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Analysis of new situations for quasiconvexity versus
rank-one convexity in 2 x 2 and other dimensions

Abstract

It is well-known that quasiconvexity is a fundamental concept for vector
problems in the Calculus of Variations. Its main necessary condition is rank-
one convexity. Still today it is not known whether it is also sufficient or not,
when the target space of deformations is m=2 (in the general case).

We introduce a method to find, in a systematic way, rank-one convex
polynomials. We show how it works in several examples. It can also be
applied to convexity along general cones.

An alternative proof is provided for the well-known quadratic case of
quasiconvexity, which does not use the Plancherel formula. An application
to the case of 4th degree homogeneous polynomials is shown.

We also explore an attempt to disprove the implication from rank-one
convexity to quasiconvexity for 2x2 symmetric matrices, using the viewpoint
of laminates and homogeneous gradient Young measures.
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Analise de novas situagdes para a quasiconvexidade versus
convexidade caracteristica-1 em dimensao 2 X 2 e outras
dimensoes

Resumo

E bem conhecido que a quasiconvexidade é um conceito fundamental para
problemas vectoriais do Calculo das Variagdes. A sua principal condigao
necessaria é a convexidade caracterfstica-1. Ainda hoje nao é conhecido se
é ou ndo suficiente, quando o espago alvo das deformagdes é m=2 (no caso
geral).

Introduzimos um método para determinar, de uma forma sistematica,
polinémios convexos caracteristica-1. Mostramos como funciona em diversos
exemplos. Pode também ser aplicado & convexidade ao longo de cones gerais.

Providenciamos uma demonstracdo alternativa para o bem conhecido
caso quadratico da quasiconvexidade, que ndo utiliza a férmula de Plancherel.
Apresentamos uma aplicagao para o caso dos polinémios homogéneos de grau
4,

Exploramos também uma, tentativa para refutar a implicacdo da convex-
idade caracteristica-1 para a quasiconvexidade nas matrizes 2x2 simétricas,
sob o ponto de vista dos laminados e das medidas de Young gradiente ho-
mogéneas.
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Extended abstract

It is well-known that quasiconvexity is a fundamental concept for vector
problems in the Calculus of Variations. One important related convexity
condition is rank-one convexity, which is a necessary condition. Still today
it is not known if this type of convexity implies or not quasiconvexity, when
the target space of deformations is m=2 (in the general case). Our work aim
at contributing for a better understanding of this outstanding problem.

Rank-one convexity, though a more manageable concept, is not easy to
check on explicit examples. Indeed, deciding when a given function is or
is not rank-one convex is not an easy task. In Chapter 2, we provide a
new method to determine (at least in some specific situations) the rank-
one convexity of functions of a particular structure, but not only restricted
to homogeneous polynomials. We show how it works in several examples,
exploring both classical examples and new ones. An interpretation of this
results in terms of laminates is also presented, and it seems to be more
promising in terms of applying these ideas to other kinds of convexity. Our
ideas can also be applied to convexity along general cones as, for example, the
characteristic cone associated to quasiconvexity for second order gradients
(called 2-quasiconvexity).

It is known for a long time that in the quadratic case, quasiconvexity is
equivalent to rank-one convexity. The classic (and only known) proof makes
use of Fourier transforms and the Plancherel formula and so it cannot be
applied to other cases. We provide, in Chapter 3, an alternative proof for
this well-known case, which does not make use of Plancherel formula and so,
in principle, it can be used in other cases, especially with polynomials. This
has further interest nowadays, as we now know that one can approximate
quasiconvex functions by quasiconvex polynomials ([21]). Using this new
approach, we derive necessary and sufficient conditions for quasiconvexity
at the origin for fourth degree homogeneous polynomials. We also make an
application to the case of 2-quasiconvexity at the origin for the same kind of
polynomials. The ideas here contained can also be applied to homogeneous
polynomials of any even-degree.

In Chapter 4 it is explored the problem of the equivalence between qua-~
siconvexity and rank-one convexity in the case of 2 x 2 symmetric matrices
from the viewpoint of probability measures, that is, to know if every homo-
geneous gradient Young measure (supported in the space of 2 x 2 symmetric
matrices) is a laminate. We follow the approach of [36], using distinct first
moments, including the one there used (the origin). We were not able to
find a counterexample, and several difficulties involved are shown through
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the text. A characterization of the set of laminates in a precise class is
obtained.
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Resumo alargado

E bem conhecido que a quasiconvexidade é um conceito fundamental para
problemas vectoriais do Célculo das Variagdes. Uma importante condi¢do de
convexidade relacionada é a convexidade caracteristica-1, que € uma condigao
necessaria. Ainda hoje nao é conhecido se este tipo de convexidade implica
ou ndo a quasiconvexidade, quando o espago alvo das deformactes é m=2
(no caso geral). O nosso trabalho aspira a contribuir para um melhor en-
tendimento deste problema extraordinério.

A convexidade caracteristica-1, embora parecendo um conceito mais
manejével, néo é facil de verificar em exemplos concretos. De facto, decidir
quando uma dada funcio ¢ ou ndo convexa caracteristica-1 ndo € uma tarefa
facil. No Capitulo 2, providenciamos um novo método para determinar (pelo
menos em algumas situagdes especificas) a convexidade caracteristica-1 de
funcdes com uma estrutura particular, mas néo restrita apenas a polinémios
homogéneos. Mostramos como funciona em diversos exemplos, explorando
exemplos classicos e novos. E também apresentada uma interpretagao destes
resultados em termos de laminados, que parece ser mais promissora em ter-
mos de aplicacdo destas ideias a outros tipos de convexidade. As nossas
ideias podem também ser aplicadas & convexidade ao longo de cones gerais
como, por exemplo, o cone caracteristico associado & quasiconvexidade para
segundos gradientes (chamada 2-quasiconvexidade).

E conhecido ha muito tempo que no caso quadratico, a quasiconvexidade
¢ equivalente & convexidade caracteristica-1. A demonstracdo cléssica (e
tinica. conhecida) utiliza transformadas de Fourier e a formula de Plancherel
e, consequentemente, ndo pode ser aplicada a outros casos. Providenciamos,
no Capitulo 3, uma demonstragio alternativa para o bem conhecido caso
quadratico da quasiconvexidade, que ndo utiliza a formula de Plancherel e
podera entdo, em principio, ser utilizada noutros casos, especialmente com
polinoémios. Este facto tem interesse acrescido hoje em dia, dado que sabe-
mos agora que é possivel aproximar fungdes quasiconvexas com polin6mios
quasiconvexos ([21]). Usando esta nova abordagem, deduzimos condigoes
necessarias e suficientes para a quasiconvexidade na origem para polinémios
homogéneos de quarto grau. Apresentamos também uma aplicagio ao caso
da 2-quasiconvexidade na origem para o mesmo tipo de polinémios. As
ideias aqui contidas podem também ser aplicadas a polinémios homogéneos
de qualquer grau par.

No Capitulo 4 & explorado o problema da equivaléncia entre a quasi-
convexidade e a convexidade caracteristica-1 no caso das matrizes 2 X 2
simétricas, do ponto de vista das medidas de probabilidade, isto é, o saber
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se qualquer medida de Young gradiente homogénea (suportada no espago das
matrizes 2 x 2 simétricas) é um laminado. Seguimos a abordagem de [36],
usando distintos primeiros momentos, incluindo o utilizado nesse artigo (a
origem). Nao fomos capazes de encontrar tal contra-exemplo, e as diferentes
dificuldades envolvidas sio mostradas ao longo do texto. Para terminar
obtemos uma caracterizagao do conjunto dos laminados numa classe precisa.



Chapter 1

Introduction

In the framework of nonlinear elasticity ([2],[9],[38]) we are interested in
proving the existence of equilibrium configurations for elastic bodies under
prescribed environmental conditions. Let m and N be, for the moment,
either 2 or 3 and Q C IRY be a bounded regular open set, representing the
body whose deformation we want to study. The equilibrium configuration
must satisfy

—div o(z,Vu) = f(z,u), € Q (1.1)

where u : @ — IR™ represents the displacement fields (assumed to be smooth
enough), which should also satisfy some boundary conditions over 0%, f :
Q x R™ — R™ are the external forces and o : @ x M™% — M™*N gives
the internal stress. Assuming that the elastic material is in fact hyperelastic,
there exists a function @ : © x M™*Y¥ — R, differentiable with respect to
Vu € M™ N such that

op
O(Vu)ij

oij(z,Vu) = (z,Vu), z € Q.
This equation is called the stress-strain relation and it represents the consti-
tutive assumption made on the material at position « € §. It corresponds to
the generalization of Hooke’s law ([20]). If in addition there exists a function
f such that 5

0

5—5(5{:,11,) = f(z,u), z € Q,

then the equilibrium configurations are extremals of the total energy func-
tional

I(u)=/ﬂ<p(x,u,Vu)d:1:,

14
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where

o(z,u, Vu) = p(z, Vu) — f(z,u),
u satisfying the same boundary conditions assumed above. Another way of
saying this is that the Euler-Lagrange system associated with the functional
I is exactly (1.1). In particular, minimizers of the total energy satisfying the
boundary conditions will be (weak) solutions of the equilibrium equations.
For simplicity, we will consider

v = p(Vu).

The central problem in the Calculus of Variations is to show the existence
of minimizers of energy functionals of the type

I(u)=/ﬂ<p(Vu(x))d:1:

among competing fields v : 2 C RN — IR™ complying with boundary
conditions over 9Q ([12]). Here § is supposed to be a bounded, regular
domain (i.e. Lipschitz), and feasible fields u belong to suitable Sobolev
classes related to the growth properties of the density ¢ at infinity. The
integrand ¢ : M™N _, R is assumed to be continuous. More specific
assumptions are necessary to deal with problems in non-linear elasticity ([9]).

The crucial property on ¢ to ensure existence of solutions through the
direct method ([12]) is quasiconvexity. One such density ¢ is said to be
quasiconvex if

o(€) < /D o(€ + Vo()) da (1.2)

for some unitary domain D (|D| = 1), for any matrix £ € M™ N and
every test field v in D. It turns out that this concept is independent of the
domain. This property on ¢ is equivalent to the weak lower semicontinuity of
the functional I above with respect to weak convergence of Lipschitz fields.
This was established by Morrey in {28].

In the scalar case, when m = 1 or N = 1, quasiconvexity reduces to plain
convexity, but it is not so in the fully vector case N,m > 1. The concept
of quasiconvexity is hard to grasp and analyze due to its non-local character
expressed in the inequality (1.2) above (|23]). So a principal issue has been
to find more manageable necessary and sufficient conditions for it.

A main necessary condition is rank-one convexity. An integrand ¢ as
before is rank-one convex if it satisfies the typical convexity inequality along
rank-one matrices

p(t&1 + (1 — t)éo) < tp(&1) + (1 — t)(éo), rank(ér — &) < 1,¢ € [0,1].
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If ¢ is smooth, this convexity condition is equivalent to the Legendre-
Hadamard condition (or ellipticity condition) (|2])

AT V2p(£) A > 0, rank(4) < 1.

On the other hand, a sufficient condition is polyconvexity. ¢ is polyconvex
if it can be written in the form

o(§) = (M (£))

where M (¢) is the vector of all minors of £, and ¢ is a convex function of all
its arguments. Polyconvexity has played a major role in existence theorems
in non-linear elasticity ([2]). A lot of effort has been dedicated to establishing
the differences among these three convexity concepts. All three are different
and counterexamples of various forms have been found through the years (see
[1], [13], [14], [41], [44]). Perhaps one of the most interesting examples is the
one in [1],[14], as with the help of a single real parameter c, characterizes the
different notions of convexity. For ¢ : M2*? — IR, define

o(&) = |¢|* — c|¢f? det &.

Then
¢ is convex & | <3v2
 is polyconvex & | <2
¢ is quasiconvex & <2+, €e>0

¢ is rank-one convex < |c¢| < %.

Unfortunately, it is not known if 2+ ¢ = %.

The equivalence between rank-one convexity and quasiconvexity is the
one that has stood unsolved longer. Morrey himself ([29]) stated that “it
is an unsolved problem to prove or disprove the theorem that every rank-
one convex function of Vu is quasiconvex.” In his seminal paper [28], he
conjectured (informally) that “... after a great deal of experimentation, the
writer is inclined to think that there is no condition of the type discussed,
which involves ¢ and only a finite number of its derivatives, and which is both
necessary and sufficient for quasiconvexity in the general case.” So, usually,
Morrey’s conjecture is stated by saying that rank-one convexity does not
imply quasiconvexity.
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In the special class of quadratic forms, it was known long ago ([45],[46],
although implicitly known earlier), and not difficult to see through Fourier
analysis, that these two kinds of convexity are equivalent. In the general
case, evidence in favor of the equivalence and against it started to pile up
(see [3] for a very nice account of the situation until 1986) until the conclusive
counterexample of Sverak ([42]). As far as we can tell, there is no essentially
new counterexample, and this one is only valid for m > 3 so that rank-one
convexity does not imply quasiconvexity in this situation. Further attempts
to extend the counterexample for m = 2 have failed ([39],[4]). As rank-one
convexity and polyconvexity are invariant under transposition (that is, if
¢(€) is rank-one convex (resp. polyconvex) then 3(§) = ©(¢7) is rank-one
convex (resp. polyconvex), where ¢T denotes the transpose of £), one might
think of adapting the counterexample of Sversk to the case were m > 2,
N > 3. However, this is not possible, as quasiconvexity revealed to be not
invariant under transposition ([24],[31]).

Some additional evidence against the equivalence can be found in [34],
while evidence in favor is contained in [8] and [30]. The problem remains
open for m = 2,

The question whether rank-one convexity implies quasiconvexity can be
restated in terms of laminates and homogeneous gradient Young measures: is
every homogeneous gradient Young measure a laminate? This question seems
to be, unfortunately, as hard as the previous one ([36],[4]). Laminates can
be understood, at least conceptually, in a constructive way ([35]). The basic
idea comes from the (Hj) conditions ([11]): a set of pairs {(Mi, Ai) h<i<k
where \; >0, >, Ai=1, A € M™*V gatisfies the (Hy) condition if

1. when k = 2, then rank{4; — 42} < 1;
2. when k > 2, then, up to a permutation, rank{A; — A2} < 1 and if, for
every 2 < i < k — 1, we define

— — MAI+MAS
Hh=M+X B = SYEBW

0; = Ais1 B; = Ain1

then (0;, Bi)1<i<k—1 satisfy (Hg_1).

Then a laminate is the weak-* limit in the sense of measures of sequences
of finite order laminates, that is, convex combinations of Dirac masses sup-
ported in sets of points verifying (Hy) conditions

k
Z )\i(sAi N -
i=1



CHAPTER 1. INTROD UCTI ON 18

Laminates can be characterized as the probability measures p (with support
on a compact set K € M™*) for which Jensen’s inequality

w(AAwszLwMMM)

holds for every rank-one convex function ¢ (see [35]), while homogeneous
gradient Young measures are the probability measures characterized by
Jensen’s inequality for quasiconvex functions ([22]). The homogeneous gra-
dient Young measures can be defined as the probability measures p for which
there is a sequence (u;) C W1°°(Q,R™) such that

uj — u in WHe(Q,R™),

(Vu;) generates the Young measure p in the sense that

o(Vi) > [ o) du(4) in L=(@),

whenever ¢ is continuous. For simplicity, we will omit the term “homoge-
neous”. The Riemann-Lebesgue lemma is one interesting (nontrivial) ex-
ample where we can determine explicitly the underlying gradient Young
measure, and several versions can be found in [37]. We include one here
for convenience of the reader.

Lemma 1 Let Q = (0,1)" and u € Wh(Q,R™), u—ur € Wy (Q, R™),
where up is the affine Lipschitz function up(z) = Fx for x € Q. There exists
a sequence (u;) bounded in W1 (Q,R™), uj — up € Wy (Q,R™), such
that the Young measure associated with (Vu;) is homogeneous and defined
by

(1, p) = /Q ¢(Vu(z)) dz
for any continuous .

A polyconvex measure is a probability measure for which Jensen’s inequality
holds for every polyconvex function ([35}). It turns out that polyconvex
measures can also be characterized as the probability measures that commute
with the minors of the matrices

M( /K Adu(A)> _ /K M(A) du(A).
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All these 3 classes of probability measures (laminates, gradient Young mea-
sures, polyconvex measures) with fixed first moment

e= [ Aduta)

form convex sets. We also have that, for a fixed first moment, the class of
laminates is a subset of the class of gradient Young measures, which in turn
is a subset of the class of polyconvex measures.

The quasiconvexity condition (1.2) can also be formulated as

w05 [ et

for all £ € R? and all w € CZ.((0,1)V,IR%)! such that curlw = 0 and
f(0,1) yw(z)dz =0,d=m x N ([17]). In the setting of continuum mechan-
ics and electromagnetism more general linear partial differential equations
than curlw = 0 appear, which are physically relevant ([43]). It was then
introduced ([10]) the concept of .A-quasiconvexity (see also [18]): consider a
collection of linear operators A ¢ Lin(]Rd, lRl), i=1,...,N and define

)

N
Av = ZA(")%, v: RN - R4,
i=1

N
Aw) = Ay, € Lin(R%, RY), w e RY,
i=1
Lin(X,Y) is the vector space of linear mappings from the vector space X
into the vector space Y and where we assume that A satisfies the constant
rank property ([33]): there exists p € IN such that

rank A(w) = p,
for all w € S¥-1, the unit sphere of R". Then ¢ is .A-quasiconvex if

Os [ e rul)de (1.3

for all ¢ € R? and all w € C.((0,1)",IR?%) such that A(w) = 0 and
f(o y~ w(z)dz = 0. This is the necessary and sufficient condition for (se-
quential) weak lower semicontinuity of

I“*zﬂuw“““”“’

lthat is, w belongs to C®°(RY,R?) and is (0, 1)"-periodic.
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along sequences that satisfy v, = v in L®((0,1)V, IR%) and Av, = 0, where
@Y R¢ — [0, +00) is again assumed continuous. The interesting neces-
sary condition now is that ¢ must be convex along the characteristic cone
([331,[43])
A= U ker A (w).
weSN-1

Some important examples included in this general framework, besides the
case Av = curlv = 0, are

(a) Divergence free fields:
Av=dive =0,

where v : (0,1)Y - RY, ([37))

(b) Maxwell’s equations:

mY\ [ divim+h) \ _
A( h)—( curl h )_0’
where m : IR® — IR is the magnetization and h : R3 — IR? is the
induced magnetic field ([43]).

(c) Higher order gradients: replacing the target space IR¢ by an appro-
priate finite dimensional vector space EJ* of m-tuples of symmetric
linear maps on IRY, it is possible to find a first order linear partial
differential operator A such that v € Cpe.((0, DN, E™), Av = 0 and
Jooyw v(@)dz = 0 if and only if there exists ¢ € c%((0, )N, R™)
such that v = V°y, where V9 = V5~ 1(Vy) with V¢ = Vy (]18]).
In this case (1.3) reduces to the s-quasiconvexity notion introduced by
Meyers in [26].

We will be especially interested in the particular case of second-order
gradients: a function ¢ : Mﬁgme — TR is said to be 2-quasiconvex if

o(€) < /D o(€ + V20(2)) d,

for any £ € II\/IQL"mN and every v € C(D,R), where M%an denote the
space of MY *M.gymmetric matrices and |D| = 1 (the choice of the domain
is irrelevant, [26]). In [15] (generalizing a result of [32]) it was proved that
2-quasiconvexity reduces to quasiconvexity for symmetric matrices or, to
be more precise, that each 2-quasiconvex function is the restriction of a
quasiconvex function to the space of symmetric matrices. Nevertheless, we
will see why we are interested in it.



Chapter 2

Finding new families of
rank-one convex polynomials

In this chapter we introduce a method to find, in a systematic way, rank-one
convex polynomials. We show how it works in several examples, including
both new and classical ones. It can also be applied to convexity along general
cones.

2.1 Introduction

Two important convexity conditions related with quasiconvexity are polycon-
vexity and rank-one convexity. Although quasiconvexity is harder to verify,
notice that these two other types of convexity, though more manageable, are
also not easy to check on explicit examples ([19]). In particular, rank-one
convexity is an appealing property as it is like the usual convexity. But
deciding when a given function is or is not rank-one convex is not an easy
task. Our aim is to provide a way to determine (at least in some specific
situations) the rank-one convexity of functions of a particular structure.
Our method can be applied to the following situation. Let

i : M™YN R, i=1,2,
be two polynomials such that

e The combination

p(€) = p1(£) — cpa2(9), (2.1)

for any constant ¢ € IR, is coercive with superlinear growth;

21
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e () is strictly convex.
The basic important problem we would like to address is

Problem 1 Determine the range of the constant c so that ¢(§) is rank-one
convez.

In the case ¢ = 1, the rank-one convexity of ¢ (supposed smooth) is then
equivalent to
ATV?p1(§)A - ATV2pa(§)A > 0,

forevery A€ A €€ IM™*N_ where A is the rank-one cone
A={a®n, acR™ neRY, |n|=1},
or to

Proposition 1 Let ¢ be as before. Then ¢ is rank-one convez if and only
if

ATV2py(€)A
< me'
———ATv%ol(f)A <1, AeAteM

For a general parameter c, it is then possible to determine the range of
this constants for which the corresponding family of functions are rank-one
convex. In fact, by Proposition 1, we have that (2.1) is rank-one convex if
and only if
cATV2p,(6)A
< mXN_
ATV (A = 1, AeA,éeM

If
ATV?pa(6)A

1 1

— {resp— | = inf resp sup) —m—5——r,

c- ( p0+) AeA,éelM'"XN( P sup) ATV2p1(£)A
then it is easy to derive

Theorem 1 Let

=1 CP2,
where o; are smooth and ¢y s strictly convexr Then ¢ is rank-one convex if
and only if

1. c € [c_,c4], in case s is neither rank-one convex nor rank-one concave
(alternatively, we can write: ATV2py(€)A attains both positive and
negative values);
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2. c € (—o0,cy], in case

inf ATV2py(0)A o:
Ach,eeMmN ATV2p1(6)A 7
3. ¢ € [c—,+00), in case
T2 A
sup ATV2%py(€) —o.

Ach, cemmxny ATV2p1()A B

Remark 1 We will make the assumption that if 51: = —00 (resp i = +00)
then c_ =0 (resp ¢y =0).

Though the proof of this result is straightforward in these terms, it is quite
remarkable that these optimal constants can be computed explicitly in spe-
cific examples, as we show in Section 2.3.

Before that, we also provide an appropriate description of this theorem
in terms of laminates. This seems interesting as this strategy looks more
promising for other situations like polyconvexity and, even, quasiconvexity.
The proof of this theorem from this viewpoint can be found in Section 2.4.

2.2 Alternative route: laminates

We know that laminates are the class of probability measures which play a
fundamental role with respect to rank-one convexity through duality with
Jensen’s inequality ([35]). In this section it is presented the result of the pre-
vious one, from the viewpoint of laminates. We think that this gives further
insight into the problem, especially because it is more easily visualized. To
state the main result in terms of laminates requires some notation.

Let £(&) denote the set of laminates with first moment &p. Consider the
linear mapping

T 26— R, 1) = ( [ o€ duce), [ oal6) w(©))

It is clear that T(L(&)) is a convex set in IR%. If (z,y) designate usual
coordinates in IR?, and we put

zo = p1(é0),  vo = p2(%o),
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we know, due to convexity of (1, that
T(L(%)) C {(z,y) € R?: & > xo}.

Even more, because of strict convexity of o1, the intersection of T(L(&o))
with the vertical line z = zo is the unique point (zo,y0). Then solving
Problem 1 is equivalent to determining the best constants c.., ¢4 so that

ﬂaa»cchw@i—i),

c-'cy
for every & € M™*N where C((Z,7), c1,¢2) is the cone in IR? defined by
CU(Z,7),c1,¢2) = {(z,9) ER%:c1(z —F) +§ <y < c2(z — F) + §,x > T},

c1 < 0 < ¢3. For s € [0, 1], we consider our basic first-order laminates

1 1
Us = '2'5£o+sA + 5650—814’
for A of rank one. Finally, consider the plane curve
o 4E)(s) = T(us)

= (%901(50 +sA) + %m(&o - s4), %m(ﬁo +sA) + %soz(fo - SA)) :

A stands for the cone of rank-one matrices.

Theorem 2 Let ¢ be as in Theorem 1 and

pd (Aigo)
1
1 (resp —) = inf (resp sup)%—s—@.
(& c+ AEA!&OEM’"XN 0'1 ~o (0)

Then ¢ is rank-one convez if and only if
1. c€c_,cy], if G2 attains both positive and negative values;
2. ce (—oo,c4), if

. (A,
Oé §0)(0) _
AGA,§0€MMXN o,iAy&O)(O)

3. c€ [e—,+00), if
(A
Ué ,Eo)(o)

sup —~—— - =0.
ACh EeM™XN 6{/&:50)(0)
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Remark 2 Obviously, we have that
585(0) = ATV20i(&) A,

where
rank(A) < 1.

2.3 Examples
We now want to solve the problem

ATV2py(£0)A
inf AT Vops(80)A
acomimn TP SV TG (60) 4
subject to the restriction
rank(A) < 1.

To fix ideas, consider the minimization problem as a partial double mini-
mization problem. If we minimize first in A € IM™*N | the above quotient is
always a quotient of two expressions which are homogeneous of degree two
in A, where

ATV201(&0)A > 0.

So, we can consider the equivalent problem

min ATV?p;(&)A
AeM™*N

subject to the restrictions

ATVZgol (fo)A =1
A, rank-one.

In the particular case of 2 x 2 matrices, we can replace the rank-one condition
on A by the more quantitative condition ATDA = det A. Anyhow, this
minimum is attained since the function to minimize is continuous, and the
domain is the intersection between a compact set and a closed set.

Let us stick to the 2 x 2 situation for the sake of this short discussion. If
o, [ are Lagrange multipliers, we put

L(A,a,B) = ATV?py(&)A — a(ATV?p1(§0)A — 1) - BATDA.
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From first-order optimality conditions, if A is a critical point of the objective
function, one obtains
ATV25(80)A = a,

where o can be recovered from solving the following system

(V2p2(&0) — aV3p1(&) — BD)A =0
ATV2p1(6)A =1

ATDA =0.

a will be a function of &, and to finish, we would have to compute the
infimum with respect to the variable & € IM?*2. In the case where the
©i's are polynomials, the above system of equations is indeed a parametric
system of polynomial equations, where & is the parameter, and A, a, 8
are the variables to solve for. There exist several algorithms which deal
with the problem of describing the solutions of these systems in terms of
the parameters, such as comprehensive Grobner bases ([48]), triangular sets
decomposition ([47]) and rational parametrizations ([40]). There also exist
more recent developments ([25], [49]). The description of the generic solu-
tions of these systems is in general difficult and is beyond the scope of this
work. Here we will deal with a simple example, whose system can be solved
with several recent symbolic mathematical softwares.

For a more general situation, we can replace the matrix A by a ® n even
under the constraints |a| = |n| = 1. In this case, we would have to solve the
problem

inf minn ® aV2p(p)a @ n

o an

subject to the constraint
ne® avzgoz(ﬁo)a ®n=1.

We can then use optimality conditions to make some progress in the cal-
culations. However, one has to keep track of the dependence on a and &
when solving the minimization problem for n. In general, it is not so easy
to compute the range for the constant ¢ through this approach.

In the case of 4th degree homogeneous polynomials, we can easily over-
come these difficulties. For this special situation, we can take advantage
of the fact that ATV2p;(&)A is also quadratic in &. More explicitly, and
keeping in mind its special structure, we can write

ATV2p;(€0)A = £gMi(A)§0,
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where M;(A), for i = 1,2, is a matrix whose entries only depend on A € A.
This is a huge advantage, as in this case we can perform first the minimization
in &, and then in A, avoiding in this way to include the additional rank-one
restriction, but still dealing with quadratic problems. We want hence to

compute
T
min < & Mz(A)Eo> .
AeA

min
goeMmxN EX My (A)éo

To evaluate the first minimum, we can now fix

M (A =1,

and calculate
min &5 Ma(A)éo

subject to this restriction. Notice that this minimum is attained, as the
smallest eigenvalue of V2¢p;(A) is strictly positive. If « is a Lagrange multi-
plier, we put

L(¢, @) = & May(A)éo — o] Mi(A)éo — 1),
and from first-order optimality conditions, if & is a critical point, one obtains
£ Mz(A)o = o,
where a are the solutions of
det(My(A) — aM(A)) = 0.

Notice that in this case this condition is a necessary and sufficient condition
for the existence of minimizers.

a will be a function of A, and to finish we have to compute the minimum
with respect to this variable A € M™*N with rank(A) < 1.

2.3.1 Classical examples
We deal first with some classical examples ([1}, [12], [14]).

Example 1
¢ : M2 S R,

given by
() = [E]* — clé] dete.
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If A € M?*2 s such that |A| = 1, by putting

a b
a=(ta)

we get here that

2ad bd — ac cd — ab T+a?+d?
_ bd — ac —2bc 12— ab-cd
My(A) = cd—ab -1-b2-¢ —2bc ac — bd
1+a®+d®  ab—cd ac—bd 2ad
and

2 + 402 4ab 4ac 4ad
4ab 2 + 4b? 4bc 4bd
dac dbe  2+4c%  4cd
4ad 4bd 4cd 2 +4d?

My(A) =

To obtain the values of o we have to solve the equation
det(Mz(A) — aMi(A4)) = 0.
But if we now perform the substitution
A = (cosbq,sin ;) @ (cosba,sin ),

with 61,62 € [0, 27], the above equation becomes

9 2 4 _
E—12a + 48a" =0,

and the mazimum and the minimum values are, respectively, o = 3? and
o= ~3§-. So, v is rank-one convez if and only if

VERVEI
In the case of convexity, it is known ([1]) that ¢ is convex if and only if

42 42
€ _T7_§— .
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Example 2 '
¢ : IM*>*2 5 R,

gwen by
() = I€[* — c(det£)*.

If we proceed as in the previous example, and put

a b
4=(22)
for A € M2*2 with |A| = 1, M1(A) will be the same as before, and

2d2 —2¢d —2bd 2ad
—2d 22 2bc —2ac
—2bd  2bc 202 —2ab
2ad —2ac —2ab 2a?

M,(A) =

For
A = (cosb1,sin6;) ® (cos b, sinby),

with 61,6, € [0, 2], we have
det(Mz(A) — oM (A)) = 38403(—1 + 20) = 0,

and so, the mazimum value of o is % and the minimum is 0. Regarding the
minimum value of a, it was expected, as @y is polyconvez.
In this case, it is clear that ¢ is rank-one convez if and only if

c € (—o00,2].

The range for the constant ¢ for which the corresponding ¢ is convez is given
by

c€[—4,2].
2.3.2 New examples

We now present some other examples to stress our main result.

Example 3 For
©: M2x2 - ]R,,

put
o) = lE[* —c (tr &)t
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where tr £ represents the trace of the matrix . For

a b
a=(ta):

with A € M?*%) |A| = 1, M;(A) is given above, and

12(a+d)? 0 0 12(a+ d)?
' 0 00 0
Mp(4) = 0 00 0
12(a+d)? 0 0 12(a+ d)?

In the rank-one directions
A = (cos fy,sin 6;) ® (cos 02,sin bs),
where 61,60 € [0,27], we have

det(M2(A) — aM;1(A)) =0«

& 76803 (—4 + 2 cos(fa)? — 16 cos(6)? cos(f2)* + 2 cos(f2)* + 2 cos(61)® +
+2 cos(61)* + 8cos(f2)? cos(61)? — 4 cos(8;) cos(fz) sin(6y) sin(fz) +

+16 cos(6; )% cos(62)* — 8 cos(81)® cos(f2) sin(6:) sin(fz) +

+16 cos(8;)® cos(f2)® sin(8;) sin(62) — 8 cos(61) cos(f2)3 sin(8;) sin(f2) +
—16 cos(f2)? cos(61)* + o) = 0.

Consequently the mazimum value for o is 4. Regarding the minimum value
of o, notice that py is convex and so ¢ is rank-one convez if and only if

ce —OO}'
T4l
ce(-o02
79 .

Example 4 An example with a non-homogeneous polynomial.

@ 18 convez if and only if

0 : M?*?2 5 R,

defined by
P& =(tr &)+ g —c(tre).
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For '
(% ¥
6— ( z w )7
we have
12z +w)?+2 0 0 12(z + w)?
0 20 0
12z +w)? 0 0 12(x+w):+2
and
6(z+w) 0 0 6(z+w)
2 _ 0 00 0
6z+w) 0 0 6(x+w)
In addition, for
a
A=]"
c
d
and
0 0 0 3
0o o -3 0
D=1o -1 0 o
10 o0 o

the first order necessary conditions will be the parametric system of polyno-
mial equations

( (6 + 6w — 12a(z + w)? — B)a + (6z + 6w — a(12(z + w)* +2))d =0
—2ab+fc=0
Bb—2ac=0
(6 + 6w — a(12(x + w)? + 2))a + (6z + 6w — 12a(z + w)? — B)d =0
(a(12(z + w)? + 2) + 12d(z + w)?)a + 26% + 262 + (12a(z + )2 + d(12(z + w)? + 2))d = 1

ad —bc=0
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which give us the real solutions -

_ 3z tw)
a=0, YT bt wR+1’

which in turn provide the range of the constant c to be

[ 2v6 2v6]
ce |-—,—/].
3 3
For convezity, we have i i
2v3 23
cel—,—1.
I 3 3

Example 5 An example for 2 x 3 matrices.
0 : M3 5 R,

given by
0(€) = |EI* — clé[*(E3xa + Eixa + Exa)s

where fgxz, j = 1,2,3 represents the 2 x 2 minor that is obtained from &, by
removing the j column. If A € M?*3 with |A| =1 we set

a c e
a=(25%)

We have
40 +2  4ba 4ca 4da dea 4fa
4ba  4b2+2  4cb 4db 4eb 4fb
Mi(A) 4ca 4cb 42 +2 4dc 4ec 4fc
2 4da 4db d4dc  4d®+2  ded Afd

4ea 4eb dec ded 4?2 +2  4fe
Afa 4fb 4fc Afd 4fe  4f%+2

and
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3ad + 3af — bc — be + cf —de
—ca—ea+db+ fb
Ms(A) —ba+af +dc+cf
2 a?—ea+d?+ fd+ 3
—ba — ad + de + fe
a?+ca+ fd+ f2+1
—ba+af+dc+cf
—%—b2+fb—c2—ec
ad + af — 3bc — be + 3cf — de
ca—db—ec+ fd
—bc — be —dc + fe
ltca—fo+c+f2
~ba — ad + de + fe
—%—bz—db—ec—e2
—bc—be — dc+ fe
~1t+ea—db—d?—é?
ad + af — bc — 3be + cf — 3de
ea— fb+ec— fd

For

—ca —ea+db+ fb

ad+af — 3bc — 3be + cf — de

—%——b2+fb—c2——ec
ba — be — dc — de
-1 —db—ec—é?
ba+bc—cf — fe
a2—-ea+d2+fd+%
ba — be — dc — de
ca—db—ec+ fd
3ad+af —bc—be+cf —3de
—%-Fea——db—-dz—e2
ad+af +dc— fe

a?+ca+ fd+ f2+%
ba+bc—cf — fe

ltca—fo+ct+f?
ad+ af +dc— fe
ea— fb+ec— fd

ad + 3af — bc —be + 3cf —de

A = (cos61,sin ;) ® (cos #; sin 03, sin O sin 03, cos 03),

61,0 € [0,2x], 03 € [0, 7], we have

a?(21 — 125sin 83 cos 03 cos B + 12sin B3 sin f3 cos 3 — 12sin 05 cos 0% cos B9 +
+12 sin 05 cos 0y + 6402 sin f5 cos 0% cos 05 + 6402 sin 03 cos O3 cos 2 +
—6402 sin 0 cos §y — 64a? sin B sin 03 cos 03 — 160a? + 256a) = 0.

The roots o are

’

o i\/71:::m203 + 7 + 45in 65 tan f3 — 4 cos 0 tan O3 + 4 sin B, tan? O3 cos O,

16(tan? 63 + 1)

3
a=0, a= :I:—£,
4
and consequently the mazimum and minimum values for o are a = % and
a= —% respectively (obtained from mazimizing and minimizing, respectively,

the above quotients in 0s,03) so, in this case we have ¢ rank-one conver if

and only if
4 4

c€ [—5’5

|
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Remark 3 1. In this case it is harder to compute the constants for con-
vezity than for rank-one convezity, following this approach. In fact, we
were not able to recover those constants.

2. As rank-one convexity is invariant under transposition, one can triv-
ially compute the constants for the 3 x 2 ezample implicitly given by
example 5.

2.4 Main proof

This section is devoted to the proof of Theorem 2.

Proof. We will use the characterization of rank-one convexity through
Jensen’s inequality for laminates (|35]) so that we are interested in deter-
mining the exact range for the constant ¢ so that Jensen’s inequality holds
for every laminate and ¢ in (2.1). The key point is that we can control the
slope of the secants that pass through the image of the barycenter by the
slope of its tangents through zero. In this terminology, secants are related,
somehow, to quasiconvexity whereas tangents at the origin reflect rank-one
convexity.
We divide the proof in several steps.

Step 1. If 1 is a laminate, then by definition ([35]), there exists a sequence
of sets of pairs {(A¥, A¥)}1<i<k, verifying the (Hy) condition ([12]) such that

pe=) Mo 2 p
7

in the sense of measures. So if

o/ aun(©)) < [ ol6) dunte)

holds for all k and for some value of ¢, then by taking weak-* limits on both
sides of the above inequality (i is, in particular, continuous), we have

o ( / édu(€)> < [w©au), vue

for the same value of c.
Step 2. We will now prove that it suffices to use first-order laminates to
determine the range of c. We argue, in particular, that building finite-order
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laminates recursively from first-order laminates does not reduce the range of
the constant c.
Our hypothesis is that c is such that

v ( / fdu(ﬁ)) < [wt© dute) (2:2)
for every
p=Aa, + (1 = \)d4,, with rank(4; — 42) < 1;

and we want to prove that, for the same value of c, we have

o( [eaun©) < [ ot dune) (23)

for every finite-order laminate

N
UN = Z Aiba;-
i—1

We proceed by induction (keep in mind that the value c is fixed but ar-
bitrary). For N = 2, (2.3) is just (2.2). Suppose now that (2.3) holds
for every probability measure associated with (Hy_1) conditions. Then, if
{O, AN} 1<i<n satisfies the (Hy) condition, we can assume, without loss
of generality, that rank(A; — A2) < 1 (we drop the superindex for simplicity),
and by the induction hypothesis, we have

[e©a ©=3x (A~>=<A+A)( My + 2 <A>)+
"4 UN £ 1P\ 1 2 )‘1+)\2<P 1 )\1+)\2<p 2

N N
A1 A2
+ iE=3 Xie(A:) > (A1 + da)e ()\1 nyw A+ YW Az) + ;=3 Aip(4;) >

>0 (é /\iAi) = (/ﬁduw(i)) :

In fact, notice that we can further simplify the situation (since ¢ is contin-
uous), because (2.2) holds for a value c if and only if

o(f &du(ﬁ)) < [ e©)aue) (2.4

for every
1 1
U= 56,41 + 56,42, with rank(A4; — Ag) < 1,



CHAPTER 2. FINDING NEW FAMILIES OF RANK-ONE... 36

holds for the same value of c.
After a change of variables, we can write down this measure as

1 1
b= '2'550+A + '2'6§0—A’

where rank(A) < 1. For s € [0, 1], we can take
1 1
H=Us = '2'5§o+sA + 5650—3,4

with rank(4) = 1 and |A| < 1 (for |A| > 1 just use the fact that £ € M™V
is arbitrary and that ¢ is continuous). By dealing with this class of measures
(which will play the role of “generators”), we can determine the exact range
for the constant c that we are interested in.
Step 3. For s € [0, 1}, consider
1 1
Hs = 500+sa + 506004,
and the corresponding plane curve

U(A’EO)(S) =T(us)

with end-points
(¢1(60), p2(&0))

and
(%‘Pl(fo + A4) + %‘PI(EO — 4), %902(60 + A) + %W(Eo - A)) :

If o and p, are defined as above, then finding all ¢’s such that

[e@ @z [ €dﬂs(§)> ,

is equivalent to finding all ¢’s for which we have
U%A’&’)(s) _ U%A’&’)(O) > c(aéA’&’)(s) _ UgA’EO)(O)),

for every & € M™* N, A € A with |A| < 1, s € [0, 1]; or, if we consider ¢ > 0
(the other case is similar), that

1 of(s) - oi(0)
C - O{A’EO)(S) _ a_gA,g())(O)
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for every & € M™ N A € A with |4| <1,s€ (0,1]. If ‘
a.éAvgo)(S) . UéA’EO)(O) S 0’

then ¢ > 0, and we do not have any additional constraint. Otherwise, we
can set

wp Te) =o)L 1
A,go,sE(O,l] o_iA,Eo) (S) _ O{A,ﬁo) (0) C+ - c .
S;
ince 1 1
ai(s) = 54,01'(50 + sA) + '2'%'(50 — sA),
it follows

thus it is obvious that

sup o_éAyfo) (S) . UéA’EO) (0) Supd:z(A,Eo) (0) .
Akose@ {0 (5) — o {A(0) T 461 A)(0)

(2.5)

Step 4. To finish the proof, we have to show that the equality holds.
First we will suppose that the supremum on the left side of (2.5) (and where
we can suppose s > r > 0, otherwise there is nothing to prove) is indeed a
maximun and that a strict inequality holds

A, R A*, * * Alk, *
1 e 90 - o) o) -0 0)
cy A,Eo,sE(O,l]o-§Aa§0)(s) _JgA,éo)(O) agA*,E;;)(s*) —0§A"§°)(O)

> SUp—r -
A8 61450 (0)

Then there has to be a point ¢ € (0, s*) such that

o,gA*,Ea)(s*) _ aéA*éa)(t) B

U&A*’Ea)(s*) . UgA*,Es)(t) -

3pa(€ — s*A") + @2(E5 + 5" A%)) — (2§ — tAT) + p2(&G +247)) 1
Lp1(& — 5*A%) + p1(€5 + 5 A%)) — J(p1(&5 — tA") + (€5 +14%)) v

But because £ — tA* and £} + tA* can be regarded as new barycenters of
first-order laminates, it is clear, by definition of i, that

S oa((€5 — tA*) = (s* —~ DA") + S (65 — tAT) + (5" +1)A”) —pa(§8 —tA") _ 1
S (€5 — tA*) — (s* — )A") + S (& — tA") + (s* + )A%) —pu(ég — A7) ~ o+
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and

T3toa((€5 +tA") — (5" + 1)A") + G oa((E5 +1A") + (5" — )A") —p2(§5 +¢A") _ 1

22o1((6 + A7) — (* + ) A") + SE (€ + A7) + (" —)A*) (& +14%) ~ e

From here and because ¢ is strictly convex (and so, in the above fractions
both denominators are strictly positive), it is trivial to obtain

o_gA*,ES)(s*) _ o_éA*,ﬁa)(t) < _1_

ot () — o) T er

which contradicts the above strict inequality, leading to the desired conclu-
sion, that is

A, A, .
- og &’)(s) —ag €o)(0) e G2 440)(0) _ _}—
460,5€01 A0 (5) — g{A9)(0) A& A(0)  cs

Now it remains to prove the case where we have a genuine supremum on
the left side of (2.5). This can only happen if the supremum is obtained by
taking |¢| — oco. Suppose

1 @=L a9 -
cy - A£,5€(0,1] O.(A:ﬁ) (s) — U(A,E) (0) |€|—00 A,s€(0,1] O.(A.ﬁ)(s) _ O.(A,ﬁ) (0)
B ’ 1 1 1 1
.. Ay Al
O GO DY SOt id )

—————= = lim sup .
ag 1AR(0) =0 ag UgA’é)(s) - ogA’E)(O)
Then there exists § > 0 such that

220 _ L _
AE 6149(0) 4

We also have that for each € > 0, there exists k = k(¢) € IR* such that for
€] > k(e),
A S AD  _AD g c

We take € = §, and for ¢ such that || > k(J) one has

—E&.

A, A, .
Ué E)(s) —Ué E)(O) S 1 6> sup 7244 (0) 1 _ 35

ax =
A0 A (g) — gD (g) et ag 6149(0) et
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As for such £ (
Af)
0‘2 (0) 1
sup ———— < — — 34,
g 6149 (0) ~ e+
then for each A there must exist a point ¢ € (0, 1) for which

(A 5)( ) — (A,E) (t)

?—»t (A,f) (S) (A,{) (t) E_—*_— - 6

Using again the fact that £—tA and {+tA can be regarded as new barycenters
of first order laminates, one has

Sty (€ —tA) — (s = )A) + Frpa((€ — tA) + (s +t)A) — pa(§ — 4)

o o1 ((€ —tA) - (s — ) A) + Fror((€ —tA) + (s + ) A) — pr(E - t4) ~
< -3
C+

and

L Ee((EHtA) — (s DA + 5 Stoa((€ +14) + (s~ D)A) — (6 +t4) _
sot Sty (€ +1A4) — (s + 1) A) + Sto1((€ +tA) + (s — 1) A) — g1 (§ +14)

<l_ss

Ct+

Consequently, there exists 1 > 0 such that for each s € B(t,)

Stboy((6 — t4) — (s — )A) + Floa((€ — tA) + (s + 1) A) — pa(§ —t4) _
ertcpl((€ —tA) — (s — ) A) + Fer((€ —tA) + (s + )A) — (£ —t4) —

<X _9
C+

and a ry > 0 such that for each s € B(t,r2)
Shoa((€ +tA) — (s + 1) A) + Soa((€ +tA) + (s — t)A) — pa(€ +t4)

Sto1((€+tA) — (s + 1) A) + (€ +tA) + (s — 1) A) - m@+mgs
<L 9
C+

For each s € B(t,r), where r = min{ry,r2} and noticing that ¢, is strictly
convex, one can get

A, y
o) - o) 1o

which is absurd. m



Chapter 3

Quasiconvexity: the quadratic
case revisited, and some
consequences for fourth-degree
polynomials

In this chapter we provide an alternative proof for the well-known equivalence
between quasiconvexity and rank-one convexity in the quadratic case. Our
proof avoids the Plancherel formula. Some consequences and some new ideas
for the case of 4th degree homogeneous polynomials are shown.

3.1 The quadratic case

A well-known result is the following

Theorem 3 Let ¢ : M™N — R be a quadratic form. Then ¢ is quasicon-
vez if and only if is rank-one conver.

The proof of this result is known for a long time ([45],[46], although implic-
itly known earlier). Nevertheless, all known proofs until now use Fourier
transforms and the Plancherel formula, and so they cannot be applied to
other than the quadratic case. We propose an alternative proof, which does
not make use of Plancherel formula, and so we hope in this way to gain
more insight about this outstanding problem of if rank-one convexity implies
quasiconvexity when m = 2.

40
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Proof.
Step 1. Notice that a quadratic form ¢ : M™N _ IR can always be
written as

(€)= TAE - €T BE,
with A, B € MmxN)x(mxN) qymmetric matrices and A is positive definite.
For ¢ as above, its quasiconvexity is equivalent to

/Q (E+Vu(2))T A (4+Vu(e))— (4 Vu(@)T B (E+Vu(z) dz > ETAE—ETBE &

& /QVTu(:c) AVu(z)dz > /Q VTu(z) B Vu(z) dz &

Jo VTu(z) BVu(z) dz
@1z fQ VTu(z) AVu(z)dz’

for every u € C§°(Q,IR™) since, by the divergence theorem,
/ Vu(z)dz =0,
Q

where Q = (0,1)". This last inequality can be rewritten as

fQ VTu(z) B Vu(z) dx
12 sup Jo VTu(@) AVu(z) dz’

for u € Cg°(Q,R™).

Step 2. We want now to solve the (infinite dimensional) problem of
finding
fQ VTu(z) B Vu(z) dz
Ve Jo VTu(z) AVu(z) dz '

where A is positive definite. However, we can reduce this infinite dimensional
problem to a finite dimensional one (but now with an infinite number of
variables), by expanding u in a Fourier series. If u € C§°(Q,IR™), we put

u(a:)= Z CkeZ'lrik‘z’ Ck=/Q’U,(.'L‘)6_27rik'xdx.

ke ZN

Notice that, although we take k € ZV in the summations, we are thinking
only in expansions with a finite (but arbitrary) number of terms. In this
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way it is straightforward to justify all the computations done, and then to
achieve the conclusion for any u € C§°(Q,R™) is just a limit procedure to
obtain expansions with all k € ZV ([50]), preserving in this way the required
inequality of quasiconvexity. The same assumption is made through the
following sections of this chapter in all the computations involving Fourier
expansions.

Now, [, VTu(x) AVu(z) dz is equal to

—47r/ Z(CJ®JT eI A Z (ck ® k) 2% dg =

JGZN ke ZN

=—4n" 3. D J®cJAck®k/ 2ilih)-© g —
je ZN ke ZN
—Ozf]+k¢0

= —47? Z —k®c_r Acr®k =

ke ZN
= 47 E k®tr Ak®ck,

ke zZN

where ¢, denotes the complex conjugate of cx. We can ignore any multiplica-
tive constants, as they will appear both in the numerator and denominator,
so we can take

/ VTu(z) AVu(z) dz = Z k@t Ack®k.
Q ke ZN

If we put
ek = (ck,c2,...c), k= (ki,ka, ... kn),

( ik \

then

c,lckN
ck®k=(ck,c2,....,c?") ® (k1, ka2, ..., kn) = ,
Cikl

\ kN
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k@t = (cikr .. Thkn Tok1 ... TPkn)

and, if we consider

1 1 1 1 1 1
[ Al Al . Ay Any - Ay AmN\

1 2 2 2 2 2
A2 .A2 e .A.N AN+1 e A2N ‘e .AmN

1 2 N N N N
AN AN s AN AN—l—l AZN ces AmN
- 1 2 N N+1 N+1 N+1
A= Ayyi ANyt -~ Ana Avp - AN o AN
1 2 N N+1 2N 2N

Aly Ay .. Ay AN - Al - AQN

1 2 N N+1 2N mN

Ay Abn - Any Ank - Any - AQN

then

/ Viuw(z)AVu(z)dz = Y k@ Ack ® k= > & Ae ok,
Q

ke ZN ke ZN
for
[ (k) k) - asn(k)\
od(k) of(K) ... ok(k)
Ak= )
\ ol (k) oZ(k) .. af(k)
where

N N
r+(p—1)N —1)N
aB(k) = S (ke PAITETIN 127 ko ATTE IR P =1, m,

r=1 rs=1
r<s
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2 1r+(g—1)N +(g—-1) +(g—1)N
ag(k) = Zlk ALZUN+§:kk( ;énN+A;&mNy
'I"S_'
'r<s

»qg=1.,m, ¢<p.
But

Z E{ Ap ¢ = Z (Reck—iImck)T A (Recg+iImeg) =
ke ZN ke ZN

= Y XT A Xy,
ke ZN
for
Recy, A, 0
Xe = Imey » Ak = 0 A

Similarly, we have
/ Viu(e) BVu(z)dz= Y k® % Be ® k= Y X[ By Xx.
Q ke ZN ke ZN

Step 3. In order to determine

fQ VTu(z) B Vu(z) dz
Vu fQ VTu(z) AVu(z)dz’

we must first find the

> XT By Xy
ke ZN
max = ,
X=(Xk)kEzN Z X’Z-‘ Ak Xk
ke ZN

which is the maximum of the quotient of two expressions homogeneous of
degree two in X. Instead of computing

> X;{ By X
ke ZN
max
(Xk)keZN Z XT Ak: Xk
ke ZN
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we can consider the equivalent problem

max X{ Ek Xk
X=(Xk)keZN kEZZ:N

subject to 5
Z Xg Ap X =1,
ke ZN

where Ay is positive definite for each k # 0.
If A is a Lagrange multiplier, we put

LX, N =) XkTEka—)\(Z XEZka—l).

ke zZN ke ZN

The first-order necessary conditions will then tell us that

(By, — M) Xy = 0 for each k € ZV,

VL=0%& ~
ZX,’{A];X]C=1.
ke ZN

If X = (Xi)rezn is a critical point, then it is easy to derive

> X{ B Xp =

ke ZN

45

Also from the above, for having solutions of this system of equations, it is
necessary (and also sufficient, as Ay is positive definite for k # 0) to have

det(gj — /\Zj) =0,

for some j and some A. The solutions A of this equation will be denoted
by Aj. We put X; = w; # 0 and suppose, without loss of generality, that

X =0 for k # j. Then
k#j = (Bi—XjAy) Xy = (Br - XjAx)0=0.

As w; € ker(ﬁj — )\jﬁj),
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With respect to the last equation of (3.1), we have

Z X,{AkaszTAjwj=cz>O.
ke ZN

By setting
1
w; = —Xj,

§; =
J C

(v

and
s, =0, k#])

we have that ((sk)rezn, A;j) is a critical point of the problem, with associated
cost equal to A;.

The above proves that the problem of finding the supremum of the solu-
tions of

max Z X,Z‘ Ek X

X=(Xk)kezN ke ZN
subject to
> XE Ap Xi =1,
ke ZN
is equivalent to determining
sup Aj,
JEZN

where \; are the solutions of

det(ﬁj — /\jgj) =0,j¢€ zZN.

Step 4. Suppose, by hypothesis, that ¢ is rank one convex. Since y is
quadratic, making the decomposition ¢ = @1 — @2, with ¢ strictly convex
and putting V2p1(€) = A, V2p2(§) = B, we get

> n®aBa®n
“n®aAda®n’

for every a ¢ R™ and n € IRY, or, which is the same,

n®aBa®n

12> max .
acR™neRV NQ®a Aa®n
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We can incorporate, in the above maximum, the dependence on n within the
matrices A (in the spirit of the above case for quasiconvexity), thus obtaining

n®ada®n=alAna

with )
al(n) .. ak(n)

T e

al(n) .. al(n)

for ozg:, ag defined as before (but now as functions of n € RRY). Similarly we
can use the same reasoning with B

n®aBa®n=alBpha.

We now want to compute

aT’ Bra
max max )
neRN acR™ aT An a

Since

max al B,a

acR™ al A, a
is the quotient of two expressions homogeneous of degree two in a, we con-
sider the equivalent problem

max al Bra
acR™

subject to
al Apa=1.

If ) is a Lagrange multiplier, we put
L(a,\) = a’ Bpa—A(a” Ana—1).
The first-order necessary conditions will then tell us that

(B, —AAp)a=0
VL=0¢&
al Apa=1.
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Once again, if a € R™ is a critical point, then
ol B,a=\

The above system has solutions if and only if det(B, — An) = 0. The
solutions A of this equation will be denoted by A,.
Thus we have shown that the problem

ax aT B,a
max max —m——
neRN aeR™ aT Ana’

is equivalent to determining

max Ap,
neRY

where the )\, are the solutions of
det(Bp, — AAn) =0, n € RV,
The conclusion from this step is that, ¢ is rank-one convex if and only if

1> max A,

neRN
Step 5. Observe that
B
1> max w = max /\n > sup )\Ja
acR™"ncRN N ®a Aa®n  neRN ieZN

because the solutions A; of

det(B; — \jA;) =0, je ZV,
are contained in the set of solutions A, of

det(Br — MAn) =0, n e RV,

Consequently, a quadratic ¢ is quasiconvex if and only if it is rank-one
convex. M
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3.2 Quasiconvexity for 4th degree homogeneous
polynomials

We now try to apply the ideas of the previous section to the case of fourth-
degree homogeneous polynomials. Let ¢1, @3 : M™*¥ s IR be homogeneous
polynomials of degree four, with ¢, strictly convex and take

(&) = 1(§) —cp2(é), c€ R.

In order to determine the values of ¢ for which the corresponding ¢ is qua-
siconvex, we want to determine the extrema. of the function

Jo p2(€ + Vu(2)) — p2(§) dz
Jo P16+ Vu(z)) — p1(§) do’

for every &€ € M™*V and for every u € C°(Q,IR™) where, for convenience,
we take Q = (—m,7)V. In the case of £ = 0, this will be answered by
Theorem 4. For checking the quasiconvexity at the origin, the above quotient

is much simpler
Jo #2(Vu(e)) do
Jo@:(Vu(@)) dz’

as ¢;(0) = 0. We can reduce this infinite-dimensional problem to a finite
dimensional one, as we did in the quadratic case, by taking the Fourier
expansion of u. Furthermore, we can expand u as a Fourier series with
imaginary coefficients, with the help of the following lemma.

Lemma 2 ¢ : M™¥" R is quasiconver if and only if

/ (€ + Vu(z)) dz > / () dz (3.2)
(—mmN (=mmN

for each ¢ € M™N and u € CP((—m,7)N,R™) such that u(-z) =
—u(z), = € (—m,m)N.

Proof. We only need to prove the “if” part. Suppose, by hypothesis,
that ¢ verifies (3.2). We want to prove that ¢ is quasiconvex. For this
purpose, consider an arbitrary ¢ € M™*" and take for domain the set
Q = (0,7) x (=, 7). So one must verify the inequality of the definition
of quasiconvexity for every u € C°(Q, R™). Define the “odd” extension of
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uto Q = (—m,m)N by
u(z), z €N

U(x) =14 0, z€{0}x (—m,m)N1

—u(~z), z € ¥ := (-m,0) x (-7, m)N L.

In particular, the following properties hold: U € C((—=,7)",R) with
U(-z) = ~U(z), VU(-z) = VU(z), z € (—m,7)". Then

2/0(,0(6+Vu(:v))dx=/Qtp(E—f-VU(z))dx+/Q<p(€+VU(x))dx=

- / H(E4VU(2)) dat / P(E+VU(—y)) dy = / P(E+VU(2)) dz >
Q Qf N

(_'”17")

> /( G JRGES

By the above lemma one can take, without loss of generality, u €
C®(Q,IR™) with u(—z) = —u(z), £ € Q. Then

uz)= ) c;e*, Cj= (27:)N /Qu(x)e_ij'zdx’

jezN
and so, in particular we have
Vu(z) = Z iC; ® j 9%,
jEZN
with
C_j=-Cj, jezZN.
Since Cj is purely imaginary, iC; is real and so we take as variables ¢; = iC},
which are real.

The problem is now to find the extrema (now in the c;, at the end we
must then compute the extrema with respect to the j € Z%) of

Jov2 ( 2 ¢®j eij'””) dz

jEZN

Jowr ( Y. ¢i®j eij-””) dz

jezZN
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As the above quotient is the quotient of two homogeneous expressions of
degree 4 in c;, we can consider the equivalent problem of computing the

extrema of
/ Y2 Z ¢;®7 €® | dx
subject to
/ ©Y1 Z c;i®J e | dz = 1.

If X is a Lagrange multiplier and C = (c;) ez~ , we write
LN = [ o ( > i®j e"f-z) du+
Q

jeznN
—/\(/cpl ch®jeij'z) dz—l).
Q jGZ‘N

In order to obtain the first-order necessary conditions one has to compute

%/cpi(ch@keik‘z) dz =
jJQ

kezN
=/ Vi ch@)kei’“c 5%; ch®keik‘” dr =
Q kezZN J \kezN
= / Vi Z cx®ke®*=1(0,..,1,..,0)®j (€% 4 7% d,
Q kezZN

where p = 1,...,m, ¢; = (¢}, .., ¢J") and (0, ..., 1, ...,0) above means that all
the coordinates are zero except the p-th one.
Since y; are homogeneous polynomials of degree four, one can write

©1(Vu) = A1(Vu, Vu, Vu, Vu), pa(Vu) = A2(Vu, Vu, Vu, Vu),
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where Ai, Ay are 4th order (totally symmetric) tensors with m*N* constant
coefficients, and so the last equality above becomes

/ (ch@)kezkz ch®le‘”” Zcm®me )

kezZN lezN mezZN
©0,..1,...,0) ® § (9% + &7 9%)dz =

=4 Y Ai(a®k,a®lon@m) elEtme
Qg1 mezN
©0,..,1,...,0) ® j (€% + e %) dz =

=4 Y Ai(a®kq®len®dm,(0,..,1,..,0)® )

klmezZN
/ ei(k+l+m).z(eij.x + e—ij.a:) dr =
e ,
=1 if j+k-+l+m=0 or j—k—l—m=0
=4 > (Ai((0,-,1,.,0) @,k ®k, @ Lcirkrt ® ( +k+ 1)+
kleZN

+A'i ((07 sy 11 70) ®Ja ck ® k,Cl ® l7cj-—k—l ® (J —k— l))) )

where p=1,....m
With respect to the last equation of the set of first-order conditions, one
obtains

/(pl (ch@)keik‘x) de — 1=
Q

kezN
= > A ®,ck®ka®lcn®m) gtUthktltm)z gp 1 =
Q jklmezN
> A(ci®h,c®k,a®lciu®(+k+1)-1=0.

JkleZN

We are now interested in incorporating 7, k,, 7 + k + [ inside the matrices A;
and As, before writing the optimality conditions. That can be done using
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a procedure similar to the one used in the quadratic caSe, but now using
the formulas two times, as here we deal with fourth order tensors, instead of
second order tensors. For a fourth order tensor

1,1 1,1 1,1 1,1 1,1
( Al,l A1,2 Al,mN A2,1 AmN,mN \
1,1 1,2 1,2 1,2 1,2
A1,2 A1,2 Al,mN A2,1 AmN,mN
1,1 1,2 1,mN 1,mN 1,mN
A= Al,mN Al,mN Al,mN A2,1 AmN,mN )
1,1 1,2 1,mN 2,1 2,1
A2,1 A2,1 A2,l A2,l AmN,mN
1,1 1,2 1,mN 2,1 mNmN
\ AmN mN AmN mN AmN mN AmN mN AmN,mN }
we put
Acj®j,ck®k,a®l ,cjpku @ (G +E+1)) =
j®ch{ck®k j®c]~A}nch®k
=l®q Ci+k+l ® (J +k+1),

i®c Al ek ®k ... j®cATNc®k
Ap = (AZ:; a,b=1,...,mN.
First we deal with

)c,d=1,...,mN ’

JI®cjAfck ®k.
For
Cj = (cj7“"c:;'n)7 .7 = (jl)'")jN)a

[ cin \

cjin
cj ®jF=
it

Fin )
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Then we have :
J®cjAfck ® k= c] AF(j, k) cx,

where
a1 (k) o apm (k)

8(j,k) = :

o:b1 TG, k) . ag”x(j,k)

N

+Hp-1)N - : Hp-1)N

ap (4 k zjrk AZ:+(::—1)N + Z (grks + Jsk’")AZ,.:+(;z:—l)N’
r,s=1
r<s

p=1,..,m, (3.3

N N
G/ . . a,r+(g—1)N . a,r+(g—1)N . a,s+(g—1)N
aya(i k) = > :JTkTAb,r+(p—1)N + Jrks Ayt p-1)n T Iskr Ay vy (1N
r= rs=1
r<s

g<p, ¢,2p=1,...m, (3.4)

ar+(p 1N a,s+(p—1)N a,r+(p—1)N
(5 K erk Ayri@-yn T Z rks Ayt ig-n T Iskr Ay i (a_)N >
!

g>p ¢,p=1,...,m. (3.5)
So we have

A(cj®j,cx®k ,a®l ,ciknu®(+k+1))=

c?A{(j, K)e .. TA1 N E) ck
=l®¢ Citkr @ (G +Hk+1) =
TALNG K e . ] ApN (k) e
cJ7-‘A{(y,Ic,l,]+k+l)c,c TAI Gk Li+k+1)c
T —_—

TATPG kL j+k+ ek . TARG kLG +k+D)c
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where
N
ARGk, K+ 1) = by + ke + L)AL IV G )+
. r=1
+ :le(lr(js ko + L) + (e + ke + L) ATTE DN G K), p=1,..m
r<s
N
ALG KL+ k+D) =Y G+ e+ L) ATTETING )+
r=1

N
+ 3 (s ks + L) ATTETINGL ) + U (G + e + L) ATTEDN G R),
re=1

r<s

q<p, ¢,p=1,...,m

N
. . . r —1)N, .
ALG R LG+ E+D) = Y G+ ke + L) ATTET NG R+
r=1

+ Z (Js + ks +1 )A:ig—};]\f(]7 k) + ls(jr + kr + lr)A;iEZ BN(]’ k),
TTS<—S

q>p ¢,p=1,...m

To achieve this formulas one just has to make a second iteration with the
formulas (3.3), (3.4), (3.5) and use the distributivity of the matrix multipli-
cation with respect to its sum. Finally, we have

A ®F e ®k ,q®1,cipkpt ® (j + k+1)) = APRLITRH (0 e, ciprt),
for
AGELi+E+D .. ALGKL+E+1D)

A]ykxlx.7+k+l —

AT,k L+ kD) . Ak LG+ E+D)



CHAPTER 3. QUASICONVEXITY: THE QUADRATIC CASE... 56

If we apply this method to A; and Az and simplify the notation by intro-

ducing
kol 4k
Atk = AT,

o Lihrl
bjktj+k+ = A%»k:l,1+ +
the first-order optimality conditions will then be

[ Y (Bjk ittt — Ak i+k+)((1,0,...0), ck, €ty ki) +

klezN
+(bj k1, j—k—t — A @ik i—k-1)((1,0,...,0), ¢k, €15 €j—k—1)) = 0,

for each j € ZN

¢ (3.6)
> (bikg gkt — Atk (0, -, 0,1), €k, €1y Ciakti) +

kl€ZN

+(bj k1, j—k—t — Akt i—k-1)((0,...,0,1), ¢k, c1,¢5—k—1)) =0,

> Naj,k,z,j+k+z(cj,ck,Cz,cj+k+t) =1
\ JklEZ

If C = (cj)jezn is a critical point, we can multiply

> (bikgkst — Ak gitkt) (05 1, 10y 0), € €1, Cjert)+
klezN

+(b ikl j—k—l — A aj,k_g,j_k_l)(((), vl 0), Ck, Cl, cj_k_z)) =0
by ¢} and sum in p = 1,...,m, thus obtaining

D (Bikbgrktt — Akl grk+t) (S5 Chy € Cika) +
klezZN

+(bj k1, j—k—1 — Akt i—k—1)(Cj» Chy €1y Cj—k—1)) = 0.
Then summing in j € ZV gives

2 Z (bj k4l — A@jikirk+t) CiCkCIC +h+1 = 0,
JklezZN

and using the last equation from (3.6) leads to

Z bj k1 j+k+1(Cjr Chr €Ly Cjaktl) = A
JklezZN
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/<p2 (Z ck®ke“°'”) dr = A
Q

and then to

kezN
We are now entitled to formulate the following

Theorem 4 Let 1,92 : M™N _, R be homogeneous polynomials of degree
four, with @y strictly convex and consider

@(€) = p1(€) — cp2(8)-

Then ¢ is quasiconvez at zero if and only if

1. cele,eq), if 21 <0;

cy Cc_

2. ce (—oo,cyl], if Cl_ =0;
3. c€ [c-,+o0), if g—; =0,

with

1 1
— (resp c_> = inf A (resp sup A),
+

where the values of A can be obtained as the solutions of (3.6).

Unfortunately, the set of equations (3.6) does not provide us with better
understanding of the problem than those given by itself, even if we consider
deformations with just a few terms. This is the major reason why we proceed
to the case of the second gradients, where the c; are scalars.

3.3 The case of the second gradients

Suppose that u € C(Q,IR) where we set @ = (—m,m)N. Let 1,02 :

IMQJ;(,LN — IR be homogeneous polynomials of degree four, with ¢ strictly

convex and take

©0(€) = p1(£) — cp2(é), c€ R.

In order to determine the values of ¢ for which the corresponding ¢ is 2-
quasiconvex, we want to determine the extrema of the function

Jo p2(€ + V2u(2)) — ¢2(§) de
Jo e1(€ + V2u(z)) — ¢1(€) dz’
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for every £ € ]I\/IQ,’I:;N and for every u € C°(Q,R). We will study the case
¢ =0, as in the gradient case. For checking the 2-quasiconvexity of ¢ at the

origin, one must check
fQ p2(V?u(z)) dz

Jo o1 (Vu(@)) do”
as ;(0) = 0. We can now expand u as a Fourier series with real coefficients,

with the help of the following lemma, whose proof is similar to the gradient
case.

Lemma 3 ¢: II\/IQL;‘,LN — R is 2-quasiconves if and only if

/ o€ + V2u(z)) dz > / o(€) dz 3.7)
(N (W

for each & € MEXN andu € CZ((—m, )N, R) such that u(-z) = u(z), z €
(=, m)N.

By the above lemma one can take, without loss of generality, u €
CX(Q,R) with u(—z) = u(z), z € Q. Then

y 1 y
— LT . —ij.x
u(z) = Z cje’®, ¢j = L /Qu(x)e dz,
jezvN

and so, in particular we have

Viue) = - Y j®jcie??,

jezN
with
c_j=¢j, JE ZN.

The problem is now to find the extrema (now in the ¢;) of

thpz( Y i®jc eij'z) dx

jezN

jezZN

o (507)

or, as we did in the previous section, to find the extrema of

/(pz (Zj@jqeij'z> dz
Q

jeZN
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subject to

jeZN

If X is a Lagrange multiplier and C = (c;) e zn, We write
L(C,\) = / Z j®jcje dx+
Q ]GZN
/ Z i®jcje dr -1
Q ]GzN

In order to obtain the first-order necessary conditions one has to compute

BCJ (Zk@kcke )d:z:-—

kezN
=/V(pi z:k:(?i)kcke"’“'“c Zk@kcke dzr =
Q kezN Oc; kezN
=/Vgoi Zk@kake 7 ® (€9 + e%) dx.
Q keZN

Because ; are homogeneous polynomials of degree four, we can write
01(V2u) = A1(V?u, Viu, V2u, V2u), <p2(V2u) = Ay(Vu, V2u, Viu, Vu),

where A, Ay are 4th order (totally symmetric) tensors with N® constant
coefficients, and so the last equality above becomes

/ (Zk@kcke’k’” Zl@lcle Zm@mcme
Q

kezZN lezZN meZN
j ® J (eij.:v + e—ij.a:) dr =

=4/ Z A; (k®kl®lm®m)ckclcme’(k+l+m)x
Q k1 mezN
j ®.7 (eij‘z‘ _|_ e—ij.:c) dm —
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=4 Y Ai(k®FkI®LMOM,j® j)cricm
klmezN

/ e'i(lc+l+m)..1|:(e'ij.:c + e—ij.z) dr =
Q

v

=1 if j+k+l4+m=0 or j—k—l—-m=0

=4 > (A(i®5Lk®KkIOLG+E+1)® (I +k+1) ckaicjrhrt
klezZN

+A;((®5,kRkIQLG—k—1)Q(H—k—1)ckacj—k-1)-

With respect to the last equation of the set of first-order optimality condi-
tions, one obtains

/(pl Zk®kckeik'm) dz—1=
Q

kezZN

Z A (i ®5,k®k,I®L,m®m)cjckcicm elUtktltm)z go 1 =
Q j k1 mezZN
Z Ay (]®],k,‘®k,l®l,(]+k+l)®(]+k+l))CJCkC[C]+k+l—‘1 =0
iklezZN

Consequently, simplifying the notation and writing
Qikljrktl = A1 (®5LEQkISLG+E+D®(T+E+1),
biktjrkt =A2((®LEQKIQLG+HE+D)Q(+k+1)),
the desired set of equations will read

2 . (bj ki d j+k+l — A Gkl j+k+1) CKCIC +k-+1T
kleZ

; N
+(b ke, j—k—1 — )\aj,k,l,j_k_l) ckclcj_k_l) = O, for each VAS Z y (3.8)
Y @kl j+k+l CiCkCIC tk4l = L.
diklezZN

If C = (cj)jezn is a critical point, we can multiply

Z (bj,k,l,j+k+l - )\aj,k,l,j+k+l) CkCICj+ k41T
klezN

+(bj k1 j—k—l — Ak 1 j—k—1) CkCICj—k—1) = 0
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by c; and sum in j € Z, thus obtaining
.7

2 ) (Bikbirkit = MGk Litktt) CiCCIC +k+t = 0.
gk leZN

Then using the last equation from (3.8) leads to

Z bj k1, j+k-+l CjCKCICj4h+l = A
JklezN

/<p2 (Z k®kckeik'$) dz = A\
Q

kezN

and then to

We are now entitled to state the following

Theorem 5 Let @1, 92 : II\/IQ;;‘,,N — IR be homogeneous polynomials of degree

four, with ¢, strictly convex and consider

@(§) = p1(&) — cp2(§)-

Then @ is 2-quasiconvez at zero if and only if

1. c€lc—,cq), if L1 <o

ci Cc_

2. ce (—oo,cyl, #f CL_ =0;

3. c€lc-,+00), if c—1+- =0,
with

: 1 1
i — (resp —) = inf A (resp sup A),
: c- cy

where the values of A can be obtained as the solutions of (3.8).

4 In general it is hard to solve (3.8), because the equations are extremely
connected and determined as they share its variables, and so it is not possible
to simplify the problem as one can do in the quadratic case. Nevertheless,
one can consider, in some particular cases, Fourier expansions of u with just
a few terms, aiming to understand better the details involved.

3.4 The classical examples for N=2

In this case j = (j1,J2) € Z? and we will consider competing deformations
with just a few terms.

< ggwon

g,f
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3.4.1 One term

In this case we consider ¢; = c_;j # 0, ¢ = 0 for k # j,—j. Notice that

(3.8) is now
6(bjjii — A2ggg) & = 0,
6 aj,jj.j cﬁ = 1.
For
@) = 1(€) — cpa(8) = I€|* — €[> det €
and
e(€) = p1(6) — cpa(€) = |¢[* — c(det &)?,
one has

-2 -2\4
;555 = (91 +32)%
bj)j!j)j = 0’

and then A = 0. Consequently, this case is not interesting.

3.4.2 Two terms

For this case we consider c¢j,cx # 0, c-j = ¢j, c-k = Ck (with k£ # aj,
otherwise it will lead to A = 0), ¢, = 0 for | # j, —j, k, —k. The first order
necessary conditions will now be

6(bjji — A3g) € + 12005k — Aaj50k) ik =0
12(bj ik k — A @5k k) €2k + 6(bk ok e — Ak k) G =0

4
60j,7,5,7 €1 + 24055, €3k + 6 ak ki ¢k = 1

(b3 — A5gig) & + 2(Biikk — Ajjkk) & =0
& {200 kk — Njjkk) € + (kg ik — Aok kkE)Ch =0

4 2.2 4 __
6 a4, €; +24a5,5,; €5k +6akkkrcy =1

In the case of

p2(€) = (det£)® or p2(€) = €| deté,
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this system is equivalent to

~ X5, €2 + 2(bjjkk — Aajgkk) ¢k =0

2(bjjek — A@jjkk) C — Ak kkCh =0

605,74 + 24855 Cck + 6 Ak C = 1.
Notice that using o1 = €[4,

1 . . 2 . .
Qjjkk = g(J% + 332 (k2 + k3 + g(]lh + joko)*
and )
bjjkk = ’g(jlkl + jok2)2(izkr — Gik2)?, 2(€) = €% det €

1 . .
bjjkk = E(Jlkz — jak1)*, pa2(€) = (det &)

are non-negative, and so A must be non-negative also, otherwise the above
system is impossible.
Furthermore, we have to impose

2 2
A2a;;.j.50k kkk + 40550k — Aajjkk) =0

2b;,5.k.k
V55,530 kk + 2055k .k
again by the non-negativity of A\. To compute the extrema. of )\, one has only

to compute the maximum because A > 0, and 0 is attained.
With

S A=

¢2(€) = (det£)?,

one has

sup A = sup (jik — jak)*
ik ik B0F + 33)2 (kT + k3)? + 4(dik + jako)*

In the above quotient, j, k can be taken such that |j| = |k| = 1, leading to

(jika — jok1)*
5+ 4(j1k1 + joka)*’

and then Gk L )4
Jrks — jok1 1
sup A = su - - = -,
j,l? j,lg 5+ 4(jik1 + jok2)* 5
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This maximum is attained in the initial fraction by taking any 2 orthonormal
vectors j, k.
For

P2(€) = €] det €,

one has to compute

sup A = sup 2(jrk1 + jaka)® (ks — doki1)?
ik ok 50T+ + k5)? + A(inky + faka)

In this quotient, one can again take j = (j1, j2), k = (k1, k2) with |j]| = |k| =
1 and then get _
2(4, k)2 (4, k)2
sSup A = sup ———————,
Wk ik 5+ Ak

where k = (—k2,k1). As j,k are unit vectors and k,k are orthogonal, this
can be further simplified into
2cos?(6)(1 — cos?(6)) 2z(l—z) 1 3v5

X T dcot(0)  ecph 54+4z2 4 20

As we easily observe, the quotient

Jp02(V2u(z)) do
T 1(V2u(@)) de

is obviously positive in the case were

o1 = €)%, w2 = (det &),

but it surely takes both positive and negative values when

@2 = |¢|? det €.

One might be tempted to try to find a counterexample for N = 2, but notice
that we are restricted to check the 2-quasiconvexity of ¢ at 0. First of all,
we need to know for which values of ¢ € IR the corresponding ¢ is convex
along its characteristic cone. Then, if the smallest value obtained is zero,
this will provide the desired conclusion (if one has an example of a periodic
deformation with more than two terms, which is easy).

The characteristic cone ([18]) associated with 2-quasiconvexity is

A={a®a, ac R}
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The determination of which values of ¢ provide functions ¢ that are convex
along the directions of A can be done with the techniques developed in [5],
applied to this particular case. It is then easy to conclude that

o :IM2X2 LR

sym

is convex along A if and only if

c [ 4 4 ]
c T =y T |

V3 V3
that is, the maximum value for A (with at most two terms, considering all
possible £ € ]ME;‘,.?L and not only & = 0) is {Zg and the minimum is —3{13. It
could seem quite surprising that the values are exactly the same here, but in

fact the computations in [5] for the classical example of [14] shows that the
extrema are attained, e.g., for

0

V3 )

p)

which is, in particular, a symmetric matrix, and for any direction, provided
that it is of rank-one (that is, in particular one can choose to take a matrix
in A).

We have then to proceed to computations with deformations of three or
more terms, if we want to study the possibility of finding a counterexample.

3.4.3 Three terms

In this case we consider three non-zero terms cj,cg,c; # 0. As N = 2, we
know that one of the j, k,1 must be a linear combination of the other two.
We must analyze several subcases. In all the subcases we get A > 0 from
the necessary conditions (3.8), except one, which will be treated below. For
example, in the subcase of j,k, [, with j # ok, k # al,l # aj, we have

' 2 - 2 3 N2
—2a;,55.§ ¢4 + 2(bj 5k — As ki) + 2(bj 500 — Agjjpi)e; =0
2(bjj ek — A3k )C2 — Ak ke kCE + 2(bk k1t — AdkkL1)E] =0
2
Y 265500 — Aasia0)eE + 20kt — Aakrt)d — Aaygicd =0

4 2
6a,,5,5,;C; + 24a;,;k kCICh + 24a;j1c5c] + 6ak2,k,2k,k6§+ \
( +24ag 10060 + Barc =1,
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and in the other subcases we have at least one equation of the kind of the
first 3 equations of this system, which implies that A > 0, as stated (with
the above mentioned exception). Despite the fact that this system looks
harmless, the computations involved to solve it become too hard to find the
exact solutions, as we did in the previous cases with less terms, and the same
happens in the other subcases, in general.

The exception in terms of the positivity of X is the subcase were | = 2j+k
for k # aj, o € R. In this subcase it is possible to obtain negative values
of A (for pa(&) = €% det £), which means that for deformations with three
terms, the quotient

fQ pa(V2u(z)) dz

Jo #1(VPu(z)) do

attain negative values. An example of such a deformation is

u(ﬂ)l,xz) = —-;- (ei(l»o)'(zl:zz) + e-i(1,0)~(x1,z2)) +

_ % (ei(O,l)-(xl,zz) n e——i(0,1)~(:z:1,:c2)) + % (ei(2,1)-(z1,mg) + e—i(2,1)-(z1,w2)) ,

and the corresponding value attained,

2044
A= 61971

We recall that this does not provide any counterexample, because the mini-
mum value attained by )\ with at most two terms (if the first moment is not

fixed) is
V3
Amin = -



Chapter 4

On the characterization of
laminates for 2 x 2 symmetric
gradients

In this chapter we explore the problem of the equivalence between rank-one
convexity and quasiconvexity for 2x 2 symmetric matrices from the viewpoint
of probability measures, that is, we search for the existence of a gradient
Young measure that is not a laminate, following the approach of [36]. As a
by-product, we have reached a characterization of a couple of laminates, by
using the concept of 3-edge-laminate.

4.1 Introduction

The question whether rank-one convexity implies quasiconvexity can be
restated in terms of laminates and (homogeneous) gradient Young measures:
is every (homogeneous) gradient Young measure a laminate?

Several authors have tried to answer the above question about the equiv-
alence between quasiconvexity and rank-one convexity when m = 2 (see
e.g. [34], [36], [39]) without success. The interested reader may find general
reviews on this subject in [37). A wider reference is [12].

Here we follow the attempt of Pedregal [36] to adapt the approach of
Sverak [42] to the space of 2 x 2 symmetric matrices, which uses measures
supported on the 8 vertices of the cube [—1,1]%. Pedregal attempted the
following strategy: to generate a point @~ in the set of gradient Young
measures, as extreme in this set as possible, with the aim of showing the
impossibility of generating such @~ as a laminate. Gradient Young measures

67
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with barycenter (0,0,0) and supported on the vertices of the [—1,1]* cube
were used in his attempt.

Our contribution aims at analyzing what we believe to be one of the best
choices to find a counterexample in the case of 2 x 2 symmetric matrices.
Our initial aim was to try the same strategy of [36], with other barycenters.
We have considered not only (0,0, 0) but also, for several reasons (mostly to
keep the symmetry between the z and y coordinates, which translates into
symmetry of the different sets of measures), (3, 3,0) and (3,3,0). But, after
several attempts, we have succeeded, unfortunately, to generate also their
corresponding laminates.

This is why we have then changed our focus, towards the problem of
characterizing exactly the laminates involved. The characterization we have
reached in Theorem 6 below concerns a precise class of laminates, which
we call 3-edge-laminates (see Definition 3). They seem to generate (through
convexity) all the laminates; but we were unable to prove this. It is amazingly
difficult, in general, to prove rigorously (in concrete examples) that a given
gradient Young measure or polyconvex measure is not a laminate. Similarly,
if we fix an arbitrary polyconvex measure then it looks equally difficult to
prove that it is not a gradient Young measure. All the computations done
do not seem to relieve our doubts: they just reinforce our feeling that the
relationship between rank-one convexity and quasiconvexity is not at all
trivial or superficial; and (beyond the question of being able to find or not
a counterexample) that both concepts, of laminates and gradient Young
measures, are not yet well understood.

The organization of this chapter is as follows. In Section 4.2 we explain
in detail our initial aim. This is complemented by Section 4.3, which exhibits
sets of points generating the laminates mentioned before. As to Section 4.4,
it deals with sets of polyconvex measures; while Section 4.5 concerns sets
of gradient Young measures. These four sections constitute the first part of
this chapter, which is a kind of preparation for the second, and main, part.
This one starts with Section 4.6, where after some preliminaries we reach
Theorem 6, characterizing, in a precise sense, the extreme points of the 3
sets of laminates (i.e. those corresponding to the barycenter (a,a,0) with
a=0,a= %, a == %) along their edges, which is our main result. Finally,
Section 4.7 describes computational experiments designed to confirm, via a
different route, such characterization.
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4.2 Statement of the conclusions which we have
reached

Since we generalize the work of [36], in a sense, by considering different
barycenters, we use the same notations, namely the ones of its section 4.
Thus we consider Lipschitz deformations u : R? — IR? of the type

u(z) = Vy(z) + Pz

where ¢ : R? - R is [0, 1]%-periodic; with u the sum of 3 plane-waves along
directions (1,0), (0,1) and (1,1) respectively, and

r _ [ oato3 o3 _ 1113
PO"‘( as a2+a3>’P0—(al>a2)a3)€[ 1)1] .

These Lipschitz deformations have gradients represented, pointwise, by sym-

metric matrices
r+=2 z
z y+z )’

hence by vectors (x,y,z), assuming only 8 different values. These values
are the vertices of the 3-dimensional cube [—1, 1]3. We also have laminates,
gradient Young measures and polyconvex measures supported on the above
8 vertices. These are characterized by their barycenter Py and by the weights
a, b, c on 3 vertices of the cube. Thus we represent them as (compact convex)
sets in (a, b, ¢)-space.

To simplify the presentation, instead of probability measures we use here
measures with total mass = 576 = 242, so that our relevant vector measures
become triples (a, b, c) of integer numbers, with few exceptions (which involve
the numbers 64.8, 74.(6) = 74 + %, 76.5, 106.(6) = 106 + %, 157.(09) =
157 + TIT’ 158.4); we thus avoid writing lots of cumbersome fractions.

Let us start by presenting the result in [36]. There the barycenter is
Py = (0,0,0), and (as shown below in Section 4.4) the set of obtainable
polyconvex measures having weights on the vertices of the cube [-1, 13
which we denote as follows (see figure 4.1):

aw (1,1,1), b (-1,1,1), ¢+ (1,-1,1), d =288 —a—b—c— (—1,-1,1),
a=432-3a—b—c— (1,1,-1), b=2a+c— 144 — (-1,1,-1),
t=2a+b—144 (1,-1,-1), d= 144 —ar— (-1,-1,-1).

Using this notation, the polyconvex measures constitute the polyhedron in
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=P88-a-b-C [
c Q

p=1440 b=2a+c-144
C=2a+b-144 6=432-3a-b-c

Figure 4.1: weights on the vertices of the cube [-1, 1)3 for Py = (0,0,0).

5,772,215

A=(0,144,144>

Figure 4.2: sets of measures in (a, b, ¢)-space for Py = (0,0,0).

(a, b, c)-space which is the convex hull of its vertices:

A= (0,144,144), By = (72,0,0), B = (72,216,0), By = (72,0,216),
C = (144,0,0).

(This 3-dimensional solid is easily visualized: By, B1, Bz are the vertices of a
vertical triangle which is the common basis of two opposite pyramids having
vertex at A, C respectively, see figure 4.2.)

Inside this set of polyconvex measures we have the corresponding set
of gradient Young measures obtained in [36] from the Riemann-Lebesgue
lemma (see, e.g., [35]) for periodic gradients, which is a segment (see Section
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4.5 below). For the barycenter zero, the extremities of this segment are
Q™ = (36,108,108), Q* = (108, 36, 36).

We prefer, however, in order to simplify further the geometric picture of
the relationship between gradient Young measures and laminates, to present
each one of these sets of polyconvex measures in (a, b, ¢)-space through its
intersection with the bisector plane b = c. For example, the edge B1B2 —
with extremities (a, b, c) = (72,216,0) and (a, ¢,b) — is thus represented by
its point of intersection with the bisector plane: B = (72,108). In this way
the above polyhedron (which is the set of polyconvex measures) becomes
represented by a polygon, the convex hull of its 4 vertices:

A = (0,144), By = (72,0), B = (72,108), C = (144,0),

see figure 4.3. (Notice: in this figure, and also in the next ones, Q) and
Qg represent the points of intersection of the vertical line through Q~ with
the boundary of the above polygon; similarly for @1 and Qf. The reader
should not pay attention, for the moment, to the points in these figures which
are denoted using the letter R, namely R~, Ry,...; indeed, these points
will be the subject of Section 4.6 below.) Notice that the set of gradient
Young measures mentioned above is contained in the bisector plane, with its
extremities being now represented by Q~ = (36,108) and Q* = (108, 36).
As to the set of laminates, its intersection with the bisector plane — as
happens with the set of polyconvex measures — coincides with its orthogonal
projection into this plane.
~ We now present some definitions to simplify the notation.

In the search for a counterexample, one important question is how to
obtain all the gradient Young measures which can be generated directly
from the Riemann-Lebesgue lemma, (i.e. not indirectly through laminates).

Definition 1 D will denote the class of Lipschitz deformations u : R? —
IR? of the type
u(z) = Vo(z) + Pz,

where ¢ : R? — R is [0, 1)2-periodic, which is the sum of 3 plane-waves in
directions (1,0), (0,1) and (1, 1) respectively, with
/ ( a1 + o3 o3
! =

= = _ 3
a3 ag + as )’ Py = (a1,02,03) €| 1,1]°.
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A=¢0,144>

R™=0,=(36,126)

B=(72,108>

“=(36,108)

R

Rj=05=(36,72)

R*=@'=(108,54>

R @*x108.3¢>

Bp=¢72.0> R&’:Q‘;:qo&o) C=(144,00

Figure 4.3: P, R-polygons and Q-segment for Py = (0,0, 0).

Definition 2 D, denotes the set of deformations u(-) in the class D which
can be expressed as

T+

T Y
ul(:v,y)=/0 X1(t—51)dt+/0 X3(t—53)dt,

'} T+y
ug(z,y) = /0 x2(t — d2) dt + /0 x3(t — d3) dt,

with d; € (0,1) and
1, s€(0,si),
xi(s) =
-1, se€(s;,l),

extended periodically to R, where

8§; =

(1+a).

DO | =
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The class D, is just the natural generalization of the parametrized form of
the deformations appearing in [36], for a barycenter Py = (a1, a2, a3). We
were unable to write down a more general expression for the deformations
in the class D, capable of yielding more extreme gradient Young measures,
namely outside of the Q-segment, which we define below.

Definition 3 We call 3-edge-laminate to any third order laminate supported
on edges of the [—1,1)3 cube, which lies on an edge of the closed convex hull
of the set of all laminates.

Definition 4 For each fired barycenter, the intersection of the bisector plane
b=c:

(a) with the set of gradient Young mesures (obtained through the Riemann-
Lebesgue lemma with the deformations w € D,) is denoted by Q-
segment,

(b) with the set of 3-edge-laminates is denote by R-polygon;

(c) with the set of polyconvex measures is denoted by P-polygon.

Remark 4 Notice that in the case of polyconvezr measures, we can generate
all such measures.

Therefore, in trying to reach the answer “no” (to the question starting the
introduction), the aim would be: to show that the extremities @, Q™ of the
Q-segment could not be reached by laminates. However, for the barycenter
(0,0,0) such aim was frustrated in [36, proposition 4.1}, showing that the
measures @y = (36,72) and Q7 = (36,126) are indeed laminates, so that
Q™ belongs to the set of laminates. The same happens with Q*: just apply
symmetry.

We proceed now to present our own work concerning the other barycen-

ters Py. With
11
Py = ('?;, §,0>

one obtains the following weights on the vertices of the cube [—1, 1]3:
ar (1,1,1), b (=1,1,1), ¢+ (1,-1,1), d=288—a—b—c— (-1,-1,1),

T=640—-3a—b—cw— (1,1,—1), b=2a+c—256 — (—1,1,-1),
t=2a+c—256— (1,-1,-1), d=160 —a + (—1,-1,—-1).
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A=(74.(6),106.(6%

R“ (96,96 \Q;=(100,94)

i R 7=(158.4,64.8)
R3=(96,64) {c=<160,64>
5=(100,56) i
a*N@i56,36)
P
Q}=¢156,0)] [C,=¢160.0
B,=(128,0) Ry=(157.€09),0)

Figure 4.4: P, R-polygons and Q-segment for Py = ( %, %, 0).

Using this notation, the corresponding set of polyconvex measures has ex-
treme points:

A = (74.(6),106.(6),106.(6)) , Bo = (128,0,0), B; = (128,160,0),
By = (128,0,160), Co = (160,0,0), Cy = (160,128,0), C; = (160,0,128)

(vielding again two opposite pyramids, but now a vertical plane cuts a tri-
angular face, in the second pyramid, with vertices Cp, C1,C2); so that the
corresponding P-polygon is the convex hull of its vertices

A = (74.(6),106.(6)) , By = (128,0) , B = (128,80) , Co = (160,0),C = (160,64),

see figure 4.4. On the other hand (directly) by the Riemann-Lebesgue lemma,
we were able to obtain no more than the Q-segment with extremities

Q™ = (100,92), Q" = (156, 36).

Thus, concerning the barycenter Py = (%, %, O), our aim was to show these
Q~,Q" to be out of reach of laminates; but it got frustrated, when we
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came to the conclusion (see Proposition 2) that one may indeed obtain the
laminates

Qp = (100,56), Q7 = (100,94), QF = (156,0), QT = (156,66),

hence the corresponding Q-segment.
Finally, with
11
P 0= (_2', E’ 0) y
we denote the weights on the vertices of the cube [—1,1]3 by:

a— (1,1,1), b— (-1,1,1), ¢~ (1,-1,1), d=288—a—b—c— (-1,-1,1),
a=T756—-3a—b—c— (1,1,-1), b=2a+c— 324 (-1,1,-1),
t=2a+b—-324— (1,-1,-1), d =180 —a+> (—1,-1,-1).

The vertices of the corresponding set of polyconvex measures are then:

A = (120,84,84), By = (162,0,0), By = (162,126,0), Bz = (162,0,126),
Co = (180,0,0), C; = (180,108,0), C; = (180,0,108)

(yielding again: two opposite pyramids with the second one cut by a vertical
plane); so that the P-polygon is the convex hull of its vertices

A = (120, 84), By = (162,0), B = (162,63),Cp = (180,0), C = (180,54),
see figure 4.5. As to the Q-segment, it has now extremities
Q™ = (144,72), Q* = (180,36);

which, again, are convex combinations of the following laminates (see Propo-
sition 2)

Qo = (144,36), Q1 = (144,72), Q¢ = (180,0), QT = (180,54).

4.3 Presenting the sets of points which generate
Qy, QF, Q7 and Q7

To describe these structures, we use the same notations which were used in
[36]. And as there, instead of providing the required sets of pairs (verifying
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A=(120,84)
Q@S,Z&S)
P Q =Q,=(144,72)
R B=(162,63)
R =(135,54 C=R"=Q;=¢180,54>
0 ’ R
Qp=(144,36) R Q+=(180,36>

.
By=(162,00\——Cq =Ry =0y =(180,0)

Figure 4.5: P, R-polygons and Q-segment for Py = (%, %,0).

some (H}) condition) which generate a specific laminate, we provide a set of
points from which one can obtain univocally the mentioned set of pairs. A
set of points which gives Qg for the barycenter zero is ([36])

1 1 1 1 G}
P0=(0,0’0)7 Plz(_§7111)7 P2=(1_67_'57—5)a P3=<1’_711)’

H=<—%;€?—%y Py=(1,1,~1), Ps=(=1,-1,0).
(Notice that these sets of points are not unique in general.) Each segment
Py P,, P3Py, PsPs has rank-one direction. This means, e.g. for P1 P2, that if
one writes P, — P; = (z,y, z) then the determinant of P, — Py, given (as
one easily checks) by zy+ zz + yz, is zero.

Starting, as explained in Section 4.2, with the weight 576 from the
barycenter Py = (0,0,0), the above set of points generates (as in (a) below)
the measure (36,72, 72). Similarly one reaches the measures

(36,180, 72), (36,72,180), (108,0,0), (108,108,0), (108,0,108).

This shows that, for this barycenter, the following points indeed belong (as
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P
= N
P3 N N\
. N, -
. | .
\\\ 7
N\ P
. )\j 0
PL,

PS
Figure 4.6: example of a laminate for Py = (0,0,0).

mentioned above) to the intersection of the laminate with the bisector plane:
Q5 = (36,72), Q1 = (36,126), Qf = (108,0), Q = (108,54).
This is a result of [36], included in the next

Proposition 2 The following points belong to the R-polygon generated by
starting with the weight 576 from the barycenter P :

Q; = (36,72), Q7 = (36,126), Qf = (108,0), Qf = (108,54) for
PO = (O, 0,0),

= (100,56), Q7 = (100,94), Q7 = (156,0), QT = (156,66) for

Qy =(144,36), Q7 =(144,72), Q¢ =(180,0), Q1 =(180,54) for Py =
1
(320)
Proof. (a) The proof of this proposition consists in exhibiting, for each
measure, an adequate set of points. To find such measure one finds weights
p1,p2 adequate to have p; + pa = po := 576 and p1 P + po P2 = poFo; then
proceeds in a similar way until the weight po = p1+p3+ps+pe has been thus

distributed into weights p;, p3,ps, pe on points Py, P3, Ps5, Ps € a[-1,1)3.
Finally, one distributes these weights pi1, p3, ps, pe into appropriate weights
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on the vertices of this cube, obtaining in particular the total weights a on
(1,1,1), bon (-1,1,1), con (1, —1,1). The measure (a, b, c) of the laminate
is thus obtained, and hence also the measure (a, ¢, b) and the point (a, bic)
of the intersection of the set of laminates with the bisector plane.

(b) If one computes in this manner the measure associated with the set
of points

11 1 3 3 19
P = - = P = 1 —_—— — ——— ——_— —
0 (3’3)0)) 1 ( 717 3>7 PZ ( 297 29,87>,
23 1 431 1
P3—(—H,1v1)a P4_(%)_1105,'6_5')1

15 2
P5_ (la_ﬁ71>a P6_ ('_171—'71_1)

then the result is (a, b, ¢) = (100, 132, 56), hence (a, ¢, b) = (100, 56, 132) and
(a, H€) = (100, 94).

Similarly for the other measures associated to this barycenter, as follows:
the measure (100, 56, 56), hence the point (100, 56), is generated by

11 1 29 199 35
= — - =3 —— P = —_——— ——
Po <3’3’0>’P1 (1’ 15’1)’ 2 <157’471’ 157)’
11 25 25 791
P3_(—53’1’1>’ P4_(89’89’_1513)’
15 2
P —1 1 —_ =1{ — —]_ —_— .
5 (11 a17)’ P6 ( 1a ,17)7

the measure (156,0,0), hence the point (156, 0), is generated by

11 19 347 209 49
PO_ (g,g)())) -Pl"‘ (ﬁ)_‘]w_l)) P2—(1293,Z'3_1,m>,
89 151 151 3787
Pi=|—-—— — _ = =
3 ( 125 1)’ Py (369’369’13653)’

2 109
= —_— _f—-1.-1, — .
P5 (1’17 111) » P6 ( 1) $111) )
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and the measure (156, 132, 0), hence the point (156, 66), is generated by
pm(Za) pem (502, A (102)

29
poe (-11.2)

Similarly for the measures associated to the barycenter Py = (3,3,0):
the measure (144, 36, 36), hence the point (144, 36), is generated by

11 1 19 7 3 1
PO—(§a§,0>7Pl—(g7171>7PZ"('éZ,ﬁ,_ﬁ))Pzi_(l,ﬁ)l);
9 9 23 2 1
Py = —— — — - 1, —— =|~1.—-1.- .
4 (19,19’ 57)a P5 (1» 3 3)1 P6 ( 1) 113) ’
the measure (144, 36, 108), hence the point (144, 72), is generated by
11 1 1 3
PO—(E)'Q"O)’Pl_(1717_1>’P2‘—(0a0,Z>7P3"‘(_7a171))
1 7 1 1 2
P4"‘(H,'_§'3'7H>7P5_<_17§7_1)’PG_(]-"‘g)l)’
the measure Cp = (180, 0, 0), hence the point Cp = (180, 0), is generated by
11 1 5 13 1
=== P = _ = = — = =
PO (2)2)())1 1 <1a 2) 1)) P2 <11)22111)1

1 7 7 3
P3—<_5717_1)ap4“(1_39ﬁ)'1—§)7
P5=(_17_1)1)3 P6= (17170)’

and the measure C; = (180, 108,0), hence the point C = (180, 54), is gener-
ated by

11 1 11 1
Pi={—-. = = —— — = _ - = -
0 <21270))P1 ( 2)17 1)7P2 (1)4)2),133 (1,132>,

1
P={1,-1,-).
4 () 2>

As to the barycenter zero, see the paragraph before the statement of the
proposition. ®
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The reader should be aware of the fact that what is difficult here is not
to prove Proposition 2, but to state it.

Notice also that all the sets of points presented in this paper have all
their odd points (i.e. Pi, Ps, Ps, Ps) on edges of the [-1,1]® cube: this
makes sense since what matters is to find extreme laminates.

4.4 The characterization of the sets of polyconvex
measures

We want to determine the set of polyconvex measures supported on the
vertices of the cube [—1,1]%, with barycenter Py = (a1, a2, a3) (for sim-
plicity we again take the total weight= p?, instead of 1). Denote again by
a, b, c,d the weights thus generated on the four upper vertices,

(1,1,1), (-1,1,1), (1,-1,1), (-1,-1,1);
and by @,b,¢,d the weights generated on its four lower vertices,
(1,1,-1), (-1,1,-1), (1,-1,-1), (-1,-1,-1).

Defining now the parameters

1
S; :=—2- (1+a1~),

= p? s——l- s~-1-+ss + S28
T=P 175 275 153 2531,

one easily checks that the set of possible weights associated to polyconvexity
can be thus represented as the set in (a, b, ¢)-space described by the restric-
tions

a>0,b>20,c2>0,

di=p’s3—a—-b—c>0
2

1
E:='y+%— (sl+sz——2—)—3a —-b—-c 20

— p2 1
b:=—*y+—é— <§—sl+82>+2a +c 20
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2

1
E:=——’y+% (—2-+sl—32)+2a +b >0

- 2 3
d5=’7—% (31+82+2S3—5)—a > 0.

As we saw in the introduction (for each fixed barycenter) the set of poly-
convex measures contains both the set of gradient Young measures and the
set of laminates. Consequently, the P-polygon contains both the Q-segment
and the R-polygon.

4.5 The characterization of the gradient Young
measures generated by D, deformations

Each deformation u(-) € D, generates (as described in the proof below)
weights a, b, ¢, d on the 4 upper vertices of the cube [—1,1]3

(1,1,1), (=1,1,1), (1,-1,1), (~=1,~1,1)
and weights @, b, ¢, d on the 4 lower vertices,
(1,1, 1), (1,1,-1), (1,~1,-1), (=1,-1,~1).

Or, in other words, each such deformation u(-) generates a gradient Young
measure with barycenter Py, represented by the triple (a, b, ¢), consisting of
the weights generated on the first 3 of these vertices; which may be compared
with laminates (a, b, ¢) having weights a, b, c generated, on the vertices

(1,1,1), (-1,1,1), (1,-1,1),

by sets of points contained in the cube [~1,1]® and having barycenter Pp.
In particular, if one fixes Py := (e, ¢, 0), with & =0, %, % , then examples of
such sets of points appear in the proof of Proposition 2.

In the next proposition we consider gradient Young measures not as prob-
ability measures but as measures having total mass= p?. This is convenient
to avoid many cumbersome fractions when treating concrete examples, as
above with p = 24.
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Proposition 3 The gradient Young measures generated by deformations
u(-) € Dy are all the points of a segment, namely the conver hull of its
extremities Q, Q%

Q_ = (a—7d2 _a—)d3_a’_)1 Q+ = (a+,d2—a+,d3—a+),

with
1
d21=p2 52 83, d31=P281 83, 31:1=‘2‘ (1+a,~),
_1+ 2 _ 4\ 2
0= = p [s1 452 +83—1] Cati=p? sy sp— [s1 + s2 — s3] ,
2 2

where

[z]T := max{0, z}.

Proof. To compute the weights a,b,c,d and @, b,¢,d generated by this
general deformation u(-), one has to compute the areas of the corresponding
regions (denoted by the same letters a,b,c,...) determined on the square
[0, p]? by the lines

z=pd, x=péb +ps, y =p b2, y=pds-+p s,

t+y=pd, T+y=pds+pss, t+y=p+pd3, s+y=p+pds+pss.

One easily checks, geometrically, that

a=1p’s 52 —a, 5=p2(1—31)32 — b, t=p’s1(1—sg)—c
and
d=p?>s3—a—-b—c, d=p* [(1-s1) (1—s2)—ss|+a+b+c

On the other hand, we must have
b=p? sy 83 —a, c=7p® s s3—a.

In this way one expresses the coordinates b,c,d,... as affine functions of
a (dependent on the chosen Py). Therefore the gradient Young measures
generated by deformations u(-) € Dy form a segment; and to characterize
it and thus end the proof, we only need to obtain its extreme values. But
these are obtained by plugging in the extreme values a~, a* of a, whose
expressions are those stated above. ®
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Remark 5 The results of the sections 4.4, 4.5 can be extended from the cube
[~1,1]3 to a rectangular parallelepiped

['—AlaAl] X [_AZ)A2] X [_A3)A3]7

where Ay, Aa, Az € (0, +00).

4.6 The characterization of the 3-edge-laminates

One easily checks that the three P-polygons considered in Section 4.2 all
have the same form, their only difference being that the vertices Co, C
collapse, in the case of the barycenter zero, into the unique vertex C. (One
may also observe the following: for the other 2 barycenters, if one extends
the edges BoCp, BC then they meet at the point (288, 0) which is, however,
out of reach for the polyconvex measures.

Proposition 4 For each one of the above 3 barycenters, the points Bo, B of
the P-polygon always belong to the corresponding R-polygon.

We leave the proof of this proposition to the interested reader; it is similar
to the proof of Proposition 2, but here it involves only the discovery of three
first order laminates and two second order laminates.

But the main aim of this section is the determination - for the intersection
of the bisector plane with each one of the three sets of laminates - of the
extreme points Ry, R~ along the edges Ey, E™ of the P-polygon (i.e. those
joining the vertices BpA, BA); and of the extreme points R}, R* along the
edges Ef, E* (i.e. BoCy, BC assuming, in case Py = (0,0,0), Co := C).

Then what we do below is the determination of the extreme points
Ry, Ry, Ry (respectively Rf, Rf, Rj) along the edges Ey, Ey, E; (re-
spectively EJ, Ef, E7) of the convex hull of the set of all 3-edge-laminates.
We believe these are all the extreme points of the set of general laminates,
together with By, B1, Bg; but were unable to prove it.

What is remarkable here is that, for some barycenters, the Q-segment is
entirely contained in the interior of the corresponding R-polygon, hence does
not reach at least its boundary, as one would expect. This is what happens for
the barycenter (3,1,0); while for (3, 3,0) the lower value of the coordinate
a along the laminate is strictly smaller than its lower value along the Q-
segment. This situation is unfortunate for the search of counterexamples,
but we were unable to improve it, as was remarked in Section 4.2.
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Theorem 6 The extreme points of the intersection of the bisector plane with
the convex hull of the set of 3-edge-laminates are, besides By, B:

for the barycenter Py = (0,0,0),

Ry =(36,72), R =(36,126), R} =(108,0), R%=(108,54);
for the barycenter Py = (3,3,0),

Ry = (96,64), R~ =(96,96), R¢ = (157.(09),0), Rt = (158.4,64.8);
and, for the barycenter Py = (3,3,0),

Ry = (135,54), R~ = (135,76.5), R = Co = (180,0), Rt = C = (180, 54).

Proof.

(a) For the barycenter Py = (0,0,0) the points Ry, R™, R}, R* are
generated as listed in the paragraph before Proposition 2.

For the barycenter Py = (},3,0) the measure Ry = (96,64, 64), hence
the point R, = (96,64), is generated by

11 1 25 3 5
PO- <§y§’0>, Pl_ (_1—5')171)7 PZ— (5_77E?_i§)v

3 3 3 7
P3”‘(1>_1_3"1>,P4—<ﬁ)ﬁi_ﬁ))
P;=(-1,-1,0), Ps=(1,1,-1);

while R, = (96,128,64), hence R; = (96,64,128) and the point R~ =
(96,96), is generated by

] 11 1 3 25 5
PO— (5,5)0), Pl“‘ (11_'1_5,1>’ P2_ (l_g,g;i’-lg),

3 1
P3'_ (1717_3) 3 P4_ (_'2_,0:0))

Ps=(0,-1,-1), Ps=(-1,1,1).

Still for the barycenter Py = (3,3,0), the measure R§ = (157.(09),0,0),
hence the point Ry = (157.(09),0), is generated by

11 19 47 29 7
Py = <§, 5,0) , P = (51‘,—1,—‘1) , Po= <m,5,5§) )

2 7 7 5
P3— (_§a17_1)7 P4_ (ﬁ)ﬁ)ﬁ)1

P5=(171a0)) Pﬁz(_]-v_l)l)v
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while R = (158.4,129.6,0), hence Rj = (158.4,0,129.6) and the point
R* = (158.4,64.8), is generated by

11 19 101 47 7
Py = (5,570) y Po= (ﬁ,—l,—1> , Pa= (@’Tl—l’;’l_l_‘i) ;

139 103 59
P3=(-1,1,-1), P, = (371’56{’5&) )

7 1
pm(1-21) Ao (B1).

For the barycenter Py = (%, %,0) the measure Ry = (135,54, 54), hence
the point Ry = (135,54), is generated by

11 1 37 11 9 1
PO_(—2'1§a0>1P1_<67171)’P2_<6§7§i1—ﬁ)’P3_(1,§I11)1
17 17 27
P={—,—=—=1}, Ps=(-1,-1 Py=(1,1,-1);
4 <37737, 37)1 5 ( ’ 70)7 6 (1) » 1)1
while Ry = (135,99,54), hence Ry = (135,54,99) and the point R~ =
(135, 76.5), is generated by

11 1 1 111 7
Py = <§,§,O>, P = (1,1,-—1), Py = (_5’—5’5—6—) , P3 = (——15,1,1>,

Py = (%—-;—1511) Ps = (=1,0,—1), Ps = (1,~1,1).
Finally, for the barycenter Py = (1,1,0), the measures Rj = Co, R* = C
are generated as indicated in the proof of Proposition 2, see figure 4.5.

(b) It remains only to show that these measures are extreme, in the sense
explained just before the statement of this theorem.

Consider the barycenter Py = (%, %,O). One wishes to show that the
measure (96,128,64) is Ry , namely the extreme point along the segment
which is the convex hull of (74 + 2,106 + 2,106 + £) and (128,160,0) (i.e.
along the edge E; of the corresponding set of polyconvex measures).

Parametrize the part of this edge E; having a < 96 :

2
(a,b,¢) = (a,32 +a,256 — 2 a), a€ [74+§,96>.

For each a, the weights obtained on the remaining vertices of the cube are:

d=0m— (-1,-1,1), a=352—2a— (1,1,-1), b=0r (=1,1,-1),
t=3a-224 (1,-1,-1), d=160 —a +— (—1,—1,-1).



CHAPTER 4. ON THE CHARACTERIZATION OF LAMINATES... 86

Our aim is to show that there exists no set of points generating weights
(a,b,¢) € E; having a € [74 + £,96). We begin by choosing the edges of
the cube upon which one could place each one of the 4 points Py, P3, Ps, Fs.
Since d = 0 = b, only the edges S,b, Suz, Sez, S5 # S.; may be used. (Here
Sab, Say, 18 the edge of the cube which joins the vertices holding weights a, b;
ie. Sgp=co{(1,1,1),(-1,1,1)}.)

We begin by choosing an edge to hold Py, so that PyP; is rank-one. We
have two possibilities:

— either (b1) (PL€Sap or Pr€Sg);

—orelse (by) (P €S or PL € Sy).

Then it suffices to convince oneself that none of these choices works, by
exploring wisely all the available possibilities. Indeed, each one of them leads
to a situation in which one of the restrictions to apply simply turns out to
be impossible to satisfy.

For the other edges, one shows similarly that the extreme points on the
edges are the ones shown in part (a) above. m

4.7 A computational attempt to characterize the 3
sets of laminates

After having computed the above extreme values, the following question
comes naturally to one’s mind: are the vertical segments S~ := [Ry,R™],
S* := [R{, R™] extreme in the intersection of the bisector plane with the
corresponding set of laminates, in each case? (Or, more precisely, con-
sidering the 3-dimensional picture and using the same notation as in the
proof of Theorem 6: are the vertical triangles T~ := co{Ry, Ry, R; } and
T+ := co{ R}, Rf, R} extreme faces of the laminate?) If one could ensure
this, then the intersection of the set of laminates with the bisector plane,
in each case, would become completely characterized as the convex hull of
the 3 vertical segments S, S* and S := {By, B}. (Or, in the 3-dimensional
picture: then each set of laminates would be exactly the convex hull of the
3 vertical triangles T~, T* and T := co{By, B, B2}, see figure 4.2.)

To show the plausibility of this conjecture, we have tried to characterize
the extreme values of the first coordinate a (the weight on the vertex (1,1,1)
of the [—1,1]% cube), in each one of the above laminates, independently of
the weights on the other vertices of the [—1,1]% cube. Or, in other words, to
find the extreme values of the coordinate a, regardless of restricting attention
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to edges of the corresponding set of laminates. To avoid any bias coming
from wishful thinking, we have constructed (in a personal computer) exact
samples of all the possible third (at most) order laminates. Since all the
corresponding sets of points constructed here have all their odd points on
edges of the [-1,1]® cube, in trying to construct a third order laminate
starting from one of the chosen barycenters ((a,a,0) with a = 0, a = %,
a = %), the choices one has to make, concerning each odd point (namely
Py, P3, Ps or Ps) lead to less than a dozen possibilities. On the contrary,
concerning each even point (i.e. P or P;) the possibilities are, instead, all
the points of a straight-line segment, which we call an even segment; and
our strategy has been to divide each such segment into n = 100 pieces, all
with equal length. In this way we have generated blindly many hundreds of
thousands of different third order laminates for each barycenter.

(Notice: the word “exact” is used above in the following sense: the co-
ordinates are represented as quotients of integers with 16 decimal digits.
Thus the sets of points we have generated have exact coordinates and exact
weight-distributions, hence yield exact - i.e. not approximate - points of
the corresponding laminates. In a first attempt we have represented all the
coordinates, of the sets of points in our computer, by 64-bit double-precision
real numbers. However, since errors tended to accumulate in an explosive
way, we have soon shifted towards an exact representation of coordinates as
quotients of integers with 16 decimal digits. Thus the sets of points we have
generated have exact coordinates and exact weight-distributions, hence yield
exact - i.e. not approximate - points of the corresponding laminates.)

One might also wonder whether by using fourth order laminates it would
be possible to obtain a more extreme value of a, namely a value not reachable
with third order laminates only. In order to try and discard such possibility
we have also generated fourth order laminates on the computer. But since
we have, in this case, 3 even segments instead of 2, we had to reduce the
number n of divisions from 100 to just 30, due to memory limitations.

The computations thus performed tend to indicate that it is sufficient to
consider third order laminates. However, even with such a small n we have
run into problems, frequently, due to an explosive propagation of errors.
Indeed, in many cases, when computing the last points P;, Ps of the set
of points corresponding to a fourth order laminate, the integers involved
exceeded the largest integer available (even if we have been careful to cancel
out all common factors in the numerator and denominator of all fractions
representing all points and weights). In many other cases, such excess oc-
curred not in the computation of P;, Pg, which were still exact, but in the
computation of the corresponding weights p7, ps. We have also tried to com-
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pute Py, Py, p7, ps using approximate double-precision real numbers (instead
of exact quotients of integers), starting from the exact values of the other
points, Py to Ps; but again errors tended to accumulate explosively.

The conclusions we have reached from all these computations simply
confirmed all the expectations we had from the start, coming from our other
method described above. That is: these computational experiments just
reinforced our confidence on the validity of the conclusions of Section 4.2.
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