £**(s,-) :=Co epi £(s,-) Vs. Indeed,
several papers ([Am Ce], [Fu Marc Or], [Or 1], [Or 2]) have weakened progressively
the hypotheses imposed to prove existence of minimizers under (1.7). The first 3 of
these papers dealt mainly with the sum case cited above, while [Or 2} treated completely
the “affine” case (1.6).

Finally, the general nonlinear case £: RxR — [0, +00] was treated in [Or 4] (seealso
[Or 5]) under extremely weak hypotheses. Namely assuming £(-) £ ® B — measurable
with £(s,-) lsc, [Or 4] proved existence of a 0 — relazed minimizer y,(-) (i.e. a
minimizer for an integral whose lagrangian is, in a sense, the convexification of £(s, -)
only at the velocity zero Vs (see (2.11)) ) which is a true minimizer whenever

p()=£"(-,0=£(-,0),

where ¢ (-) := £°(-,0), with £°(-) the largest of the 0 — Isc — convexr functions
< £(-) (see definitions 2.1 and 2.2), so that, in particular £¢(-) = £**(-) whenever
£**(:) islscat £ =0, ie. at (s,0) Vs. Moreover, it suffices to 0 — convexify
the lagrangian £(s, -) only at one special point s’, because such y,(-) is known to
satisfy a special regularity property, it is bimonotone (namely: apart from a (possibly
empty) interval (a',b’) where it remains stopped at the mentioned point s', y, (-)
is strictly monotone (with g/ (t) #0 a.e.) along each one of the remaining intervais,
[a,a'] and [b’,b]). More precisely, once a bimonotone minimizer v, (-) is known, then
either the stopping interval is empty and no convexity condition is needed, even at zero;
orelse a’ <b' and — without affecting the property of ,(-) being a minimizer —
one may redefine £(s,0) to become -+oo at every s # s’. This is the main basis on
which this thesis stands.

In chapter 2 we present the results obtained in [Or 4] (see also [Or 5]), concerning
the existence of 0 — relared minimizers, in the superlinear case, for the 1-dim integral

b
/ £ (z(t), 2 (t) dt on Xap.

Chapter 3 is devoted to prove existence of true minimizers, in the superlinear case,
even with ¢ (s) < £**(s,0) < £(s,0) Vs, provided an adequate extra hypothesis is
satisfied, which needs a previously known 0 — relazed minimizer y, (-), to be stated
precisely. Indeed, defining S, := y,([a,b]) and ¢, (") := @5 (), then such extra
hypothesis consists in imposing: there must exist some minimizer s’ of ¢, (-) whith
is not a mean — strict minimizer of ¢(-). This hypothesis generalizes directly the
hypotheses of [Am Ce] and [Marq Or], and also the preceding ones (of [Au Ta],
[Marc], [Ray], and [Ce Co]). Notice that one can also give very general hypotheses,
namely e.g. (3.10) and (3.12) (asin corollary 3.7), under which existence of minimizers
may be guaranteed without needing to know y, (-).

On the contrary, in chapter 4 we prove a new SC (suf ficient condition) on the
boundary data (a,A,b,B), which is applicable even when £(:) does not

4



Chapter 1. Introduction

satisfy the extra hypothesis of chapter 3. Indeed, such SC guarantees existence of a
bimonotone 0 — relaxed minimizer y,(-) which does not stop so that it is a true
minimizer. Therefore this SC replaces completely the condition of 0 — convexity;
under it, existence of minimizers is obtained without any convexity hypothesis, and
with almost no regularity hypotheses on the lagrangian £(-). Indeed, besides the
Basic Hypotheses of chapter 2 and superlinearity, we only need the validity of the
DuBois — Reymond dif ferential inclusion (2.15) for the relaxed minimizer.

The bimonotonicity results of [Or 4] are also used in chapter 5, where we prove new
sufficient conditions for existence and regularity of minimizers for the 1-dim integral

b
/aL(:z:(t),:z;'(t)) dt on X%p.

Since L (s, ) is allowed to be nonconvex, we consider the bipolar L**(s,-) of
L(s, ), and the corresponding convexified integral

b
/L** (z(t), 2’ (¢)) dt on Xip.

We call y,_ () a relaxed minimizer provided y_(-) minimizes this integral.

Unlike the scalar case, in this vector case the hypothesis of 0—convexity does not suffice
to guarantee existence of minimizers (see section 5.5). Indeed, one needs to impose more
than just O-—convexity in order to obtain, for general dimension, the same operational
possibilities; namely almost convezity. This concept was born, for multifunctions, in
the paper [Ce Or}, to prove existence of solutions to nonconvex differential inclusions
and to time-optimal control problems, using reparametrizations. The technique of repara-
metrizations has been used by A. Cellina and collaborators, during the last decade, to
prove also: Lipschitz properties for minimizers (see e.g. [Ce], [Ce Fe]) and existence
results for convex noncoercive lagrangians (see e.g. [Ce Tr Za], [Ce Fe]).

In the first result we present, L (-) is assumed to be Ilsc with superlinear growth
at infinity. This ensures existence of a relaxed minimizer y, (-), which is then changed
to become a new relaxed minimizer y(-) for which L**(y(¢), v’ (¢)) = L(y(t), v (t))
a.e. on [a,b]; sothat y(-) is a true minimizer. In the second result, existence of y,_ (-)
is used as one hypothesis. We need no growth assumption to turn y () into y(-), in
particular we do not need to impose coepiL (s, -) closed.

We also present applications of these results to show existence of true minimizers in
concrete examples, not covered by previous results.

As said above, two techniques have been combined to prove these results. The first one
is the above cited reparametrizations, while the second technique is bimonotonicity. Here,
for the first time, bimonotonicity is applied to the reparametrizations.
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Concerning the convex noncoercive vector case, there are available results (see e.g.
[Cl], [Ce Tr Za], [Ce Fe]), which ensure existence of relaxed minimizers. However, as
far as we know, corollary 5.5 is the first existence result obtained in the general vector
nonconvex noncoercive autonomous case. Indeed, nonconvex, noncoercive vector results
have been obtained but just for lagrangians of sum-type (see e.g. [Cr], [Cr Mal 1]), or
for radial lagrangians (see e.g. [Cr Mal 2]).




Chapter 2

Preliminaries for the scalar case

2.1 Introduction

This chapter contains preliminaries for the scalar case treated in chapters 3 and 4,
where the problem considered is to prove existence, and regularity, of minimizers for the
1-dim integral

/ L), 2 (1) dt on Xap, 2.1)

where X4 p is the class of AC (absolutely continuous) functions z : [a,b] — R with
z(a) = A and z(b) = B. The lagrangian ¢(-) will always satisfy (in chapters 2, 3, 4)
the following extremely weak

Basic Hypotheses: £: R x R — [0, +o9]

is L® B —measurable (asin [Roc We]) with £(s,-) Isc (lower semicontinuous)
Vs.

Any function as this £(-) will be called a BH — function, for easier reference.

Since we allow £(s,-) to be nonconvex, we also use its bipolar £** (-) (defined by
epi £**(s,-) :=To epi £(s,-) Vs, namely the closed convex hull of the epigraph of
£(s,-)) together with its 0 — Isc — convezified lagrangian £¢(-).

“Wecall y(-) a relazed minimizer of (2.1) provided y(-) minimizes the integral
obtained by replacing £(-) in (2.1) by £°(-); and the superlinear growth hypothesis
(2.2) is used to obtain (via direct method) existence of relazed minimizers,
from which 0 — relazed minimizers of (2.1) are built. These are minimizers of the
nonconvezified integral, which is obtained from (2.1) by replacing £() with the
nonconvezified lagrangian £°(-).

The aim of this chapter is to define precisely all these concepts, and to review the
preceding results (of [Or4] or [Or 5]), concerning existence and regularity proper-
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ties of 0 — relaxed minimizers. This is important for chapters 3 and 4, since 0 —
relared minimizers are the starting basis for those chapters.

2.2 Existence of 0—relaxed minimizers

Definition 2.1 A BH — function is called superlinear provided

inf £ (R, £)
€]

A BH — function £(-) having £(s, ) convex Vs is called 0 — lsc — convex
provided £(-,0) islsc and £(-) is approximable by integrable slopes at zero, i.e.

— 400 as [§| — o0, (2.2)

VneN 3F¢,:R—-[0,n] Isc with (p,(s)) /" £€(s,0) Vs (2.3)
Amy () € L, (R) : £(5,) > @, () +mn(s)¢ Vs, E. (2.4)

To see an example, consider the BH — function

(2 +&s 9 _J)+ for s#0 and (¢|=1 or £=0)
£(5,6) =4 1 for s=0 and (|{|=1 or £=0)
+00 Vs for & >1.

Then ¢**(-) is 0—lsc— convex for § <2, but £**(-) isnot 0— lsc— convex for
60>2.

Notice: any superlinear function £: R x R — [0,4+0c0] which is Isc has £**(-)
0 — Isc — convex, since £**(-) is then lsc; indeed, more generally, any superlinear
BH — function with £(s, -) conver and £(-) Isc at (s,0) Vs is O0—lsc—convez (see
[Or 3, th. 1]). In particular, a 0—lsc— conver function £(-) may have £(s,0) = 400,
or 0¢(s,0) =0 with finite £(s,0); indeed, what matters is, somehow, integrability in
s of the slope of £(s, -) near zero. There are 0 — lsc — convez functions which are not
lsc at £ =0; seee.g. the example above with § < 2.

Definition 2.2  Given any BH — function £(-), define the 0 — lsc — converified
lagrangian £°(-) to be the largest of the 0 — lsc — conver BH — functions < £(").
Define also

@ (:)=12°(,0). (2.5)

One easily checks that such £¢(-) always exists, hence we may consider the correspon-
ding 0 — lsc — convexified integral

/bf" (z (@), 2 (¢) dt on Xag, (2.6)

8



Chapter 2. Preliminaries for the scalar case

for any BH— function £(-). In concrete applications, with an explicitly given superlinear
£(-), one may not know exactly what £¢(-) is; however, in such cases £°(-) may be
replaced by the following easily computable function £(-), in all that follows. (But
notice: £°(-) is in some cases, as in the example above, better than £(-).) To compute
£(-), define f(), g(), h()) by: epif():=epil(:); epig(s,-):=Coepif(s,-) Vs;
h(-,8):=20(-,&) for £#0 and h(-,0):=g(-,0); epif(s,-):=Coepih(s,-). Then
£(-) is convex and lsc at £ =0 (see [Or 3, part (j) of proof, p. 10]). Therefore £{-)
is 0 —lsc— convex.

Proposition 2.3 (See [Or 3, th. 1])

. Let £(-) be a superlinear BH — function. Then for any A, B there ezists a
relaxed minimizer y, () (i.e. a minimizer of (2.6)). Moreover, we may impose y, (-)
to be bimonotone (i.e. properties (i) and (iii), of definition 2.4 below, hold with
Y (1) replaced by y. ().

In the remaining of chapter 2 (and chapters 3, 4) we restrict our attention mostly
to the set S, :=y, ([a,b]) with y_(-) as given by proposition 2.3, we define

©, () =¢s, () 2.7)
and consider the sets
Sap:={s €S, : ¢, (s) =min ¢, (-)} (2.8)
Sip:={s€Sap: ¢, (s)=4(s,0)}, Sfp:={s'€San: ¢, () <t(s,0)}.
- Consider now the mnonzero extremities a(s), [(s) of the intervals of affinity of

£°(s, -) which have the other extremity at £ = 0. Or, more precisely, consider the
subdifferential 9£¢(s, -) of £°(s,-) (see [Ek Te, p. 20]), and define the set

Fy(s) := (80°(s, )L (8¢°(5,0)) = {€ € R: 8£°(3,£) N DL (s5,0) £ 0}

Then, assuming £(-) to be a superlinear BH — function, as we always do here, we
have: the set {0} UF, must be an interval

[als), B(s)] with a(s) <0< B(s); (2.9)

£°(s, -) is affine along [«(s),0] and along [0,5(s)] — and even affine along [a(s), 5(s)]
whenever s € S,f,, see (3.1), in particular for those s € S ap for which £**(s,0) =
¢ (s) — and the following equalities always hold true at those s where a(s)# 0 (resp

B(s)#0): £°(s,a(s)) =£(s,a(s)) (resp. £°(s,8(s)) =£(s,8(s))).
For each s € .S;, consider the set V (s) of those £ # 0 for which (see [Roc])
{(&¢€°(s,6))} is a 0—dimensional face of epitl°(s,-); (2.10)

9
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and define the nonconvezified lagrangian

£¢(s,8)  for £€V(s) and s€ S,
£0(5,6) :=< @(s) for =0 and s€ Sy
400 elsewhere,

together with the nonconvexified integral

/beO (z(t), &' () dt om Xigp, 2.11)

for any BH — function £(-). (Notice: in concrete examples in which y_(-), hence
S, and S4 p, may be not explicitly known, one may define £°(-) using R instead of
So and S4B, but just for the definition of £%(-). Notice also: the idea of £°() is,
somehow, to obtain the largest function having bipolar £%** () = £¢(-) where it matters;
and £°(s,§) =£(s,€) V€€V (s) Vs€S§,.)

Definition 2.4 We call y, (-) a 0—relaved minimizer of (2.1) on Xap provided
Yo () has values y, ([a,b]) =S, and is a bimonotone minimizer of the nonconvexified
integral, in the sense that y, (-) € X4 p minimizes the 0—lsc— convezified integral
(2.6) on this class and (using £°(-), ¢(-), £°(-) as defined in (2.5) and (2.11))
Y, () satisfies the following regularity :

() £° (4o (1), 4, (1)) = £° (36 (), 4, (1) @e. in [a,B];
(i) y, (-) remains a constant s' along some subinterval (a',b’), with o’ < b’

(i) y, (-) is monotone along each one of the remaining subintervals, [a,a’] and [b',b],
with derivative “bounded away” from zero, in the sense that

% () € {0} U (aly, 1)),8(y, (1)) ae in [a,d]Ub’,b); (2.12)

(iv)
4° (yo @, y(') (t)) =/ (y0 @®, v, (t)) ae. in [a,a'|Ub',b); (2.13)

(v)
s € Sam, (2.14)

whenever f:éc (v. @), ¥. () dt < +oo.
We say that y, (-) stops (resp. does not stop) in case a' < b’ (resp. a’ =1b').
One may always choose the stopping point s' € Sy p.

10



Chapter 2. Preliminaries for the scalar case

Proposition 2.5 (See [Or 4, th. 1] or [Or 5, th. 1])

Let £(-) be a superlinear BH — function. Then for any A, B the nonconvex
integral (2.1), defined on the class Xap, has a 0—relazed minimizer y, (-).

Remark 2.6 According to [Amb As Bu, th. 4.1] (see also [Dal M Fr, th. 3.10]), any
minimizer, as y,(-), of the convezified integral (2.6) satisfies the DuBois — Reymond
dif ferential inclusion (i.e. there exists a constant q for which

e (y. (1), 4. (t) € a+y. () 0£°(v. (1), 4. (8)) ae in [a,b]) (2.15)
provided the minimum value is finite and
y' (t) € interior (£°(y, (£), ) (R) ae.. (2.16)

Clearly a simple way of guaranteeing this 1is by asking the domain
(£°(y, (t), -)) 1 (R) to be open for a.e. t; and this happens automatically in case

°(y. (t),R)CR for ae te€]a,b]. (2.17)

Given a relazed minimizer y, (-) (guaranteed to exist by proposition 2.3), the
proof of proposition 2.5 consists in changing it so as to obtain a 0 — relazed minimizer
Yo(-). This proof shows that if y,(-) satisfies the DuBois-Reymond differential inclusion
(2.15) for £°(-), independently of (2.16) holding true or not, either for y_(-) or for
Yo(-), then also y,(-) satisfies it for £9(:), with the same constant q.

Remark 2.7  For a function £: R xR — [0,+00], a simple way to obtain L& B—
measurability is to ask that €(-,£) be measurable V& and £(s,-) be either continuous
(e.g. convex with finite values) or else convex lsc with domain never a singleton Vs ( see
[Roc We, 14.34, 14.39, 14.42]). Notice also: definition 2.2 implies the measurability of
°(x(:), ' (-)) Vz(-) € Xap, see [Or3, prop. 2], hence definitions 2.4, 3.1 make
sense.
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Chapter 3

Existence in the scalar case
without mean-strict minimizers

3.1 Introduction

This chapter is devoted to prove existence of true minimizers, for superlinear
BH — functions £(-), even with ¢ (s) < £**(s,0) < £(s,0) Vs, provided an adequate
extra hypothesis is satisfied, which is stated by using a 0 — relazed minimizer y,(-),
already known to exist. Indeed, defining S, := y, ([a,b]) and ¢, (\) := @15, (), then
such extra hypothesis consists in imposing: there must exist some minimizer s' of ¢, (-)
which is not a mean— strict minimizer of ¢ (-). This generalizes directly the hypotheses
of [Am Ce] and [Marq Or], and also the preceding ones (of [Au Ta], [Marc|, [Ray],
and [Ce Co]); and allows to show existence of minimizers in many cases even without
knowing y, (), as e.g. in corollary 3.7.

Given the extreme weakness of our Basic Hypotheses, we should clarify precisely what
we mean by a solution of (2.1). ’

Definition 3.1 A function y(-) € Xap is called a minimizer of the integral (2.1)
provided y (-) minimizes the 0—lsc—convexified integral (2.6); and £(y(-), ¥ (-) =
W), ¥ () ae (unless [;¢°(y(®), v () dt=+oo).

This definition makes sense: y(-) will give to the integral (2.1) a value < than
any other z (-) € X4 p for which the integral (2.1) is defined.

12



Chapter 3. Existence in the scalar case without mean-strict minimizers

3.2 Existence and regularity of true minimizers

From now on we will consider a 0—relazed minimizer y,(-) (guaranteed to exist
by proposition 2.5), hence S, =1y, ([e,b]) and ¢, ()= ¢)s, (). In what follows, when
we mention the nonempty interval (s’,s) we mean, more precisely, interior (co {s/,s}),
regardless of having s> s or s<s'.

Using a(-), B(-) asin (2.9), define theset S,f, of those s € R at which £°(s, )
is affine at zero, i.e.

a(s)<0<B(s) and £°(s,0)=(1—-N)L°(s,a(s))+AL°(s,B(s)), (3.1)

for an adequate A tohave 0= (1-X) a(s)+AB(s). By (2.9), £°() may be replaced
by £(-) in the rhs of equality (3.1). Consider now the function

]al;ﬂ + ﬁ for s € 8y,
p:R—(0,+00],  p(s):= (3.2)
+00 for s ¢ Sofss

and, for each bounded open interval S # () satisfying the integrability condition
p(:) € LH(S), (3.3)

define the p — mean integral of ¢(-) over S by:

1
]{Sgo(s) ds = o /Scp(s) u(s)ds. (3.4)

For each s’ € S, consider S,f.(s’), namely the set of those s # s’ for which the
interval S := (&', s) satisfies (3.3). Clearly Su,(s') is always the union of two intervals,
each one of them possibly empty or bounded (maybe including the extremity away from
§') or unbounded. Define also the set Sa72(s') consisting of the points s € Syf; (s')
for which ¢ (s) = £(s,0) < min ¢, (-).

Definition 3.2  We say that s’ € Syp is not @ mean — strict minimizer of @{:)
provided : either
ses AB; (3.5)

or

s' belongs to an open # 0 interval S C Sap having u(-) € L'(S); (3.6)

or else 3sy €S, for which: either

"

I s
b-a €Z and ]{ p(s)ds<mingp () (3.7)
s

35" € Sapz (1) \Sp 1 ————
° fs,1 u(s)ds

13
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or
3s" € Sapz (s1) \ S, : f, ¢(0)do <min ¢ (-) Vse (s],s"); (3.8)
31 .
or else

"

/: n(s)ds

Remark 3.3  In definition 3.2, it appears easier to grasp its meaning by naming it,
as we did, in the negative way. In concrete applications, to prove ezistence of minimizers
for (2.1) with explicitly given £(-), it may turn out more convenient to select sy # s'.
Moreover, in the rest of this remark we will assume, to simplify, s} =s'.

In the special “affine” case (3.18) in which p(-) is constant and Y (-) = (-)
is Isc and is concave —monotone at ', in the sense of s’ belonging to an open interval
I where ¢(-) is either concave or monotone, then clearly ¢(-) satisfies (3.6) or
(3.8) for some s" with either s" <s' or & <s"; indeed, such ¢(-) must satisfy

5”
<b'—a and f{ @(s) ds <min ¢, (). (3.9)
8

1

35" € 8,7, (51) \ S, -

VieR 3s"#4: @ (-) decreases along co {s',s"}
as the distance from s’ increases.

(3.10)

(Notice: in the reality we need (3.10) to be satisfied only for those s' € Sap, see
(2.7); and by ¢ (-) decreasing we mean either non-strictly or strictly.) Since this is
the hypothesis used (with strict decreasing) in [Am Ce], in particular definition 3.2
generalizes both the hypotheses of [Marg Or] and of [Am Ce]. Of course definition 3.2
also generalizes the one of [Ray|, imposing

5 [, .
2 [e (56~ € Z°(5.9| #0 Vs, & (3.1)

indeed, if one asks this for € =0 only, then it means this C? ¢ (-) =£°(-,0) cannot
have local minimum points, hence has to be strictly monotone. As to [Au Ta], they ask
(3.11) to hold V& € [a(s),B(s)] Vs.

Let us comment now on definition 3.2 itself. As to the integrability condition u(-) €
L1(S), is easily imposed, e.g. by asking:

(P() ZZ**(',O) <e('70)) ,U’() = 6Llac(]R) (312)

1

o ()| ﬁ( ‘)
( This holds e.g. in the “affine” case (3.18), with p(-)>1, h(-), ¥(-) and p()
Isc, and h** () < h(-).) Once such integrability is guaranteed, then S,¢,(s') =R\ {s'}.

Therefore what really matters, in general, to be able to apply definition 3.2 in concrete
examples, is to know whether it is possible to find such a point s" satisfying the inequality
(8.7) or (3.8) or (3.9). And, of course, this is possible only in case ¢ (-) has some
one-sided mean, asin the lhs of (3.8) with s near s', whichis < p(s'). One
possibility for this to happen is e.g. in case ¢(-) increases (resp. decreases) or

14
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remains constant along a small open # 0 interval to the left (resp. right) of s'.
But clearly (3.7) or (3.8) or (3.9), can never be satisfied at a minimizer s of
w, () if, say, s is also the unigque global minimizer of ¢ (-); orif £(-) is so wild that
(s,8) \ Sagzl >0 or u() g L*(s',s) or o(-) p() ¢ L (s',s), Vs#5s'.

Another possibility to get (3.7) or (3.8) or (3.9), is: () might, say, decrease
strictly as one approaches s' from the left; while ¢ (-) might oscillate wildly to the right
of ', in such a way as to yield a right-sided mean s— f:, ¢ (o) do decreasing as s
increases ( at least for small enough s—s'), i.e. in some sense having ¢ (-) to decrease
more than increase, in each oscillation.

Definition 3.4 We call y(-) a finitely — monotone minimizer of the integral
(2.1) on Xap provided: y(-) minimizes the 0 — lsc— convexified integral (2.6);
W),y () =Lw(), ¥ () ae in case the corresponding minimum value is finite
and, for some N € N, [a,b] may be partitioned into N subintervals [a;,bi], along
each of which y(-) is strictly monotone and satisfies (2.12), except possibly along
one subinterval [aio’bio] where y(-) is constant. In such case we also call y(-) a
N — monotone minimizer of (2.1). We say that y(-) stops (resp. does not stop)
in case a; < b, (resp. a; =b ).

Theorem 3.5  ( Sufficient condition for the existence of a true minimizer)

Let £(-) be a superlinear BH — function, so that proposition 2.5 may be applied
to reach y, (-) and ¢, (-), S, asin (2.7).

Then there erists a true minimizer y(-), for the fully nonconvex integral (2.1)
on Xap, whichis finitely — monotone, provided: either o' =b'; or Sip#0; or
else 3s' € Sy p which is not a mean — strict minimizer of ¢(-).

In case y,(-) is Lipschitz continuous (see [Or 6]) and a(-), B(-) are locally
bounded then also y(-) is Lipschitz.

Proof : Denote by N the positive integer in (3.7). (As to (3.8), one easily
checks that such N must always exist; while in case (3.9) one takes N =1.) Let us
assume, say, s < s" just to fix ideas. Define

"

N |
0:= b —a /s' !a(s)[ ds, (313)

so that

N 5" 1 .
1—a_b,_a,/s, 557 4 (3.24)
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and define

T4 : 8,8 — [al,a"i‘ (1-9) N_I'-\_I(LI] : T+(s) =a'+ [ 73?1;5 do,

r_: s, 8" — [a/ +(1-6) %,al_% %] , T_(s):=a + bl}.\.’ar +f:/ 3%35 do

Since we are assuming 1/a(-), 1/8(-) € L'(s',s"), these functions 74 (-), 7_ () will
be AC and monotone with derivative #0 a.e.:

74+ (-) increases, with 7/ (s)=1/B8(s)>0 ae.;

while
7_(-) decreases, with ™ (s)=1/a(s) <0 a.e..

Moreover 7, (s') =a', 7_(s') = o/ + 5%, 7_(s") = o' + (1 - 6) b']'(,“' =74(s"), by
(3.13), (3.14). The inverse functions of 7, (-), 7_(-), respectively

b — a/] - [SI, 3"] ,

T4 [a',a’ +(1-6)

bl_a/ bl_al
z_: [a’+(1—9) ——N——,a'+ i } - [¢,¢"],

are well-defined and are AC (see [Or 1, remark 4]), z, (-) increases and z_ (-) decreases
(both with derivative # 0 a.e.); and

b’ —a
N — o — ’
zi(a)=s x_(a—l— N ),

b’ —a b’ —a
x+(a+(1 6) I )*s —x-(a—f—(l 6) N )

We may therefore define the function

11
z, : [a’,a'+ b—a’ N“] — [¢,5"],

z4 (t) for t in [a',a’ +(1-96) b';,“/]
z, (1) =
z_(t) for t in [a’+(1—9) ’—’—'—%,a'«{—%—“—'] .

Clearly z,(a’) =s' =1z, (a’ + %) y Z (a’ +(1-0) b’;,“') =",

B(z1 (¢)) for ae. t in [a’,a’+(1_9) k.’];_aq
7 (t) =
oz (1)) for ae. t in [a’ +(1-9) b_’;,_a"a/ + b—%‘,&’] .
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Therefore,

a'+% 0 , , b — o
to0> [T 0 (4,0), 4 0) dr=ple) T2 >

1

> [ o) ute) s = / [f(s,a(S))W(lmH(s,ﬂ(S))Eé—)] ds=

=/ e(s,ms))ﬁm/&f e(s,a<s)>,—&(17),ds=

o/ +(1-6) b';}a' aq_b_};_a
=/ ¢ (24 (t), 7 (1)) dt+/ 0 (z— (t), 7 (1)) dt =
a’ a'+(1—0)#

+

a/+b'—a
N
=/ t(z, (t), =, (t)) dt,

using [Or 3, prop. 3 (b)]. But then the inequality > will have to be an equality.
(Otherwise a contradiction would be reached, since y,(-) has to be already a 0 —
relazed minimizer hence x, (-) cannot yield a smaller value to this integral. ) Therefore

1 _a!

a’+"l;,“l o +25
[T tmo sy a= [T a0, q0) a6

7

Let us repeat now N times this construction. Namely: we construct z, (-) in
[a’ + yf,i',a' + 2”';,“'] yeeey Zy (7)) in [a’ + (N - 1)!’%,b'] in the same way as z, ()

b'—a'

N ] . By gluing together these N patches, we end

was constructed above in [a', a' +
up with an AC function

y: [a,b] — [¢,5"],

[y, (t) for t in [a,d']
z, (t) for t in [a’,a’+ b'—;,“—']
y@ =4 ,
z, () for t in [a’+(N— l)b'&“',b']
L % (8) for ¢ in [b',0]

with ¢ (¢t) # 0 ae., y(a) = = y(b'), and, by repeating the equality (3.15) N
times and adding,

b! b'
[ tw®.ve) dt= [ 0w, 4 o) a

Therefore y (-) is the desired 2(N+1)—monotone true minimizer of the fully nonconvex
integral (2.1) on the class X4 . The proof is complete.
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Notice that this y(-) also minimizes the integral obtained from (2.1) by replacing
£(-) with a new lagrangian ¢!(-) defined to be equal to £(-) on R and +oo on
RZ\ R, where R is the set of those (s,£) for which: either £ € V(s) and s€ S,;
or {=0 and £(5,0) = ¢(s); orelse £ € {a(s),B(s)} and s¢ S,. (Taking V (s)
asin (2.10).) :

Let us present now a simpler version of theorem 3.5, conceived for the special
“affine” case of definition 3.2, asin (3.18). In this case we need to assume h(-) Isc;
and let us assume also, for simplicity, ¢ () and p(-) lIsc, so that ¢ (-) := ¥ (-)+p(-) h** (0)
and there exists a 0—relazed minimizer y, (-) asin definition 2.4, which gives S, :=
Yo ([a,8]) and o () := @5, (). Then s’ € Sap will not be a mean—strict minimizer
of ¢(-) provided either h** (0) = h(0) or else, either s’ € interior (Syp) #0 or else,
considering the maximal open interval (o, 8) containing 0 along which A**(-) is affine
and setting p:= ]«17 + /lj , we have: 3s] € S, for which:

either
3s" ¢ 8, : L,?—i——eZ and _1 /sucp(s) ds <min ¢_(-) (3.16)
o " =) u s — s o = o
or
3" ¢ S, : - _18,1 /, p(0) do<min g () Vse (s],s"). (3.17)
8] R

Corollary 3.6  Let h:R — [0,+c] be a lsc function having h(£) / |€] — +oco as
|§] = oo, andlet ¥ : R — [0,400) and p:R — [1,400) be Isc functions, so that
proposition 2.5 may be applied to reach a 0 — relazed minimizer y,(-) of

b
/ ¥ (z (1) +p (@) h(2 (1) dt on Xagp. (3.18)

Then there ezists a true minimizer y(-), for the nonconvez integral (3.18), which
is finitely — monotone, provided either o’ =b' or h** (0)=h(0) or ¢(-) satisfies
(3.10) orelse 3s' € Sap that is not a mean — strict minimizer of p(-) (i.e. asin
(3.16) or (3.17)).

In case y, (-) is Lipschitz continuous (see e.g. [Or 6]) then also y(-) is.

Notice, however: 1 (:) and p(-) could be taken just Lebesgue—measurable and apply
theorem 3.5.

Corollary 3.7 Let £:RxR — [0,400] be Isc and superlinear, with: either ¢(-):=
£ (-,0)=4£(-,0); orelse (3.10) and (3.12).

Then there exists a minimizer for the integral (2.1) which is finitely — monotone.
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Chapter 4

Existence in the scalar case under
appropriate mean speeds

4.1 Introduction

In this chapter we consider the problem of existence of minimizers for the integral
(2.1) defined in the more restricted class

Zap={z()€Xap: ' (t)#0 for ae t in [ab]}.

Indeed, we present a SC (sufficient condition) on the boundary data (a,A,b,B)
guaranteeing existence of a bimonotone 0 — relazed minimizer y,(-), for the integral
(2.1) on X4 p, which does not stop (so that y, (-) is actually in Z4 p). Another way
of seeing this result is the following. If the boundary data satisfies such SC' then it ceases
to matter whether £(s’,-) is 0—convez or not; so that, in particular, y, (-) is not only a
0 —relaxed minimizer, it is indeed a true minimizer of this integral (2.1). That is: this
SC replaces completely the condition of 0—convexity; under it, existence of minimizers is
obtained without any convexity hypothesis, and with almost no regularity hypotheses
on the lagrangian £(-). Indeed, besides £: RxR — [0,4+00] being £ ® B—measurable
with £ (s,-) Ilsc Vs, having superlinear growth (as in (2.2)), we only need
the validity of the DuBois — Reymond dif ferential inclusion (2.15) for the relaxed
minimizer (in particular imposing e.g. the restriction z'(-) > 0 causes no problem ).
Notice that we use in this chapter the same definition 3.1 of minimizer.

We start by obtaining an inequality which is a NC (necessary condition) for a
bimonotone 0 — relazed minimizer y,(-) to stop (i.e. to have a’ < b'); and the
opposite inequality yields immediately the above SC for y, () not to stop (ie. to
have o' =b’, so that y,(-) € Z4,5). Then a similar reasoning gives another inequality
which isa NC for y,(-) not to stop; and, again, the oppos1te inequality yields a SC
for y, () to stop,sothat y,(-) € XaB\ ZaB-
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Chapter 4. Existence in the scalar case under appropriate mean speeds

This research was suggested by the paper [Mu Pe], in which interesting numerical
examples have been reported.

4.2 Existence and regularity of true minimizers

From now on we will consider a 0 — relazed minimizer y, () (guaranteed to exist
by proposition 2.5); will assume (2.15) (assuming e.g. (2.16) or (2.17)); and will
use

SO(.):EC(.,O)’ So “_“yo([a’b])’ Po ('):‘p|So ()v (4-1)

as given by proposition 2.5 and (2.7), (2.8). Before stating our first result, let us
introduce useful notations. In what follows, s’ is always a parameter in S4 p. Define:

V(ss)={0}, :
V(s,s")i={6 ¢ (als), B(s)): ¢(s) €£°(s,6) —£0L°(s,8)} for s#5; (42)
V_(s,8') =V (s,8")N(—00,0),
(4.3)

B_(s,8') :=min V_(s,s'), a—(s,s):=max V.(s,s),

Vi (s,8") =V {(s,8')N (0, +0c0),
(4.4)
ay (s,8') :==min Vi (s,5), B, (s,¢):=max V,(s,s).

4.2.1 A necessary condition in case the 0—relaxed minimizer stops

Define
B,(-,5):c0{A,} >R, B, (-,8):co{s,B} =R,

B_ (s, ") for s in [d,A] if <A
B, (s,8") :={

B4 (s,8") for s in [A§] if ALS,

B_ (s,s") for s in [B,s'] if B<éd
By (s,8) =

B4 (s,8) for s in [¢/,B] if s <B;

and, to use in case y,(-) is monotone, B, . : co {A,B} — R,

Ban(s):=8, (s,8') =8B, (s,8') Vs eSan.
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(Notice: at points where V_(-) =0 (resp. Vi (-)=0) weassume f_(:)=0=
a () (resp. ay()=0=B,()).)

In the next theorem we use the definitions of sections 2.1 and 2.2.

Theorem 4.1  ( Necessary condition, in case the 0 — relazed minimizer stops)

Let £(-) be a superlinear BH — function.
Let y,(-) beasin (4.1). In case y,(-) does not minimize the integral (2.1) we
must have :

(@) y, (") =" along some nonempty subinterval (a’,b’) C [a,b], for some s’ € .S’A<, B3

(b) if, moreover, Sgp # 0, then y,(-) may be modified so as to become a true
minimizer y(-) of the integral (2.1);

(c) otherwise Syp is empty and, (under (2.15) or (2.16) or (2.17))

S | B
—e d 8+ —ds < b—a. 4.5
/A B, (s,s") s B (s, ") ( )

In case y, (-) is monotone and satisfies inclusion (2.15) then
B 1
——ds < b—a. 4.6
/. N0 (46)

Proof : (a) By (2.13), y,(-) has to minimize also the integrals
[l @), 2 @) dt, z(e)=A4, z(d)=¢,
(4.7)
e@@), @) dt, z@b)=s, =z(b)=B.
Therefore, if y, (-) does not minimize the original integral (2.1) then

b! X
[ 00,5, 0) dt= 0"~ () < 6/~ )e(50) = [ o0, 5,0) at,

hence o’ < b’ and ¢ (s') < £(s',0), sothat s’ € Syp. Indeed, otherwise y, (-) would
minimize the integral (2.1):

b b
/ (@), 4, (8) dt = / £° (4 (8), 4 (8) dt.

(b) This case is obvious.
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(c) But even when Sip is empty, since y, () does not minimize the integral (2.1),
by (a), (2.15) and (2.14) we have, along the nonempty interval (a’,b’),

g =¢(s') = min ¢, ().
Therefore y,(-) satisfies also the explicit differential inclusion (see (4.2))
Yo (t) € V(y(t),s) a.e. in [a,b]. (4.3)

Let us consider an interval, say [a,a’], where y, (t) > 0 a.e.; then (4.8) and (4.4)

yield
oy (4, (8),8") <yl (8) <B4 (% (8),8') a.e. in [a,a] .

Since the function ¢ — s = y, (t) restricted to [a,a’] has an inverse 7, (-) which
is AC with derivative 7/, () > 0 ae. on [A,s'], we may consider the function
v, () :==1/7, (-), obtaining

Yo (t) = v, (1, (1)) = v, (s) for ae. tela,a] and ae s€[Ad].

Therefore
oy (s,8) < v, (s) < By(ss) ae in [A5].

We may define a new lagrangian ¢, (s,€) := /v, (s), thus obtaininga L& B~
measurable function £, () with ¢, (-,0) =0, to which [Or 3, prop. 2] is applicable,
yielding the measurability of the function y/ (-) /v, (3, (-)); andsince y/ (-) /v, (y, (:)) =
1 ae., in particular ¢, (-) /v, (¥, (*)) € L (a,a’). Therefore [Or 3, prop. 3 (a)] may
be applied to justify the change of variable in the integral

’ ’

a/_a=/1a1dt=La;%dt"/ Ok / ﬂ+(88)

In case we also have g/ (t) >0 a.. in [b’,b] then, similarly, since y, () restricted
to [b’,b] has an inverse 7, (-) whichis AC, we may consider the function v, (-) :=
1/7 (-), obtaining

”‘b':/f“” /bb B%Et()t»dt / %® /ﬁ+<”)

In particular 1/8, (-,s') € L' (4, B), and adding these two inequalities one gets

(b-a)= (v -d) /ﬁ+(88)

Since o’ < b’ we finally reach

B—-——l d b
/Aﬂ+(s,s’) s<b—a. (4.9
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Chapter 4. Existence in the scalar case under appropriate mean speeds

In particular, in this case y,(-) is monotone, hence there could exist plenty of possible
stopping points s’ € S4p for y,(-). However they all yield the same 23 B (-). This
proves (c) of the statement in case y,(-) always increases.

The other cases may be treated similarly. The proof of theorem 4.1 is complete.

Theorem 4.2  ( Sufficient condition for the existence of a true minimizer)

Let £(-) be a superlinear BH — function.

Then there exists a bimonotone minimizer of the nonconvex integral (2.1) on X p
(namely: as in definition 2.4 with o' =b') provided 3y, (-) asin (4.1), satisfying
(2.15), (2.16) or (2.17), and: either y,(-) is (bimonotone but) non-monotone and

| B
b—aS/ —ds+ —ds, 4.10
B P B e (410)
where s’ is the point in S, \ co {A,B} at mazimum distance from co {A,B}; or else
Yo (*) 1is monotone and
B
1
b——aS/ —ds. 4.11
A Byp(s) (1)
Proof : It suffices to notice that if the inequality (4.10), opposite to the

inequality (4.5) of theorem 4.1, holds true then y,(-) cannot stop because: if it
stopped then the inequality (4.5) would be true (by theorem 4.1); and since also the
opposite inequality (4.10) holds true (by the hypotheses of theorem 4.2), we would
reach a contradiction.

The proof is complete.
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Chapter 4. Existence in the scalar case under appropriate mean speeds —

4.2.2 A sufficient condition for 0—relaxed minimizer to stop

Let us introduce further useful notation. Define:

a,:co{4,s'} >R, ap:co {s,B} - R,
a_(s,s) for s in [, 4] if <A
a, (s, d):=
ay(s,s) for s in [A§] if AL,
a_(s,s") for s in [B,s'] if B<s'
a, (s, 8) =
as(s,s) for s in [¢',B] if § <B;

and, to use in case y, (-) is monotone, a, , :co {4,B} — R,

a,5(8)i=a,(s,s)=a,(ss) VseSasp.

Using similar proofs as above, one obtains the following results.

Theorem 4.3  ( Necessary condition, in case the 0—relazed minimizer does not stop)

Let £(-) be a superlinear BH - function.

Let y, (), a 0 — relaxed minimizer of the nonconvez integral (2.1) on Xap
given by proposition 1, satisfy the DuBois— Reymond dif ferential inclusion (2.15).
In case y,(-) does not stop then we must have : either y, (-) is non-monotone and

b—aS/SI—l—ds+/B—L——ds, (4.12)
A Qy (37 sl) s’ Qp (3’ sl)
where s’ is as after (4.10); or else y,(-) is monotone and
B 1
b—aS/A mds. (4.13)

Theorem 4.4  ( Sufficient condition for 0 — relazed minimizers to stop)

Let £(-) be a superlinear BH — function.

Let y,(-), a 0—relaxed minimizer of the nonconvez integral (2.1) on X4 p given
by proposition 2.5, satisfy the DuBois — Reymond dif ferential inclusion (2.15).

Then y,(-) stops at some minimizer s’ of ¢ (-) provided : either y,(-) is
non-monotone and

S | B 1
——d —d b— 4.14
/A a, (S, 3/) st /s’ Qg ('57 3/) s < “ ( )
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Chapter 4. Existence in the scalar case under appropriate mean speeds

where s’ is as after (4.10); or else y,(-) is monotone and

B 1
/ — _ds<b—a. (4.15)
A Oup (S)

Remark 4.5 The case o (-,s') =B, (-,5) a.e. is specially interesting, in the sense
that the above gap disappears: for b—a small enough y, (-) does not stop; while from
f: 1/B,(-,8") on, y,(:) stops. Therefore one is never in doubt about what happens,
in this case. We get thus a NSC for y,(-) to stop. This is the case namely whenever
£**(s, ) is strictly conver outside of the interval (a(s),B(s)) Vs € y,([a,b]). (An
example is presented in the next section.)

4.3 Determination of boundary data for which minimizers
exist in a specific example

Set, £(s,£) = p(s) + h(E)+ with (s) = [s—s'|° and A(¢) = | [g]'+ - ],
€>0, §>0, and 8>0. Then a(s)=-F, B(s)=p, and one easily checks, using
the results of chapter 3, that s’ is the unique possible stopping point. Hence '

) {62188 h@ [P +50+0) ] =)}  for s#s
V(s s)=
{0} for s=4g'

Let us consider, for simplicity, the special case § = 1. Defining, for s # s,

v (s) :=% Jé] \/1+\/4+3(p(s) B4>p>0,

we get, for s # ¢,

V{(s,s) ={-v(s),v(s)},
11 111
ﬁ— ('Sisl) o (S’SI) B ’U(S) , a4 ('5’31) - IB+ (37 'sl) B ’U(S) ,

and one obtains, as NSC for the existence of a minimizer for the integral (2.1);

/Asﬁds /Ba_(% dsl. (4.16)

(Notice: the hypotheses of the relaxation result of [Ek Te, th. IX.4.1, p. 287] are
fulfilled. )

b—a< +
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Chapter 4. Existence in the scalar case under appropriate mean speeds

To consider still a more specific example, fix =1, ¢=2, s =0, B=1; then
a SC for the existence of minimizers for the fully nonconvex integral (2.1), for any
A <0, is the inequality

1
b—aSR(A):=\/§/ ! ds
AVI+VE+3s2
One easily checks that R(A) > R(0) =0.953... VA < 0. Therefore it suffices to choose
b—a <0.953 to be sure of the existence of a minimizer for the fully nonconvex integral
(2.1) with A <0, B =1. In particular, there always exists a true minimizer for the
integral

/1/2 z(t)? + (x'(t)2—1)2 dt with =2(0)=A<0, =(1/2)=1.
0

On the other hand, if we fix the interval [a,b] (or, more precisely, its length: e.g.
we may set a =0 and fix b), then the integral (2.1) will have minimizers whenever
A (is negative and ) has modulus large enough.

However, for ¢ =5 existence of minimizers would demand

b < f/ ds = 7.07404... .
4+3|s|5

Therefore: incase a=0, B=1 and b > 7.075, there exists no minimizer, for any
A < 0. In particular, there exists no true minimizer for the integral

8 2
/0 2@ + (2@®P-1) dt  with 2(0)=A<0, =(8)=1.

We can state the morale synthetically as: by imposing a mean speed |B — A| / (b—a)
large enough then the 0 — relazed minimizer cannot afford to stop, hence is a true
minimizer.
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Chapter 5

Existence in the vector case under
almost convexity

5.1 Introduction

The aim of this chapter is to prove new sufficient conditions for existence and regu-
larity of minimizers for the 1-dim integral

b
/L(m(t),x'(t)) dt on X%pg, (5.1)

where X7 p is the class of AC (absolutely continuous) functions z : [a,b] — R
satisfying f)oundary conditions z(a) =A, z(b)=B, and L:R"” xR" — {0, +o0].

Since L(s,-) is allowed to be nonconvex, we consider the bipolar L**(s,-) of
L(s,-), so that epiL** (s, ) = ©o epi L(s,-), and the corresponding convexified
integral

b -
/ L™ (z(t), ' (1)) dt on X g. (5.2)

We call y_(-) a relaxed minimizer provided y,(-) minimizes the integral (5.2).

Since in the vector case the hypothesis of O—convexity does not suffice to guarantee
existence of minimizers (see (5.16)), we have used instead almost convexity, a concept
that was born, for multifunctions, in the paper [Ce Or].

In the first result we present, L (-) is assumed to be lsc with superlinear growth at
infinity, i.e.

L(s,&) > 0(|¢]) VY(s,¢) with O(r)/r —» +o0 as r — +oo, (5.3)

so that there exists a relaxed minimizer y, (-). Changing y, (), by applying to repara-
metrizations the bimonotonicity results of A. Ornelas, we obtain a new relaxed minimizer
y (-) which is a true minimizer: it also minimizes the original, nonconvex, integral (5.1).
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Chapter 5. Existence in the vector case under almost convexity

In the second result, existence of y_(-) is used as one hypothesis, and we need no growth
assumption to turn y, () into y(-). '

We also present some concrete examples of application of these results to prove
existence of true minimizers.

5.2 Almost convexity

Definition 5.1  For a function L :R™ x R™ — (—o0,+00], we call L(s,-) almost
convex provided

V& with L** (s,€) < L(s,€) (5.4)

Ixe(0,1] FA€efl,4+0) Ta€[0,1] for which (5.5)
L*™(s,6) = (1 — &) L(s, X&) + oo L(s,A§) (5.6)
£=(1-a)(M)+a(Af). (5.7)

For completeness, we also set A =1=A =a at those £ where L**(s,£)= L(s,¢),
in particular at £ = 0. ( The convention 0-(+o00) =0 is used.) We will denote by
AL (-) the function (s,£)— X for L{-). Similarly for A, «.

Clearly L(s,-) convexlsc implies L(s, -) almost convex. Moreover L(s, -) almost
convex implies L**(s,0) = L (s,0). But the opposite implication does not hold, even for
simple 2—dim superlinear polynomials. Indeed, e.g.

L(s,€) == h (&) = (G +&) (& -1)°+ &
satisfies A**(0) = h(0) =0 but:

J¢=(1/2,1) IA=0 IA=2 Ja=1/2 with
E=(1-a)(M) +a(Af), A" =h(A)=0, ~r*(A)=h(AE)=4
P (&) =1< h(€) < (1-a) k(M) + ah(AE) =2 (5.8)

(and: X must be zero, while 2 is the best value of A, i.e. the one yielding the smallest
rhs in (5.8)); moreover, even though £(-) is superlinear, B

Je=(0,1) : h™(AE) < h(AE) VA>1. (5.9)

Indeed, h™*(61,62) =¢; VIGI<1 V&

Typical examples of almost convex functions may be obtained by increasing arbitrarily
(e.g. to become = +o0) the values of any given L(-) as follows. Denote by F (s)
the vertical projection into R™ of any (relatively open) face F(s) of epiL**(s, ).
Then one may change L (s,£) by increasing it, starting from the value L**(s,£), at
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Chapter 5. Existence in the vector case under almost convexity

those £ # 0 contained in any bounded subset of any k—~dim F (s) which is contained

ina k—dim linear subspace of R®, 1<k <n. Or, as a simpler alternative, increase

arbitrarily L (s,£) only at those £ € F (s), for each bounded n—dim face F(s).
Notice also that for L (s, -):R™ — [0,+00] lsc superlinear we do have

L**(s,0) = L(s,0) = L(s,-) almost convex (5.10)

whenever the faces of epi L** (s, -) have all dimension < 1, namely in the scalar n=1
or radial L(s,§) = f(s,|é|]) case. Here superlinearity is really not needed: it suffices
to have boundedness of the nonconvexity faces (i.e. of the subset of each F (s) where

(s ) < fs,0)):

5.3 Existence of minimizers

Theorem 5.2  ( Existence superlinear)

Let L:R"™ x R™ — [0,+00] be a lsc function with superlinear growth (5.3) having
L(s,-) almost convexr Vs.

Then for any A, B the nonconvex integral (5.1) has minimizers.

( Notice: the regularity of theorem 5.4 applies here too.)

Corollary 5.3 ( Ezistence radial)

Let f:R™x [0,400) — [0,+00] be a lsc function with f(s,-)>6(:) Vs, 0() as
in (5.3).
Then for any A, B the nonconvez integral

b
/a f @), | @)]) dt on X% g

has minimizers provided f**(-,0)= f(-,0) (using f(-,—-r):=f(-,r) Vr>0).

Theorem 5.4  { Regularity in all cases)

Let L:R™ x R™ — [0,400] be a Borel function with L**(-) Borel. Fix A, B €
R", y, () € X3 g and assume L(-,0) to belsc on y ([a,b]) and L(y,(t),-) to be
almost convex lsc V t € [a,b].

Then there ezists y(-) € X3 g for which

(0) FLw®, v @) dt< [L™ (v 1), v, (1) dt;
(#) 3’ <b': Y () #0 ae in [a,a]UD,b];
(¢15) 38" minimizer of L**(-,0) on y([a,b]) =1y, ([a,d]): y()=s¢ on [d,b];
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(@) L= @ (), ¥ (N =LH(), ¥ () ae.

Corollary 5.5 ( Existence, given relazed minimizer)

Under the same hypotheses of theorem 5.4, the existence of a relaxed minimizer (i.e.
a minimizer of (5.2)) implies the existence of a true minimizer (of (5.1)).

Proposition 5.6  (See [Cl]) Let L:R" x R™ — [0,+00] be a Borel function with
L**(-) Borel

Fix A, Be€R" and a closed subset Q@ C R™ for which L**(-) islsc on Q x R¥,
(L**(5,-))" (R) is open # 0 Vs € Q. Assume there exists mgq > 0 for which the
class Xq, of those z(-) in X} g having z([a,b]) CQ and giving a value < mgq to
the convexified integral (5.2), has a Lipschitz continuous element.

Define
’ Q) ={L™(5,8) — (£&,0L" (5,4)) : s € 2}

q = Rl_i.Too sup {g€ Q(¢): |¢| > R}

and, for K >0,
¢" (K):=inf {g€Q(&): |¢| < K} .

Assume, moreover.
(@) 3Ka >0:  [{teabl:|o )< Ka}|>0 Va() e Xa,
(b) ¢~ < gt (Kq).

Then there exists a relaxzed minimizer y_(-) (4.e. a minimizer of (5.2)) which is

Lipschitz continuous. *

Corollary 5.7 Let L(-) and y_ () be as in proposition 5.6.

Then the nonconvex integral (5.1) has minimizers provided L(y, (t),-) is almost
convez Isc V1t € [a,b].

If, in addition,

VM>0 aMl: AL(S,&) |€|SM1 VlE‘SM Vseyc({a‘sb])

then y(-) is Lipschitz continuous.

Notice: in theorem 5.2 and corollaries 5.3, 5.5, 5.7, clearly theorem 5.4 may
be applied to obtain a minimizer y(-) satisfying regularity properties (3), (ii), (¢i4),

(iv).
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>

Proof : (a) We will consider the following class of reparametrizations of the interval
[a,b] : Rgp is the class of all AC maps 7: [a,b] — [a,b] having 7(a)=a, 7(b)=1b
and 7'(-) >0 ae.

For each nonconstant y(-) in X2 p (see eg. [C]), there exists Y (-) in A% p
characterized by having constant speed, i.e. |Y'(t))=m Vt € [a,b] \N, where N is
a null set and m is the mean speed of y(-):

m-=_1__/b|y'(t)| dt
" b-al/, )

Defining \
r(t)=a+ %/ ()| dr,
we have 7/(t) = %ﬂl >0, 7(a)=a and 7(b) =", hence 7(-) € R,p. Moreover
y@)=Y(r(t)) Vite|ab]. -
Clearly Y (-) is Lipschitz continuous.

(b) Asis well know (see [Ol1], [Io]), the convexified integral (5.2) has a minimizer
Y. (). We may assume the minimizer y_(-) to be nonconstant. Let us consider the
corresponding special function Y (-) having constant speed m, asin (a). Let N be
the set of those 7 in [a,b] where the derivative Y’ (7) does not exist or |Y'(7)| # m.
Let 7, € Rop besuch that (asin (a)) Y (r.(t)) =y, (¢) Vte [a,b].

Define the function ¢, : R x R — [0, +o0],

LY (r),Y'(r)r) for 7€ [a,b]\N and r€[0,+00)

) L™ (7),0) for (7 €la,b] and r=0)
b (1,7) = or (Te€N and r=1)

+00 for other (r,r)€ R xR.

Clearly ¢,(-) is £ ® B—measurable and £, (-,0) is Isc. Therefore the integraid
£, (7(-), 7'(*)) is measurable (by [Or 3, propos. 2]) for any reparametrization 7 (-) in
Rap- By [Or 3, propos. 1 with a = 0], there exists a reparametrization 7, (-) € Rap
for which: 3a’ < b’ such that 7/(t) #0 ae. in [a,a’]U[b',b], 37’ minimizer of
£,(-,0) on [a,b] suchthat 7, (:)=7' on [a/,b], and

b b
Leo (r. @), 7] (8)) dtg/ 6 (. (), T/ (t)) dt.

In particular, setting y, (t) ;=Y (7, (¢)) it follows that y, () is a new minimizer for the
convexified integral (5.2), since 7/(:) (resp. 7!/(-)), hence y! (-) (resp. ¢/ (-)), is
zero a.e. on 7,1 (N) (resp. 771(N)).
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The functions X(-) := Az (%, (), %, ()}, A():=Ar(y, (), ¥, (")) are measurable.
Therefore there exist Borel functions A, A : [a,b] — R such that A(-) = X(-) and
A()=A() ae. in [a,b]. Let T:={t€[a,b]: \(-)#X() or A()# A()},

Noi= 7PN U{t€a,b]: A7) (t) or 37! (t)=0}U

U{telot]: 34, () or 4, () # Y (r, ()7, (H)} UT,

and N, =7, (N;), hence N, isa null set. Notice that T, ;5470 (-) has an inverse
771 : [a,b] > [a,a’) U (b',8] which is a measurable function with measurable derivative
7'1“1' (r, (1)) =1/7/(t) >0 ae. in [a,a]U (b',b]. Define the measurable functions
Ay A, :R— R setting

/\(1"1(1'))
=L~ for 7€a,b]\N,
._ T (1)
A (r) =
1 otherwise
(s
M2 for el \W,
A, (r):= '
1 otherwise .

Define the new function £, : R x R — [0, +00],

LY (r),Y'(r)r) for T€[a,b]\N, and r e {) (1), A (1)}

' (rr) = LX), 0 for (r€la,b] and r=0)
A or (T€N, and r=1)
+00 for other (r,7r) e RxR.
Then £, (-) is £L®B—measurable with £, (7, -) lsc; and one easily checks the following:
also £ (-) is L ® B—measurable with £**(-,0) = £, (-,0) Isc; £**(r,r) = +oo
whenever 7 ¢ [a,b] or r ¢ [0,A, (7)]; and
L™ (Y (r),Y'(r)r) <€ (r,r) < L (1,7) VreR V7E€[ab\N (5.11)

with equality at 7 € {0, A, (7),A, (7)} inboth inequalities, and at r € {0} U, (1), A, (7))
(in particular at r =1/ 'rl‘l/ (1)) in the first one. Indeed, the bipolar of £, (7, -) is;
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(( L* (Y (1),Y'(7)7) for T€[a,b]\N, and r e[ (1), A, (1)]

(1-x%5) L (1), 0+

o LY (M, Y (M)A (M) for r€(0,A () and 7€ a,b] \N,

£ (1,7) =
LY (7),0) for (r€la,b] and r=0)
or (TEN, and r=1)
| +oo for other (r,r)€ERXR,
since

L* (Y (1),Y’ (T)r) =1L (Y (1),Y’ (7')7') Vre{0,X (7),A, (1)} V7e€la,b \N,.

(¢) Now we claim that the reparametrization 7, (-) (yielding Y (7, (")) = ¢, ()
is a minimizer for the convexified integral

/ be;* (r(®), ' 1) dt, (5.12)

defined on the class R,p. To prove this claim, notice that for each 7(-) in Rqp we
have, setting x(t):=Y (7 (¢)), an AC map:

/bz'(t) dt = /bY’ (r @) (t) dt = /bY,(T) dr,
since the last integral exists and 7 (-) is monotone. Moreover,
L*(z(t), 2" (¢) =L (Y (r (1)), Y' (r (&) 7' (¥)) < £ (7 (t), 7' (®)) (5.13)

fora.e. t in [a,b]; with equality at a.e. ¢ in [a,b] where 7/ (¢) € {0}U[A, (v (2)), A, 7 (¢)],
in particular in case 7(-) =17, ().

To see this, notice that this follows from (5.11) for those t where ='(t) exists,
() =Y (r(¢))7'(t) and 7(t) € [a,b] \N, (ie. for almost ¢t € 71 ([a,b] \N})),
while, on the other hand, since N, is a null set, we have 7/ (t) =0 fora.e. t € 771 (N),
hence the lhs of (5.13) is L** (Y (7(t)),0) and the rhs is £ (r(t),0) for ae.
t € 771(NV;) (and these two are equal at any 7 (t) € {a,b], by the definition of ()
and the almost convexity of L(-)). (In particular: equality in (5.13) holds for a.e.
ter ™ (M).)

In the special case 7(-) =7, (-), as one easily checks,

AT ®) =A@/ (&) <7/ (2)
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A(r @) =A@ (@) 27/(),
ie. 7/ () €A (7, (1), A (T, ()] forae t¢gN,; 7/(t)=0 forae teAN,. Hence
equality holds in (5.13).
Using (5.13) we may now complete the proof of the claim stated at the beginning of
(c):
L@@, r'®) dt2 [L* @), o' () dt >

> [[L7 (4, (1), ¥, () di= [£7 (r, (), 7 (®)) d.

(d) Define o:[a,b] = R

T€[a,b]: A (1) >0 and £**(,0) < 400
Mlr)  for Te { and £** (1, (1)) < +00 }

a(r)=1 o for Te{releb: £ (r,0)=+00 or £*(r,), (1)) = +oo}

A(r) for rTe{refab]:A(r)=0}.

By [Or 3, propos. 1 with this «(-)], there exists a reparametrization 7,(-) € Rqp
for which: 3a” < b”, with o” < o’ and b < b”, such that 7/(t) # 0 ae.
in [a,a"]U "8, 7,(:) =7" on [a",b"], 7)(t) ¢ {0} U(0,a(r,(t))) ae in
[a,a” U ", 8], 7, (t) € [N (7, (2), A, (1, (¢))] ae. in [a,a”]U[b",b], and

, b
/ 2 (r,(8), ) (2)) dtf/a € (r (), 7, (1) dt.

Therefore the reparametrization 7, (-) is also a minimizer for the convexified integral

(5.12).

(¢) By [Or4, th. 1], or [Or5, th. 1}, there exists a reparametrization 7, (-)
in the class R, having 7)(t) #0 ae. in [a,a”)U ", 8], 7,(:) =7’ on [a"b"],
7, (t) € {0} U(0,a (7, (t))) ae. in [a,a”]U[b",b], 7'3’ @) € {A (1, (1), A, (75, ()} ae.

in [a,a"]UB", Y],
6" (5 (1), 7o (1) =4 (75 (), 7, (1)

a.e. in [a,b] (hence, in particular, the rhs is measurablein t), and

b b
/ 6 (r (8), 7/ (1) dt < / £ (ry (1), 7 (8) dt. (5.14)

Let us define a new function y(t) := Y (7, (¢)), obtaining: y(a) = A, y(b) =
B, y(-) is AC with y'(¢) = Y'(7,(t))7,(t) for a.e. t in [a,b]. Since 7/(t) €
{0,A, (75 (1)), A, (7, (t))} fora.e. t on [a,b], by a reasoning similar to the one used to
prove (5.13) (but with £(-), L(-), 771 (V) instead) we get

6 (r @71 0) =LY (7, 9),Y (1, )7 () = 6515
=L(y@®),y @) for ae te]a,bl. )
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Chapter 5. Existence in the vector case under almost convexity

To complete this proof it only lacks to show that y(-) minimizes indeed the integral (51)
on the class A7 . But, for any z(-) in this class we have, by (5.15) and (5.14),

PLw®,y ) dt=fe (r,(t), 7 () dt<
S er (@, r @) dt <[] (u, (1), v (1) dt <

< PL=@@), o () dt< [PL(z(t), & (t)) dt.
5.4 Special regularity for n=1

Corollary 5.8  ( Regularity)

Let £:RxR ~ [0,+00] be a Borel function with £**(-,0) = £(-,0) Isc and £(s, -)
lsc Vs.

Fiz A, B€R" and y,(-) € Xap for which the faces of epil**(y,(t), ) ‘dre
bounded V t € [a,b].

Then there exists y(-) € X} p satisfying the properties (i), (i), (i), (iv) of
theorem 5.4 plus:

(v) gs/’g(t) £ (a(y(®),By(@)) ae in [a,a)UDB, b, with o), B(-) asin remark

(vi) y(-) is monotone on [a,a/] and on [b',b] provided f:@** (. (), ¥ () dt < +oo
and 0 (y,(t),0)#£0 Vte€|a,b].

Remark 5.9 Foreach s, a(s), B(s) arethe nonzero extremities of the intervals
of affinity of £** (s, -) which have the other extremity at € = 0. More precisely, consider
the subdifferential 9£**(s,-) of £**(s, ) (see [Ek Te, p. 20]), and define the set

Fy(s) := (8€* (5, )1 (£ (5,0)) = {E£€ R : D€** (5,€) N L™ (5,0) £ 0} .
Then, under the hypotheses of corollary 5.8, we have: the set {0}UF, is an interval
[o(s), B(s)] with a(s) <0< B(s),

and €**(s,-) is affine along [a(s),0] and along [0,H(s)].

Proposition 5.10  (See [Cl]) Let £: R xR — [0,+00| be a Borel function with
2 (-,0)=2£(-,0) Iscand £(s,-) lsc Vs.

Fiz A, B€R and a closed subset Q C R for which £**(-) is lsc on Q x R",
(€**(s,-)) " (R) s open # 0 Vs e Q. Assume there exists mg > 0 for which the
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class X, of those xz(-) in Xap having z([a,b]) C Q and giving a value < mgq to
the convezified integral (5.2), has a Lipschitz continuous element.
Define
Q&) ={€"(s,§) —£0£™ (5,§) : 5 € Q}

¢ := lm sup{g€Q () : €] > R}

and, for K >0,
q" (K):=inf {g€Q(¢):|¢| < K}.

Assume, moreover:
(a) every z(-) € Xn is such that z([a,b]) C interior (Q),
(b) £**(-) is locally Lipschitz in (s,€) and satisfies, for constants k, and c,,
0L (8,€)| S ko[£ (3,)| + ¢,V (s5,6) €AXR,
where

|0s£™* (54,€)| :=sup{|v| : v is in the Clarke’s differential of £**(-,£) at s=s,},

(¢) ¢~ < gt (K) for some K>J£;:—QA1.

Then there exists a relared minimizer y_ () (i.e. a minimizer of (5.2)) which is
Lipschitz continuous.

Corollary 5.11  ( Eristence noncoercive)

Let £(-) and y_ () be as in proposition 5.10.

Then the nonconvez integral (5.1) has minimizers provided the faces of epi £** (y, (t), -)
are bounded V1t € [a,b].

Moreover, there exist a minimizer y(-) which satisfies the regularity properties (i),
(#), (i1), (iv) of theorem 5.4 plus properties (v) and (vi) of corollary 5.8.

If, in addition,

VM>0 3IM;: AL(s,8) 16| <My V<M Vsey, ([ab])

then y(-) is Lipschitz continuous.
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5.5 Examples of application

Theorem 5.2 ensures the existence of a minimizer for the nonconvex integral (5.1)
when L:R"™ xR" — [0,+00] is e.g.

js—so + (IR —+2)"  for €40
L(s,¢) =
s — sol? for £€=0.

As to corollary 5.7, it ensures existence and Lipschitz continuity of a minimizer e.g. in
case L:R™ xR™ — [0,+00] has the form

L(s,&)=g(s)f(&)
with f:R"™ — [0, +o0],

(1+1#)*  for lel21
F(&)= +0o0 for 0< ¢ <1

V2 for £=0,

and g:R"™ — [1,+00) is a lsc function, locally bounded.

Finally, to see a simple 2—dim example where convexity at zero does not imply
existence, let )

hE) = (E2+8) (-1)"+4, (5.16)

and
L(s,§) = s% +h(§), (5.17)

s=(s1,82), a=0, A=(0,0), b=1, B=(0,1). Clearly y,(t) = (0,t) is a relaxed
minimizer, giving the value 1 to the integral (5.2). However, as one easily checks, to
satisfy the boundary conditions the value of the nonconvex integral (5.1) must always
be >1 (while the inf is, clearly, =1).
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