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Analysis of new situations for quasiconvexity versus

rank-one convexity in 2 x 2 and other dimensions

Abstract

It is well-known that quasiconvexity is a fundamental concept for vector

problems in the Calculus of Variations. Its main necessary condition is rank-

one convefty. Still today it is not known whether it is also sufficient or not,
when the target space of deformations is m:2 (in the general case).

We introduce a method to find, in a systematic way, rank-one convex

polynomials. We show how it works in several examples. [t can also be

applied to convexity along general cones.

An alternative proof is provided for the well-known quadratic case of
quasiconvexity, which does not use the Plancherel formula. An application
to the case of 4th degree homogeneous polynomials is shown-

We also explore an attempt to disprove the implication from rank-one

convexity to quasiconvexity for 2x2 symmetric matrices, using the viewpoint
of laminates and homogeneous gradient Young measures.



CHAPTER O.

An6,lise de novas situaE6es para a quasiconvexidade versus

convexidade caracteristica-l em dimensS,o 2 x 2 e outras
dimens6es

Resumo

E bem conhecido que a quasiconvexidade 6 um conceito fundamental para
problemas vectoriais do C6lculo das Variag6es. A sua principal condiESo

necess6ria 6 a convexidade caracterfstica-1. Ainda hoje ndo 6 conhecido se

6 ou ndo sufi.ciente, quando o espa.qo alvo das deformag6es 6 m:2 (no caso

geral).
Introduzimos um m6todo para determinar, de uma forma sisternS,tica,

polin6mios convexos caracteristica-l. Mostramos como funciona em diversos

exemplos. Pode tambOm ser aplicado d, convexidade ao longo de cones gerais.

Providenciamos uma demonstraqdo alternativa para o bem conhecido
caso quadrS,tico da quasiconvexidade, que n5.o utiliza a f6rmula de Plancherel.

Apresentamos uma aplicagao para o caso dos polin6mios homog6neos de grau
4.

Exploramos tamb6m uma tentativa para refutar a implica4S,o da convex-
idade caracteristica-l para a quasiconvexidade nas matrizes 2x2 sim6tricas,
sob o ponto de vista dos laminados e das medidas de Young gradiente ho-

mog6neas.



CHAPTER O.

Extended abstract

It is well-known that quasiconvexity is a fundamental concept for vector
problems in the Calculus of Variations. One important related convexity
condition is rank-one convexity, which is a necessary condition. Stil today
it is not known if this type of convexity implies or not quasiconvexity, when
the target space of deformations is m:2 (in the general case). Our work aim
at contributing for a better understanding of this outstanding problem.

Rank-one convexity, though a more manageable concept, is not easy to
check on explicit examples. Indeed, deciding when a given function is or
is not rank-one convex is not an easy task. [n Chapter 2, we provide a

new method to determine (at least in some specific situations) the rank-
one convexity of functions of a particular structure, but not only restricted
to homogeneous polynomials. We show how it works in several examples,
exploring both classical examples and new ones. An interpretation of this
results in terms of laminates is also presented, and it seems to be more
promising in terms of applying these ideas to other kinds of convexity. Our
ideas can also be applied to convexity along general cones as, for example, the
characteristic cone associated to quasiconvexity for second order gradients
(called 2-quasiconvexity) .

It is known for a long time that in the quadratic case, quasiconvexity is

equivalent to rank-one convexity. The classic (and only known) proof makes

use of Fourier transforms and the Plancherel formula and so it cannot be

applied to other cases. We provide, in Chapter 3, an alternative proof for
this well-known case, which does not make use of Plancherel formula and so,

in principle, it can be used in other cases, especially with polynomials. This
has further interest nowadays, as we now know that one can approximate
quasiconvex functions by quasiconvex polynomials ([2U). Using this new
approach, we derive necessary and sufficient conditions for quasiconvexity
at the origin for fourth degree homogeneous polynomials. We also make an
application to the case of 2-quasiconvexity at the origin for the same kind of
polynomials. The ideas here contained ca,n also be applied to homogeneous
polynomials of a.ny even-degree.

In Chapter 4 it is explored the problem of the equivalence between qua-

siconvexity and rank-one convexity in the case of 2 x 2 symmetric matrices
from the viewpoint of probability measures, that is, to know if every homo-
geneous gradient Young measure (supported in the space of 2 x 2 symmetric
matrices) is a laminate. We follow the approach of [36], using distinct first
moments, including the one there used (the origin). We were not able to
find a counterexample, and several difficulties involved are shown through

10



CHAPTER O. 11

the text. A characterization of the set of laminates in a precise class is

obtained.



CHAPTER O.

Resumo alargado

Ii bem conhecido que a quasiconvexidade 6 um conceito fundamental para

problemas vectoriais do C6lculo das Varia46es. Uma importante condigSo de

convexidade relacionada 6 a convexidade caracteristica-l, que 6 uma condigSo

necessdria. Ainda hoje nd,o 6 conhecido se este tipo de convexidade implica

ou ndo a quasiconvexidade, quando o espago aivo das deforma46es 6 m:2
(no caso geral). O nosso trabalho aspira a contribuir pa,ra um melhor en-

tendimento deste problema extraordin6rio.
A convexidade caracteristica-l, embora parecendo um conceito mais

manej6vel, ndo 6 fdcil de verificar em exemplos concretos. De facto, decidir

quando uma dada fungSo 6 ou nio convexa caracteristica-l ndo 6 uma tarefa

f6cil. No Capitulo 2, providenciamos um novo m6todo para deterrninar (pelo

menos em algumas situa,gdes especificas) a convexidade caracteristica-l de

funq6es com uma estrutura particular, mas ndo restrita apenas a polin6mios

homog6neos. Mostramos como funciona em diversos exemplos, explorando

exemplos cl6ssicos e novos. E tamb6m apresentada uma interpreta4do destes

resultados em termos de laminados, que paxece ser mais promissora em ter-

mos de aplicaqao destas ideias a outros tipos de convexidade. As nossas

ideias podem tamb6m ser aplicadas d convexidade ao longo de cones gerais

como, por exemplo, o cone caracteristico associado d, quasiconvexidade para

segundos gradientes (chamada 2-quasiconvexidade).

Ii conhecido h6 muito tempo que no caso quadratico, a quasiconvexidade

6 equivalente d convexidade caracteristica-1. A demonstra,Edo cl6ssica (e

rinica conhecida) utiliza transformadas de Fourier e a f6rmula de Pla,ncherel

e, Consequentemente, n6o pode ser aplicada a outros casos. Providenciamos,

no Capitulo 3, uma demonstra4So alternativa para o bem conhecido caso

quadrdtico da quasiconvexidade, que ndo utiliza a f6rmula de Plancherel e

poder6, entfi,o, em principio, ser utilizada noutros casos, especialmente com

polin6mios. Este facto tem interesse acrescido hoje em dia, dado que sabe-

mos agora que 6 possivel aproximar fung6es quasiconvexas com polin6mios

quasiconvexos ([21]). Usando esta nova abordagem, deduzimos condig6es

necessdrias e suficientes pa,r'a a quasiconvexidade na origem para polin6mios

homog6neos de quarto grau. Apresentamos tamb@m uma aplica,gflo ao caso

da 2-quasiconvexidade na origem paxa o mesmo tipo de polin6mios. As

ideias aqui contidas podem tamb6m ser aplicadas a polin6mios homog6neos

de qualquer grau pax.

No Capitulo 4 6 explorado o problema da equivalencia entre a quasi-

convexidade e a convexidade caracteristica-l no caso das matrizes 2 x 2

sim,6tricas, do ponto de vista das medidas de probabilidade, isto ,6, o saber

12



CHAPTER O.

se qualquer medida de Young gradiente homog6nea (suportada no espa4o das

matrizes 2 x 2 sim6tricas) 6 um laminado. Seguimos a abordqgem de [36],
usando distintos primeiros momentos, incluindo o utilizado nesse artigo (a
origem). Ndo fomos capazes de encontrar tal contra-exemplo, e as diferentes

dificuldades envolvidas sdo mostradas ao longo do texto. Para terminar
obtemos uma caracteriza,gdo do conjunto dos laminados numa classe precisa.

13



Chapter 1

Introduction

In the framework of nonlinear elasticity ([2],[9]'[38]) we are interested in
proving the existence of equilibrium configurations for elastic bodies under
prescribed environmental conditions. Let m and N be, for the moment,

either 2 or 3 and O c IRN be a bounded regular open set, representing the

body whose deformation we want to study. The equilibrium configuration
must satisfy

-div o(r,Vz): f (*,r), r € O (1.1)

where u : O --+ IR- represents the displacement fields (assumed to be smooth
enough), which should also satisfy some boundary conditions over ?-O, / ,

O x IR- -- IR- are the external forces and o : O x MrnxN --- M-xN Sives
the internal stress. Assuming that the elastic material is in fact hyperelastic,
there exists a function Q : Q x MmxN -* IR, differentiable with respect to
Vu € MmxN such that

oai(r,Yu) : ffirr,Yu), r € o.

This equation is called the stress-strain relation and it represents the consti-

tutive assumption made on the material at position r € O. It corresponds to
the generalization of Hooke's law ([20]). If in addition there exists a function

/ such that

{a,u): f(r,u), re{t,

then the equilibrium configurations are extremals of the total energy func-

tional 
I@): I p@,u,yu)d,r,

JO
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CHAPTER 1., INTRODUC?ION

where
g(r,u,Vz) : Q@,Vu)- f(*,u),

u satisfying the same boundary conditions assumed above. Another way of
saying this is that the Euler-Lagrange system associated with the functional
.I is exactly (1.1). In particular, minimizers of the total energy satisfying the

boundary conditions will be (weak) solutions of the equilibrium equations.

For simplicity, we will consider

9:g(yu).
The central problem in the Calculus of Variations is to show the existence

of minimizers of energy functionals of the type

among competing fields u : Q c IRN -* IR- complying with boundary

conditions over 0O (t12]). Here Q is supposed to be a bounded, regular

domain (i.e. Lipschitz), a,nd feasible fields z belong to suitable Sobolev

classes related to the growth properties of the density I at infinity. The

integrand ,p , [vI-'N --+ ]R is assumed to be continuous' More specific

assumptions are necessary to deal with problems in non-linear elasticity ([9]).

The crucial property on g to ensure existence of solutions through the

direct method ([12]) is quasiconvexity. One such density I is said to be

quasiconvex if 
e(€) < [ e(e + vu(r)) d,r (1.2)

JD

for some unitary domain D (lDl: 1), for any matrix ( e M-'N, and

every test field u in D. It turns out that this concept is independent of the

domain. This property on g is equivalent to the weak lower semicontinuity of
the functional I above with respect to weak convergence of Lipschitz fields.

This was established by Morrey in [28].
In the scalar case, when m:1 or N : 1, quasiconvexity reduces to plain

convexity, but it is not so in the fully vector case N, m > l. The concept

of quasiconvexity is hard to grasp and analyze due to its non-local character

expressed in the inequality (1.2) above ([23]). So a principal issue has been

to find more manageable necessary and sufficient conditions for it.
A main necessary condition is rank-one convexity' An integrand p as

before is rank-one convex if it satisfies the typical convexity inequality along

rank-one matrices

eG&+ (t-tXo) S tp({r)+(1-t)p(€o), ra,nk({1 -(o) S 1,te [0,1].

15
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CHAPTER 1. INTRODUCTION

If rp is smooth, this convexity condition is equivalent to the Legendre-

Hadamard condition (or ellipticity condition) (121)

Ar V2p(€),4 > 0, rank(A) < 1.

On the other hand, a sufficient condition is polyconvexity. tp is polyconvex

if it can be written in the form

p(€): o@@)

where M({) is the vector of aII minors of (, and d is a convex function of all
its arguments. Polyconvexity has played a major role in existence theorems

in non-linear elasticity (12]). A lot ofeffort has been dedicated to establishing
the differences among these three convexity concepts. All three are difierent
and counterexamples of various forms have been found through the years (see

[1], [13], [14], [41], [a4]). Perhaps one of the most interesting examples is the

one in [1],[14], as with the help of a single real parameter c, characterizes the

different notions of convexity. For rp :M2xz --+ IR, define

p({) : l(ln - " lql2 det (.

Then

16

(p rs convex

g is polyconvex

g is quasiconvex

<+ ld<trt
<+ l"l<2

<+ l"lSz*e, e>0

g is rank-one convex <+ l"l < #.
Unfortunately, it is not known lf 2 + e : h.

The equivalence between rank-one convexity and quasiconvexity is the

one that has stood unsolved longer. Morrey himself ([29]) stated that'tt
is an unsolved problem to prove or disprove the theorem that every rank-

one convex function of Vtr. is quasiconvex." In his seminal paper [28], he

conjectured (informally) that "... a,fter a great deal of experimentation, the

writer is inclined to think that there is no condition of the type discussed,

which involves g and only a finite number of its derivatives, and which is both
necessary and sufficient for quimiconvexity in the general case." So, usually,

Morrey's conjecture is stated by saying that rank-one convexity does not
imply quasiconvexity.
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In the special class of quadratic forms, it was known long ago ([45],[46]'

although implicitly known earlier), and not difficult to see through Fourier

analysis, that these two kinds of convexity are equivalent. In the general

case, evidence in favor of the equivalence and against it started to pile up

(see [3] for a very nice account ofthe situation unti] 1986) until the conclusive

counterexample of Sver6k G2l). As far as we can tell, there is no essentially

new counterexample, and this one is onty vatid for rn ) 3 so that rank-one

convexity does not imply quasiconvexity in this situation. Fbrther attempts

to extend the counterexample for rn : 2 have tailed ([39],[+]). As rank-one

convexity and polyconvexity are invariant under transposition (that is, if
p(O is rank-one convex (resp. polyconvex) then fr({) : 9(€\ is rank-one

convex (resp. polyconvex), where {" denotes the transpose of (), one might

think oi adapiirrg the counterexample of Sverak to the case were m ) 2,

N > 3. However, this is not possible, as quasiconvexity revealed to be not

invariant under transposition ([2a],[31]).

some additional evidence against the equivalence can be found in [34],

while evidence in favor is contained in [8] and [30]. The problem remains

open for m:2.
The question whether rank-one convexity implies quasiconvexity can be

restated in terms of laminates and homogeneous gradient Young measures: is

every homogeneous gradient Young measule a laminate? This question seems

to be, unfortunatelS as hard as the previous one ([36],[4]). Laminates can

be understood, at least conceptually, in a constructive way (1351). The basic

idea comes from the (.FI;) conditions ([11]): a set of pairs {(.\4, A)}1-xx
where .\; ) 0, Dt )t : l, Aa € MrnxN satisfies the ('Fl6) condition if

1. when k:2, then rank{At - Az} < L;

2. when tr > 2, then, up to a permutation, rank{ Ar - Az} < 1 and if, for

every2 <i<k-L,wedefine

I tr: )r *,\z fu: \ff
I or: \r+r Br: At+r

then (01, Bt)t<xx-r satisfy (I/r-r).
Then a laminate is the weak-t limit in the sense of measules of sequences

of finite order laminates, that is, convex combinations of Dirac masses sup-

ported in sets of points verifying (.F/t) conditions

k

I l'oo' a l''
i.:1

t7



CHAPTER 1. INTRODUCTION

Laminates can be characterized as the probability measures p, (with support

on a compact set K € M-'N) for which Jensen's inequality

e@)d,1.c(A)

holds for every rank-one convex function p (see [35]), while homogeneous

gradient Young measures are the probability measures characterized by
Jensen's inequality for quasiconvex functions ([22]). The homogeneous gra-

dient Young measures can be defined as the probability measures p for which
there is a sequence (u) c Wt'*(O,IR-) such that

ujauinwl'*(o,lR*),

(Vu7) generates the Young measure p in the sense that

p(Yui) t 
|.p@)d,p,(A) 

in.L*(o),

whenever rp is continuous. For simplicity, we will omit the term'tromoge
neous". The Riemann-Lebesgue lemma is one interesting (nontrivial) ex-

ample where we can determine explicitly the underlying gradient Young
measure, and several versions can be found in [37]. We include one here

for convenience of the reader.

Lemma L LetQ: (0, l)N anilu e Wr,@(Q,R-), u-uF € WJ'-(O,lR*),
wher ult is the affine Lipschitz functiott ue(*) : Fr for r -e O. Therc exist's

a sequence (u) bounded in Wr,*(Q,R*), uj - up € W.r'-(O, W"), such

that the Young rneasure associated with (Yu) is hornogeneous and, defineil

bY 
rp,er: I egu(r))d,r

JA

for any continuous g.

A polyconvex measure is a probability measure for which Jensen's inequality
holds for every polyconvex function (t351). It turns out that polyconvex

measures can also be characterized as the probability measures that commute
with the minors of the matrices

18
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* (l.A dp@)) : I n* ro, dp(A)



CHAPTER 1.. N"RODUCTION

All these 3 classes of probability measures (laminates, gradient Young mea.

sures, polyconvex measures) with fixed first moment

e : I Ad,p,(A)
JK

form convex sets. We also have that, for a fixed first moment, the class of
laminates is a subset of the class of gradient Young measures, which in turn
is a subset of the class of polyconvex measures.

The quasiconvexity condition (1.2) can also be formulated as

,PG)< [ p((+w(r))d,r
J(o,t)N

for all € e IRd and all w e Cft,((0,1)N,IRd)1 such that curlu:0 and

.Iro.rr, w(x) dx: 0, d : m x N ([1I). In the setting of continuum mechan-

icrs dnd electromagnetism more general linear partial differential equations

than curltu:0 appear, which are physically relevant ([43]). It was then

introduced ([10]) the concept of "A-quasiconvexity (see also [18]): consider a

collection of linear operators a@ E Lin(IRd, RI), i : 1, ..., N and define

N

Au::)-atdl ?, ,. lRN -* IRd,

- 
Ofr;

1,: L

N
A(u) :: \d@w e Lin(IRd,n'), trl € RN,

i:1
Lin(X, Y) is the vector space of linear mappings from the vector space X
into the vector space Y and where we assume that "4 satisfies the constant
rank property ([33]): there exists p € IN such that

rank A(ur) : P,

for all ur € ,5N-1, the unit sphere of IRN. Then p is ,A-quasiconvex if

19

pG)s I e(€+w(r))d'x
J1o,r)N

(1.3)

for all € e IRd a,nd atl w € Cff((0,1)N,IRd) such that "4(u) : 0 and

Io,rl, ut(r) dr : 0. This is the necessaxy and sufficient condition for (s+.

quential) weak lower semicontinuity of

I@): I e@@))d,r,
J(0,1)N

Ithat is, rl belongs to C-(lRN, Rd) and is (0, 1)N-periodic.
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along sequences that satisfy an \ u in .L*((0, 1)N, Rd) arld Aun: 0, where

p : IRd -* [0, +oo) is again assumed continuous. The interesting neces-

sary condition now is that tp must be convex along the characteristic cone

([33],t431)

A:: U kerA(tr.,).
to€.9N-1

Some important examples included in this general framework, besides the

caffi Au : curl t,r : 0, a,re

(a) Divergence free fields:
,4u: divu :0,

where u : (0,1)N * IRN, ([3I)

(b) Maxwell's equations:

where r, ' IR3 --- IRs is the magnetization and h : IR3 -* IR3 is the

induced magnetic field ([a3]).

(c) Higher order gradients: replacing the target space IRd by an appro-
priate finite dimensional vector space Ep of rn-tuples of symmetric

linear maps on nN, it is possible to {ind a first order linear partial

differential operator .4 such that u e Cfu((O,l)N,Ef), '4a :0 and

Io,ry, u(x)d,r: 0 if and only if there exists ty' € Cff,((0,l)N,R-)
such that u : Y"!t, where V"th : V"-r(Vrl) with Vrt/ : v{ ([18]).

In this case (1.3) reduces to the s-quasiconvexity notion introduced by

Meyers in [26].

We wiil be especially interested in the particular case of second-order

gradients: a function p , Mil;N ---'IR is said to be 2-quasiconvex if

for znry 6 e nt{,ilN and every u e Ctr(D,IR), where MS;'denote the

space of MN*N-symmetric matrices and lDl : 1 (the choice of the domain
is irrelevant, [26]). In [15] (generalizing a resu]t of [32]) it was proved that
2-quasiconvexity reduces to quasiconvexity for symmetric matrices or, to
be more precise, that each 2-quasiconvex function is the restriction of a
quasiconvex function to the space of symmetric matrices. Nevertheless, we

will see why we are interested in it.

20

"(f,) : (u''"*,;n'):0,

e(O < lrv|-tY2u(x)) 
d'r,



Chapter 2

Finding new families of
rank-one convex polynomials

In this chapter we introduce a method to find, in a systematic way, rank-one

convex polynomials. We show how it works in several examples, including

both new and classical ones. It ca,n also be applied to convexity along general

cones.

2.t Introduction

Tlvo important convexity conditions related with quasiconvexity are polycon-

vexity and rank-one convexity. Although quasiconvexity is harder to verify
notice that these two other types of convexity, though more manageable, are

also not easy to check on explicit examples (1191). In particular, rank-one

convexity is an appealing property as it is like the usual convexity. But
deciding when a given function is or is not rank-one convex is not an easy

task. Our aim is to provide a way to determine (at least in some specific

situations) the rank-one convexity offunctions of a particular structure-

Our method can be applied to the following situation. Let

94 : IMmxN --+ IR, 'i:1,2,

be two polynomials such that

o The combination
p(€) : er(O - cPz(€), (2'1)

for arry constant c € IR, is coercive with superlinear growth;

2L



CHAPTER 2. T'INDI]VG IVEW FAMILIES OF RA]VI(-OIVE... 22

o pr is strictly convex.

The basic important problem we would like to address is

Problem ! Determine the range of the constant c so that tp(€) is rank'one

conuer,

In the case c : 1, the rank-one convexity of g (supposed smooth) is then

equivalent to
ArY2e1(OA- A'v'pz(()A > o,

for every A e It, ( € M-tN, where A is the rank-one cone

A: {o @n, a € R*, n € IRN, lnl :1},

or to

Proposition L Let g be as before. Then g is rank'one conaer if and only

l,f
ArY2ar(t\A
ffi<1' A€A'(€M-*N'

For a general parameter c, it is then possible to determine the range of
this constants for which the corresponding family of functions are rank-one

convex. In fact, by Proposition 1, we have that (2.1) is rank-one convex if
and only if

cArvzor(t\A
ffi <!' A€ A' € € M*xN'

If
L / 1\ , \ArY2pz(€)A
; [""01) 

: 
n.n,6'!fia-,, 

(resp sup/ ffizrrlql'
then it is easy to derive

Theorem L Let
9:91 - c92,

where gi are smooth and, 91 is strictly conaet Then g is rank-one conaer if
and only if

1. c e ["-, "+], 
'in case 92 is neither rank-one conue[ nor rank-one concaae

(alternatiuely, we can write: ATY292($A attains both positiae and

negatiae ualues);
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2. c € (-*, "*], in case

o.n,ilfi,r-"ffi:o'
3. c e [c-, *oo), in case

ATY292(()A n

o.n,!Iflr-.' 4tYz';@1tr 
: v'

Remark L We wi,lt make the assumption that iJ * : -* (otp L*: +oo,)

then c- : 0 (resp c+ :0).

Though the proof of this result is straightforward in these terms, it is quite

remarkable that these optimal constants can be computed explicitly in spe-

cific examples, as we show in Section 2.3.

Before that, we also provide a,n appropriate description of this theorem

in terms of laminates. This seems interesting as this strategy looks more

promising for other situations like polyconvexity and, even, quasiconvexity.

The proof of this theorem from this viewpoint can be found in Section 2.4.

2,2 Alternative route: Iaminates

We know that larninates are the class of probability measures which play a
fundamental role with respect to rank-one convexity through duality with
Jensen's inequality ([35]). In this section it is presented the result ofthe pre-

vious one, from the viewpoint of laminates. We think that this gives further
insight into the problem, especially because it is more easily visualized. To

state the main result in terms of laminates requires some notation.
Let 4(€o) denote the set of laminates with first moment {s' Consider the

linear mapping

T: L((s) *, IR2, T(ti:

It is clear that 
"(4((s)) 

is a convex set in IR2. If (r,y) designate usual

coordinates in IR2, a,nd we put

ro : 9r({o), uo: Pz(to),

(l ,,ctdu$), f v,c)ar(e))
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we know, due to convexity of 91, that

r(r({o)) c {(r,s) e IR' : r ) r,s];-

Even rnore, because of strict convexity of gt, the intersection of f(f ((o))

with the vertical line r : r0 is the unique point (r6,y6). Then solving
Problem 1 is equivalent to determining the best constants c:, c1 so that

r(a(€o)) c c ((ro, r.), :, *) ,

for every g0 € IM'nxN,, where C((a,g),cL,c2) is the cone in IR2 defined by

C((7,g),q,cz): {(z,y) e IR2 :c1(r-T)+g 1a 1"2(*-T)+y,r)i},

c1 ( 0 ( c2. For s e [0,1], we consider our basic first-order laminates

1_ 1^
Ps:1deo+sa* ,oqs-sA,

for A of rank one. Finally, consider the pla,ne curve

o(,4,€o) (s) : T(tt")

: (|r,Uo + sA)+ |rr(€o -'A), 
rrvrlt 

+ sA) +f,vz&o- "))
A stands for the cone of rank-one matrices.

Theorem 2 Let g be as in Theorem I and

t / , l\ : inf ,'-^- ^"^\a[/'€o)1g;

"- 
(o', ".) - o.n,eit'*r-,'(resP ""pl;iz,e'EJ'

Then g 'is rank-one conaer if and only if
1. c e l"-,"+7, i,f 62 attains both positiae and negatiae ualuesl

2. c€(-cr,crrl,i'f

inf al''l')(o) : o'
aen,eoti,,r*' r' a{A'€') 19;

3. c e [c-, +m), i/
o(e'€o)1g1

sup -j :--L - I'l

aen,g"o!'M-" ;{A'eo)10; "'
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Remark 2 Obaiously, we haae that

a/'€o(o) : ArY2w(€o)A,

where
rank(A) < 1.

2.3 Examples

We now want to solve the problem

o'eolf,f-"( '"'o "uilffi
subject to the restriction

rank(A) S 1.

To fix ideas, consider the minimization problem as a partial double mini-
mization problem. If we minimize first in A e M-'N, the above quotient is
always a quotient of two expressions which are homogeneous of degree two

in A, where
ArVzp{€o).A > o.

So, we can consider the equivalent problem

o.ffiH, 
ArY2'Pz(€o)A

subject to the restrictions

( ArV2vr({6)A: I
l
\( ,4, rank-one.

In the particular case of 2 x 2 matrices, we can replace the rank-one condition

on .A by the more quantitative condition ATDA: detA. Anyhow, this
minimum is attained since the function to minimize is continuous, and the
domain is the intersection between a compact set and a closed set.

Let us stick to the 2 x 2 situation for the sake of this short discussion. If
a, B are Lagrange multipliers, we put

L(A,a,0) : Arv2pzGilA - a(ArY2er(€o)/ - 1) - PAT DA.
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Flom first-order optimality conditions, if .4 is a critical point of the objective
function, one obtains

ArY'pz(€o)A: a,

where a can be recovered from solving the following system

(V2pz((o) - oV2pr({o) - PD)A : 0

ArV2pr(€o)A: 1

Ar DA: o.

o will be a function of {s, a,nd to finish, we would have to compute the
infimum with respect to the variable €o e M2*2. In the case where the
g.;'s are polynomials, the above system of equations is indeed a parametric
system of polynomial equations, where (e is the parameter, arrd A, a, B
are the variables to solve for. There exist several algorithms which deal

with the problem of describing the solutions of these systems in terms of
the parameters, such as comprehensive Gr6bner bases ([a8]), triangular sets

decomposition ([4fl) and rational parimetrizations ([40]). There also exist
more recent developments ([25], [49]). The description of the generic solu-

tions of these systems is in general difficult and is beyond the scope of this
work. Here we will deal with a simple example, whose system can be solved

with several recent symbolic mathematical softwares.
For a more general situation, we can replace the matrix Aby a8 n even

under the constraints lal : Inl : 1. In this case, we would have to solve the
problem

ti,t*,,* n@ aY2p2((o)a I n

subject to the constraint

n8 aV292(€o)a I n: L.

We can then use optimality conditions to make some progress in the cal-

culations. However, one has to keep track of the dependence on a and {6
when solving the rninimization problem for n. In general, it is not so easy

to compute the range for the constant c through this approach.
In the case of 4th degree homogeneous polynomials, we can easily over-

come these difficulties. For this special situation, we can taike advantage

of the fact that ATY2p{€o)A is also quadratic in (6. More explicitly, and

keeping in mind its special structure, we can write

,q' V' pn(€o) A : 6 M i(A) €o,
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where Mt(A), for i : J.,2, is a matrix whose entries only depend on A e A.

This is a huge advantage, as in this case we can perform first the minimization
in (6, and then in A, avoiding in this way to include the additional rank-one

restriction, but sti[ dealing with quadratic problems. We want hence to

compute

To evaluate the first minimum, we can now fix

(ilMr(AXo : t,

and calculate

tin(f,Mr(A)€o
subject to this restriction. Notice that this minimum is attained, as the

smallest eigenvalue of Y291(A) is strictly positive. If a is a Lagrange multi-
plier, we put

r(€, ") 
: 6 M2(A)€o - "GT 

Mr(AXo - 1),

and from first-order optimality conditions, if {s is a critical point, one obtains

1{ tw21A11o: o,

where o are the solutions of

det(M2(A)-aM1(A)) :s.

Notice that in this case this condition is a necessary and sufficient condition

for the existence of minimizers.
a will be a function of A, and to finish we have to compute the minimum

with respect to this variable A € M*'N with rank(A) < 1.

2.3.L Classical examples

We deal first with some classical examples ([1], [12], [14]).

Example 1
g: IM2t2 -- IR,

gi,aen by

e(€):l€14-cl€l2det€.



CHAPTER 2. FI,IVDI]VG NEW FAMILIES OF RA]VI(-O]VE...

If A e y12x2 is such that lAl: l, by putting

A:(2"),

28

L+o' +d'\
ab- cd I

ac-bd, I

2ad )

we get here that

/ 2ad

rnt,(A) : I Zi-_Z;
\ +* a2+d,2

bd- ac cd- ab

-2bc -f, - Oz - cz

-l - bz - cz -2bc
ab - cd ac- bd

and 
/ 2+4a2 4ab 4ac 4ad, \

*,e):l i:2 'Iu:u' ,1"n", i\X I
\ Aad 4bd 4cd, z+4d2 f

To obtain the aalues of a we haue to solae the equation

det(M2(A) - aM1(A)): g.

But i,t we now perform the substitution

4: (cos01,sind1) I (cos02,sin02),

with 01,02 € l0,2rl, the aboue equation brcomes

fr- no' + 48o4 : o,

and the marimum and, the minimum ualues are, respectiaely, a -- S and

o: **. So, g is rank-one conuer if and, only if

I 4 41
"' L-;6'El '

In the case of conuerity, it is knoum ([1]) that g is conaer il anil only if

^ - l +t/2 +t/r] 
.cel- s' B l'
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Example 2
tp: M2t2 -- R,

giaen by
p((): l(la - c(det()2.

IJ we proceed as in the preuious erample, and put

A: ( a b. \
\ c o )'

lor A e 1142x2 with lAl: 1, Mt(A) will be the same as before, and

/ zaz -2cd -2bd 2ad \
M,@): | _:,;l Z{" Zi, _ZZ; I

\ 2ad, -2ac -2ab 2a2 I
For

tr: (cos01,sin01) I (cos02,sin02),

with fi,02 € 10,2r), we haue

det(M2(A) - aM1(A)): 384o3(-1 * 2o) : s,

and so, the marimum ualue of a is I and the minimum is 0. Regard'ing the

minimum ualue of a, it was erpected,, as g2 is polyconuer.

In this case, it is clear that g is rank-one conaer if and only if

c € (-oo,2].

The range for the constant c for which the comespond'ing g is conaer is giuen

by

c e l-4,21.

2.3.2 New examples

We now present some other examples to stress our main result.

Example 3 For
rp : M2"2 -- IR,

put
eG):l€ln-"(ff{.)4.



CHAPTER 2. FINDI]VG NEW FAMILIES OF RAIVI(-O]VE... 30

where tr { rcpresents the trace of the matrir {. For

A: ( ' b. \."-\c d)'

with A € M2*2, lAl : 1, M{A) is giaen aboae, and

/ t2(a + d.)2 0 0 12(a + d)2 \
M,@):l B BB B I

\rz1r+a;2 o o tz(a+Q2)

In the rank-one directions

4: (cos01,sin01) I (cos 02,sin02),

where 01,02 e l0,2nl, we haae

det(Mz(A) - aM1(A)) : 0 <+

e 768a3(-4*2cos(02)2 - 16cos(01)2cos(02)a *2cos(02)a + 2cos(0r)2 +

*2cos(01)a * Scos(92)2 cos(01)2 - 4cos(01) cos(02) sin(d1) sin(02) +

*16 cos(01)a cos(l2)a - 8 cos(91)3 cos(02) sin(01) sin(02) *
*16 cos(d1)3 cos(02)3 sin(01) sin(02) - 8 cos(01) cos(02)3 sin(d1) sin(02) *

-16 cos(92)2 cos(01)a * o) : g.

Consequently the maximum ualue for a is 4. Regarding the minimum aalue

of a, noti,ce that gz is conuer and, so g is rank-one conuefr iJ and' only if

/rl
". (-*,al

g is conuer if and only if / ,-l,. (-*,bl
Example 4 An erample with a non-homogeneous polynomial.

g : M2*2 -- P.,

defi,ned by
p(€): ( r"€)a+l{12-c( tr{)3.
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For
,:(* Y \s-\, w )'

we haue

/12(x+w)2+2 o o t2(r+*)2 \
v'p,(€) :l 3 33 3 I

\ r2(r+w)2 o o t2(r*.)2+zf
and 

/ o@ + w) o o 6(r +,.,) \
v,.p,(€):l 3 33 3 I

\o1z+r; o o o(x+w) /
In addition, for

/ a\

,: I i 'l

\;/
and (0 g 0, 

a)":[;+ rsl
the fi,rst order necessary conditi,ons wi,ll be the parametric system of polyno'

m'i,al equati,ons

(6r * 6w - L2a(r + r)2 - 0" + (6r * 6w - a(12(t + *)' + 2))d : 0

_2ab 1_ Bc:0

Bb - 2ac:0

(6r * 6ru - a(I2(r + w)2 + 2))a + (6r * 6w - 1.2a(t + r)2 - P)d' : 0

(a(L2(r + *)2 + 2) + l2d,(r + w)z)a + 2b2 + 2c2 + Q2a(r +.)2 + d,(12(r + w)2 + 2))d : L

ad-bc:0
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which giae us the real solut'i'ons

^ 3(r*w)
0 : 0, a: 6(;T;yfi,

which i,n turn prouide the range of the constant c to be

I zrt z'fa1c€L- B' B l'
For conueritY' we haae 

l z,rfr zr/ilce l- a ' s I
Example 5 An emmple for 2 x 3 matrices.

p: M2t3 -t R,

giaen by
p(€) : l(ln - "l€l'((l ,z + €Z,z+ €3,2),

where {J2r2, i : 1,2,3 represents t!,e-2 x 2 minor that is obtaineil from t, by

remouiig the j column. If A a 142x3 with lAl : 1 we set

. /a c e\o:(u o f )
We haue

4a2 +2 4ba 4ca 4da 4ea 4f a

4ba 4b2 +2 4cb 4db Aeb Afb
4ca Acb 4c2 +2 Adc 4ec 4f"
4da 4db 4dc 4d2 +z 4ed 4f d

4ea Aeb 4ec 4ed, 4e2 +2 4fe
4fa 4lb 4fc 4fd. 4f e +f2 +z

and

Mt(A) :
2
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ry:I
ca

x+
_b1

c-
ca

a(

be

t,-
,c-

fb

3af
-ca
-ba2_e

-ba2+"

-ba
1-2-
af-

ca

-bc
\+,
lA-t

_62

\c-
lea
-bt

-bc
+
f-

,+l

;a-

o;

1

-1
l+a

I
1,

-ba
I2-
-bc
l+
af-
e&

3ad

ad

-i

-i
l+t

ouJ -
-ca -
-ba *
i-ea

-ba -
'+ca
-ba *
i-u,
af -1
ca-

-hn -

laf - bc

ca-ea
ba*af
*ea*c
ba-ad
+ca+J
-ba * aJ

i-b'+
f -\bc
ca-db
-bc - be

*ca-,
- ad*
b2-db
:-be-
ea-db
-bc-31

.ea*

.af +
+d2.
ad*
+fd
Vaf*
2+lL
3bc -
db-
-be-
,- fb
d+ de
-db -
z-dc
-db-
- 3be

t*ec

be* cf -
db+ fb
dc -l cf
+fd+L

*de*fe
d+f2++
*dc*cf
fb-c2-ec
-be*3cl -
-ec* fd,

- dc* le
b+c2+12

*fe
ec- e2

*fe
&-ez
*cf -3de

-ca-ea-ldb* fb
ad+af -3bc-\be*cf -de

-L-o'+fb-3-ec
ba-be-dc-de

-i-Or-db-ec-e2
ba*bc- cf - fe

a2-ea+d2+fd++
ba-be-d,c-d'e
ca- db - ec* fd

3ad*af -bc-be*cf -3d,e
-l+eo-db-d2-e2

ad+ af * dc- fe
a2 + ca+ fd+ f'+ L

ba*bc- cf - fe
l+"o-fb+c2+f2
ad+af *dc- fe
ea- fb*ec- fd,

-fd

4 : (cos d1, sin 01) I (cos 02sin03, sin 02 sin 03, cos 03),

fu,02 e [0,22r], d3 € [0, rl, we haae

o2 1Zt - 12 sin 0a cos 0s cos 0z * 12 sin02 sin 03 cos 03 - L2 sinlzcos 03 cos 0z +

*12 sin 02cos d2 * 64a2 sin 02 cos 0! cos 02 * 64a2 sin 03 cos 03 cos 02 *
-64a2 sin 02 cos 0z - 64a2 sin 02 sin d3 cos 03 - 16042 + 256a4) : 6'

The roots a are

ad+\af -bc-be*\cf - de

7 tan2 % l7 + 4sinlztanr|s - 49os lztan2s + Asinlztanz 0z cos 0z 
.tqt""-z 03 + tl '

0:0, o:**,

and, consequently the marimum and, minimum aalues for a are s : f; and

o : -Z respecti,aely (obtained from maximizing and m'i,nimizing, respectiuely,

the aboue quotients in 02,0s) so, in this case we haae p ranlc-one conuer if
and ontv if 

".1-!.!1 ."-L 3'Bl'
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Remark 3 1. In this case'i,t is harder to compute the constants for un-
aerity than for rank-one conueti,ty, following this approach. In fact, we

were not able to recouer those constants.

2. As rank-one conaerity is inuariant under transposition, one can tria-
ially compute the constants for the 3 x 2 erample itnplicitly gi,uen by

erample 5.

2.4 Main proof

This section is devoted to the proof of Theorem 2.

Proof. we will use the cha,racterization of rank-one convexity through

Jensen's inequality for laminates ([35]) so that we are interested in deter-

mining the exact range for the constant c so that Jensen's inequality holds

for every laminate a,nd g in (2.1). The key point is that we can control the

slope of the seca,nts that pass through the image of the barycenter by the

slope of its tangents through zero. In this terminology, secants are related,

sornehow, to quasiconvexity whereas tangents at the origin reflect ra,nk-one

convexity.
We divide the proof in several steps.

Step 1. If pr, is a laminate, then by definition ([35]), there exists a sequence

of sets of pairs {(ff , Af )}r<;<1,, verifying the (H/') condition ([12]) such that

Lrk:L^f lof \ t,
i

in the sense of measures. So if

holds for all k and for some value of c, then by taking weak-t limits on both
sides of the above inequality (9 is, in particular, continuous), we have

, (l € dp(o) < | vc) dp(€), Y p, e L

for the same value of c.

step 2. we will now prove that it suffices to use first-order laminates to

determine the range of c. We argue, in particular, that building finite-order

, (leapo(€)) < | vc) dpr"(€),
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laminates recursively from first-order laminates does not reduce the range of
the constant c.

Our hypothesis is that c is such that

, (l { dp(€)) < | wG) auo)

for every

P: \6,qt + (1 - \)6,q, with rank(Ar - Az) < l;

and we want to prove that, for the same value of c, we have

, (l rar,(o) < | vc) dpN(€),

for every flnite-order laminate

N

FN:l\r6e,.

We proceed by induction (keep in mind that the value c is fixed but ar-

bitrary). For N : 2, (2.3) is just (2.2). Suppose now that (2.3) holds

for every probability measure associated with (f/iv-r) conditions. Then, if
{(}fl,Afl)}l<i<N satisfies the (.ff7y) condition, we can assume, without loss

of generality, that rank( At - Az) < 1 (we drop the superindex for simplicity),
and by the induction hypothesis, we have

I vc) drrN0): i rne(ar) : (lr * 
^,) 

(\h p(Ai + fi;vtr,l) *J" x:t
N/\r\N

+Ir,,n{ar) 2 ()r + \z)p(thr, + f;a,) . i \*(Ar) 2
i,:3 / i:3

=, (i^,r,) :, (lEap,,(€))

In fact, notice that we can further simptify the situation (since tp is contin-

uous), because (2.2) holds for a value c if and only if

,(l(dp(€)) s I vG)auo)

for every

': *uo' *ioo'' with rank(A 1- A2) .-l'

(2.2)

(2.3)

(2.4)
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holds for the same value of c.

After a change of variables, we ca^n write down this measure as

r:"u'o*o*"0"-o'
where rank(A) ( 1. For s e [0,1], we can take

P : Ps : iuro*"o* io*o-,,

with rank(.A) : 1 and lAl < 1 (for lAl > 1 just use the fact that € e M*'rv
is arbitrary and that g is continuous). By dealing with this class of measures

(which will play the role of "generators"), we ca,n determine the exact ra,nge

for the constant c that we a,re interested in.
Step 3. For s € [0,1], consider

r": }d6o*" 
e+l56qo-"e,

and the corresponding plane curve

,(,4,€o)(s) : T(p")

with end-Poi.ts 
(pr({o), pz(€o))

and

(lr,,r. + A) + |r,(ao - A),'rrr&o+ A) + f,vr&o- o))

If o and 1rs &,re defined as above, then finding all c's such that

I v@dp"(o ,r(l€dl,"(€)) ,

is equivalent to finding aII c's for which we have

o{A,€o)1s; - o{A,€,)1e; , 
"@f,e,) 

('; - ,[A,€o)10;;,

for every (o € MmxN, A e A with lAl ( 1, s e [0, 1]; or, ifwe consider c > 0
(the other case is similar), that

1 - o[a'eol1"; - otA'€')10;;um
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for every €o € M-'N, A e ttwith lAl ( 1, s € (0,11. If

o[1'€o)1"; - o[4,€o)101 < o,

we do not have arry additional constraint. Otherwise, we

^,,;I&,,,,ffi:*=l
,r(") : f,v(€r+ sA) +f,vufto- 

"A),

oa(O) : g,

thus it is obvious that

thenc>0,and
can set

Since

it follows

Step 4. To finish the proof, we have to show that the equality holds.

First we will suppose that the supremum on the left side of (2.5) (and where

we can suppose s ) r ) 0, otherwise there is nothing to prove) is indeed a

maximum and that a strict inequality holds

o[A,€o)(s) - o[A,€o)(o) _ olA.,€6)(".) - o!/.'$)(o)
a,c.,"t?o,rl o{A'eo)r^,.or1s; _ ol(A,€o)(o) - rta.,€6)1s-; - r{A.,€6)19;

. ar(e'€o)1g;
,}:€la{A-,€'lo)

Then there has to be a point t e (0, s*) such that

(2.5)

olA.'€6)(s-) - olA.'€6)(r) _
o{/.'€6) 1"-; - a{4.'€5) 1i;

I
ca

(ez(€6 - "*A*) 
+ pz(€6t* s*A*)) - L@z(€6, - tA*) + pz(€6t + tq)

(er(46 - s*A*) +pr($ f s*A*)) * i(et(€6 -tA.) + pr(€6 +tA.))
I

c1

But because €6 - t.A* and €6 + t,q. can be regarded as new barycenters of
first-order laminates, it is clear, by definition of f , that

#,pz((€d - tA.) - (s. - t)/.)+ S#.pz((€6 - t/.)+ (s. + r)A.) -,pz(€d -,A.) . t

ffr,(((6 - tA.) - (s. - t).4.) + #er((€d - tA*) +(s. + t)A.) - pr(€6 - tA*) - c+
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and

#tpz((€6 +rA.) - (s. +t),4.) + #pz(((d +r.4.) + (s. -r),4.)-tpz(€6 +tA.) . t 
.

#er(((fi + tA.) - (s. + t)A.) + $f; rr((€d + tA.) + (s. - t),4.) - pr(€6 * tA') - ca

t\om here and because gr is strictly convex (a.nd so, in the above fractions

both denominators are strictly positive), it is trivial to obtain

olA.'€6)(s.) - o[4.'€6)(t) . r

ofA.'€6)1r.; -"1A.'ed)1r; 
- 

"*'
which contradicts the above strict inequatity, Ieading to the desired conclu-

sion, that is

o[A'{o)1s;- o[Aro)1s; _ ^..-d{11\E _ ]
A,€rffo,u m : 

xu€:c-,n;€,)o 
: 

"*'
Now it remains to prove the case where we have a genuine supremum on

the left side of (2.5). This can only happen if the supremum is obtained by

taking l€l -* oo. Suppose

I olo,€)r"', - ^(4,€)161 "f,'il 1s) - "[o'€)(o) -* : r,*:,:%,,rffi: *1'3-r31ffi,,r4i4q;l;46 
>

a;(a,€)16; ,. oto'r)(") - o[A'e)1s;,Tf ffi:l,sTl#DG)=i;E6
Then there exists 6 > 0 such that

-..- d.2(A,€)(o) _ a _ ra.'i! aiGd@ 
: 

"*
We also have that for each e ) 0, there exists /c : k(e) e IR+ such that for

l{l 2 /'(e),
o{/'€)(r) - o[A,€)(O) i

o5lffi,r;fa;,G) - "f%t '1- ''
We take €: 6, and for ( such that l(l > k(d) one has

"['r)(")_"5o'j]_Q), 1 _,. a;(a'€)10; I_ra.
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As for such (
a;(a'€)1s; _ !_ro,

')P 6iGrl@ : "a
then for each A there must exist a point t € (0,1) for which

H#ffF##',;l-o
using again the fact that (-tA and (*t1 can be regarded a,s new barycenters

of first order laminates, one has

pz((€-tA)-(s-t)A)+ *ez((€ - tA) + (s + t)A) - pz(t - tA)
Iim
s+t pr((€ - tA) - (s - t)A) + pr((€ - tA) + (s + t)A) - p{€ - tA)

-*ez(G + tA) - (s + t)A) + pz((€ + tA) + (s - t)A) - e2(€ + tA)

#e,((€ +tA) - (s + t).4) + ((€ + ta; * (s - t)A) - pr(€ + t.t)

<a-ro.
c1

Consequently there exists 11 > 0 such that for each s e B(t,r1)

*pz((€ - tA) - (s - t)A) + *pz((€ - tA) + (s + t)A) - 'pz(€ - tA) .
#er((( - tA) -(s - t).4) + f,rr((€ - tA) +(s + t)A) - pr(€ - tA) -

<L-za
cq

and a 12) 0 such that for each s e B(t,r2)

*pz(G + tA) - (s + t)A) + *,pz((€ + tA) + (s - t)A) -'pz(€ + tA) .
*et(G+tA)- (s+t)A)+ -ffrr((€ +tA)+ (s-t)A) -wG+tA) -

<L-m.
cq

For each s e B(t,r), where r: min{r1,12} and noticing that rp1 is strictly
convex, one can get

4or,! G) - ofr,) a) 3 L _ zt,
oiA,€)1r; -olA,0111 

- ca

which is absurd. r

<a_r,
c.y

Iim
s+t



Chapter 3

Quasiconvexity: the quadratic
case revisited, and some
consequences for fourth-degree
polynomials

In this chapter we provide an alternative proof for the well-known equivalence

between quasiconvexity a.nd rank-one convexity in the quadratic case. Our
proof avoids the Plancherel formula. Some consequences and some new ideas

for the case of 4th degree homogeneous polynomials are shown.

3.1 The quadratic case

A well-known result is the following

Theorem 3 Let,p : M-'N -' IR De a quad,ratic form. Then g is quasicon'

uer i,f and only if is rank-one conuefr.

The proof of this result is known for a long time ([45],[46], although implic-
itly known earlier). Nevertheless, all known proofs until now use Fourier

transforms and the Plancherel formula, and so they cannot be applied to

other than the quadratic case. We propose a,n alternative proof, which does

not make use of Pla.ncherel formula, and so we hope in this way to gain

more insight about this outstanding problem of if rank-one convexity implies

quasiconvexity when m : 2.

40
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Proof.
Step 1. Notice that a quadratic form p : MmxN ---+ IR ca,n always be

written as
p((): €rA€-ErB€,

with A, fi 6 n6(rnxiv)x(rnxN) symmetric matrices and A is positive definite.

For p as above, its quasiconvexity is equivalent to

I G*ou(*))"a (€+vr(r))-((+vu (r))r B(€+vu1r1; dr >- 1r A4-(rr( <+'

Jq

e I v'u(r) AYu(r) a* > [ Vru(r) BYu(r) d,x eJe -Jq

a 1 .' le Vru(r) BVu(r) dx
v L ' 

[qvru1*1 AVu(r) dr'
for every u e Cf;(Q,lR-) since, by the divergence theorem,

I ou@) d,r : o,
Jq

where Q : (0,1)N. This last inequality can be rewritten as

[o Yru(r) BYu(x) dr"vfw'
foru€Cf(Q,R-).

Step 2. We want now to solve the (infinite dimensional) problem of
finding 

[q v'r1*1 BYu(t) d,x'ilw'
where A is positive definite. However, we can reduce this infinite dimensional
problem to a finite dimensional one (but now with an infinite number of
variables), by expanding u in a Fourier series. lt u e Cff(Q, R-), we put

u(r): I "* "2tik'a, 
ck: [^u(r)e-2nik'* dr.

KCZN Jq

Notice that, although we take k e ZN in the summations, we are thinking
only in expansions with a finite (but arbitrary) number of terms. In this
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way it is straightforward to justify all the computations done, and then to

achieve the conclusion for any u € Cf (Q,IR-) is just a limit procedure to

obtain expansions with all k e zN ([50]), preserving in this way the required

inequality of quasiconvexity. The same assumption is made through the

following sections of this chapter in all the computations involving Fourier

expansions.
Now, /o Yru(u)AVu(r) dr is equal to

-nn' [ ! ("i I i)r "2nti'' 
A D (cr e k) 

"2tite'c 
6* -

JQ iEzN keZN

: -+n2 L I , * ci A c1"*r [^ehi(i+k)'n 
dr -

jezNkezN 
w

: -4n2 t -tt }c-x A cPSk:
lee ZN

:4r2ft@cxAkScx'
Ke ZN

where Z; denotes the complex conjugate of c6. We can ignore any multiplica-

tive consta.nts, as they will appear both in the numerator and denominator,

so we can take

lov'r61eVu(r) 
o* : 

*E,k 
&vx A 

"x 
@ k.

If we put

then

cx : (c!n, 
"21r, 

..., Ct), k : (kt, k2, ..., kN),

cx8 k: (cl, c21,,...,cT) I (kr, kz,...,kx):

"Lkt

"rxkx

"'xkt

cTkN
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klcr": ( zlft ... e'uk* v'ok, \nN )

and, if we consider

A_

Al

AL

Alv

Ah*,

AL*

AL*

A},

AZ

Ak

A'**,

AZ*

A?**

Alr*

t2
^2N

A{*

AY,fr'

AZN

,r2NnmN

Ak*

,t2nrnN

Ail,

Aflil,

A?{N

ANN

A'* Ah*,

A'* A'**,

A# Afl*,

A#*, Ail+i

A{* AY,f'

AX* AflT,,

then

l" Yru(r)AVu(r)d'r: t
keZN

k@ZrcA"n@k: t 4A*"o,
ke ZN

o'X(k)

k,k,Ai+li-11il,, : r, ..., n'1,

"l(k)
dL&)

Ak:

\ "L(r) "?-(k)

NN
ag(k) : \t6' eilff_llil + 2 D

r:l r,s:1



D A Akck: I (o.c1,-ilmqo)'lu(Req,-tiImc1,):
kezN kezN

: 
rD,x[ 

Ap x1"

for

,.:(::":r)^:(i. ;)
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NN
ag(k) : \tl-lr, ail[;: i]fl + I x, n 

" (e;!li: I lil + a;i[;- i ]il ),r=1 r,s=l

PrQ: tr "'rn1', q < P'

But

Similarly, we have

l-vru(")BYu(r)a*: L k@cxBca@ /c: t xT Exxx.
rq keZN keZN

Step 3. In order to determine

[oYru(r) BVu(r) d.rsi|"w'
we must flrst find the

Dx[Exx*
max lee zN

x:(Tffn.,* 
uE.r[ 

A* Xo'

which is the ma:<imum of the quotient of two expressions homogeneous of
degree two in X. Instead of computing

Dx[E*xx
kq-. zNmaxx:(Tffn..,* D x[ 7* x*'
ke ZN
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we can consider the equivalent problem

max I xfl Ex Xr
x:(xx)*Ezw ojN

subject to

D x[ tr1, x1,:1,
ke ZN

where ,Ir is positive definite for each k + 0.

If ,\ is a Lagrange multiplier, we put

/\
L(x,^): D x[ Eu Xx- \l D, *r Ax xx- 1 I .

kezN \rez, /
The first-order necessary conditions will then tell us that

( tEu - XI,)xr: 0 for each k € ZN ,

I D x'i' Ax x*: r.
I xezN

lf X : (Xn)xez* is a critical point, then it is easy to derive

D, xT 81, xp: ),.

ke ZN

Also from the above, for having solutions of this system of equations, it is
necessaxy (and atso sufficient, as .46 is positive definite fot k l 0) to have

de{81-),4,1:s,

for some J and some l. The solutions ) of this equation will be denoted

by )i. We put Xj:wj l0 and suppose, without loss of generality, that
Xr:0forkt'i.Then

k * i + (Er- 
^iAil 

x1,: (81, * 
^iAilo 

: 0.

As tui e ker(Ei - \iA),

18, - x,A; xj : (Ej - 
^itr)w 

j -- o.
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With respect to the last equation of (3.1), we have

L, xT Ax xx:4 Ai wi: c2 > o.

ke zN

By setting 
1 lsj:;wj: i.rt,

and
s&:0, k+j,

we have that ((s6)a. zN , \j) is a critical point of the problem, with associated

cost equal to ,\r'.
The above proves that the problem of finding the supremum of the solu-

tions of

- ,Tqx D, x[ En xx
^:\^k)hezN keZN

subject to

D *[ 71, Xp:1,
KC ZN

is equivalent to determining

,t?" ^''
where .\3 are the solutions of

det(.83 - AiA) :0, i e zN .

Step 4. Suppose, by hypothesis, that g is rank one convex. Since I is

quadratic, making the decomposition g:9r - rp2, with 91 strictly convex

arrd putting V2pl0 : A, Y29z(€) : B, we get

n&a Ba&nt Z;*;v;*f,'
for every a € IRm and n € RN, or, which is the same,

n@a Ba&n1> maxo.#ftn, n@a Aa&n'
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We can incorporate, in the above marcimum, the dependence on n within the

matrices ,4 (in the spirit of the above case for quasiconvexity), thus obtaining

with

n@aAa@n: oTAno

,,:(.::::, 

)

for aJ,a! definea as before (but now as functions of n € B,N). Similarly we

c€rJr use the same reasoning with B

n@aBo8n: aTBno.

We now want to compute

aT Bna

#ffi,?ffi F,q*
since 

^ * 
o1B:o

o,ePt at An&

is the quotient of two expressions homogeneous of degree two in 0, we con-

sider the equivalent problem

^u* oT Bno
o€H.-

aT Ana: l.

If ) is a Lagrange multiplier, we Put

L(a'\) : aT Bna - \(aT A*a - I) '

The first-order necessary conditions will then tell us that

( (8"-)'An)a:o
YL:O<+ {

I o' ,q*a: l.

subject to
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Once again, if a € IR* is a critical point, then

aT Bna: \.

The above system has solutions if and only if det(B" - )A,,) : g' The

solutions .\ of this equation will be denoted by 4".
Thus we have shown that the problem

aT Bna

"?ffi,"?ffi F,A,*'

is equivalent to determining

#ffi )"'

where the .\, are the solutions of

det(B,, - \,,An) : 0, n€ IRN.

The conclusion from this step is that, rp is rank-one convex if and only if

' 
- 

#ffi' ^"'
Step 5. Observe that

1 > max n?" uro?" 
- mil!..\, ) sup ,\i,

a€lR-,n€lRwnSa AaSn n.€lRN jeZN

because the solutions ,\7 of

det(Ei - ^iAi 
:0, i € ZN ,

are contained in the set of solutions ), of

det(B, - \nAn):0, ru € IRN.

Consequently, a quadratic p is quasiconvex if and only if it is rank-one

convex. I
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3.2 Quasiconvexity for 4th degree homogeneous
polynomials

We now try to apply the ideas of the previous section to the case of fourth-
degree homogeneous polynomials. Let gt, gz : MrnxN --+ IR be homogeneous

polynomials of degree four, with p1 strictly convex a,nd take

p(€) : pr(0 - cpz(€), c € IR.

In order to determine the values of c for which the corresponding g is qua-

siconvex, we want to determine the extrema of the function

[epz(€ +vu(x)) - pz(€) dr

lqvr(€ + Vu(r)) - Pr(€) dr'

for every ( e M-*N and for every u € C?(Q,IR*) where, for convenience,

we take g : (-r,n)N. In the case of € : 0, this will be answered by
Theorem 4. For checking the quasiconvexity at the origin, the above quotient
is much simpler

as pt(0) : 0. We can reduce this infinite'dimensional problem to a finite
dimensional one, as we did in the quadratic case, by taking the Fourier
expansion of u. F\rrthermore, we can expand u as a Fourier series with
imaginary coefficients, with the help of the following lemma.

Lemma 2 g:M*xN -- IR is quasiconuex iJ anil only if

l,_*,*,.

t
p(€ + Yu(r)) dr Z I e(0 d" (3.2)

J (_r,r)N

for each € e M**N and u e Cf((-r,r)N,R-) such that u(-r) :
-u(r), re (-r,r)N.

Proof. We only need to prove the "if' part. Suppose, by hypothesis,

that 9 verifies (3.2). We want to prove that 9 is quasiconvex. For this
purpose, consider an arbitrary € € l7mxN and take for domain the set

O : (0, r) x (-r,zr)N-t. So one must verify the inequality of the definition
of quasiconvexity for every u e Ci(O,IR-). Define the "odd" extension of

Iqvz(vu(r)) dr
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u to Q : (-T,n')N by

In particular, the following properties hold: U e Cf;((-r,T)N,lR) with
U(-"): -u(r),vU(-r):Vu(r), r € (-r,ur')N. Then

fff
z 
JnvT 

+ vz(z)) or: 
JnvG+vu1r))dr 

+ Jnv\-tYU(r))dr:r r rd,y:[ eg+vu(r))dr>: 
JnvG+vu(r)) 

dx+ Jn,e$+vu1-y1', J(_r,tr)N

' l'-"'*P(€) dt :' 
lnPG) 

da'

I

By the above lemma one can take, without loss of generality, u e
Ctr(Q,IR-) with u(-r): -u(r), r e Q. Then

u(r): I ", 
eii',, cj: # fou@)"-oi.a*,jezN \'

and so, in particular we have

Vu(r): D i,Ci@jeii'',
JEZN

with
c*j: -Ci, i e zN '

Since C3 is purely imaginary, zCy is real and so we take as variables ci : iCi,
which are real.

The problem is now to find the extrema (now in the c;, at the end we
must then compute the extrema with respect to the j e ZN) of

' uor') ,,.forr\,D.ci&j 
)n

Iaerl D "ia i sti'xl dr"n'-\'a*" - )
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As the above quotient is the quotient of two homogeneous expressions of
degree 4 \t ci, we can consider the equivalent problem of computing the

extrema of

Ir,(,D.ci,, j "'*) 
*

subject to

lr'(,8."iai "ni.) dn:t

If ,\ is a Lagrange multiplier a.nd C : (cj) jez* , we write

L(c,^) : Ior, (,E.",a 1 "oi*) a*+

- 
^ ([ ^ (,0.", *, ""')* -,)

ln order to obtain the first-order necessary conditions one has to compute

&lr''(2.*a*"nu*) 
a*:

: Irrro(8."e r ,'*') #,(E."rar, uur*) a*:

-f.r.^( 
\: 

lro'u (,8" a ketk' 
)(0' 

"'' 1' "''0)B i ("ni'" + e-ii'i)dn'

where p : \,...,Trt, cj : ("1,...,ctr) and (0,...,1,...,0) above means that all
the coordinates are zero except the p-th one.

Since pz are homogeneous polynomials of degree four, one can write

p{Yu) : Ar(Yu,Vz, Vt^r, Yu), 92(Vu) : Az(Yu,Vu, Vu, Vu),
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where Ar, Az are 4th order (totally symmetric) tensors with rnaNa constant

coeffi.cients, and so the last equality above becomes

n [-on(D*@keik'',D",* t.nt'*, \ a-t-rn-'')
r Q \te Zru rcZN m€ZN /

(0, ..., 1, ...,0) g j ("'i'" a s-ii'i) dr :

:4 [ I Ar ("r I k,ct@l,c*@m) si(k+t+m)'a
Ja o,r,7rr*

(0, ..., 1, ...,0) g j ("ni'' I "-ii'"1dr 
:

- 4 I At ("* @ k,c18l,c* @ m, (0, ..., 1, ...,0) A i)
k,l,me.ZN

:4 I (A,; ((0, "',1,"',0)o j,c;r 8 k, c1&l,cj+*+t8 (r +/c+ 
'))+k,leZN

*,4a ((0,..., 1,...,0) I j, cp@ k,q 8l,cj-k-tS U - k - r))),

where p: L,.,,,rrl.
With respect to the last equation of the set of first-order conditions, one

obtains

Ir" (-0.c1',, k "nr*) 
a* -':

: I I Arki & i,cx & k,c1 & l,c*8 m) 2t(i+**t*rn)a d'r - l :,-
" Q j,k,l,rne z*

: t ArkiS i,cx8k,c1@l,cj+llt8(r+k+')) - 1 :0'
i,*,tezN

We are now interested in incorporatinE j,k,l, j +k+ I inside the matrices 41

and 42, before writing the optimality conditions. That can be done using

lo"oro*'**)'t 1"il'c a "-ii'') dx :

:1 if j+&+l+rn:0 or j-k-l-m:0
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a procedure similar to the one used in the quadratic case, but now using

the formulas two times, as here we deal with fourth order tensors, instead of
second order tensors. For a fourth order tensor

we put
A(c18 j ,cx8k ,c1@l ,cj+k+t I (f + k + r)) :

I i&ciAl"uak ... iSciAr*ru"xsk\
I': l8 ct I .. I cj+*+t8 (r + k + t),lt
\ re "iAr*trcx&k iaciAHN"*@k /

At : (At:;) 
cd.=r,...,mN, 

a,b :1, ..., rn.r[.

First we deal with 
i e ci Aff, c1, g k.

For 
ci:(cj,...,ctr), j:(jr,...,rrv),

4i'

4i*

4i,

"Ti*

cj@J:

A'ij*,**

al,2
"mN,rnN

A1#!.*

t2,l
"rnN,rnN
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Then we have

i & ci At 
"x 

a k : 4 ntj,k) 
"x,

where

| "t:l1,r,) ";.';0,k) \ttAtu,k): I I 'tt
\ "lll"0,r) ai'ftU,D /

NN

"!,ooU,k) 
:Di,k a;,';f,f-ii# + f U,k" + i,,',)4,fi(9-r1i#,

r=1 r,s:l

7): L, ,,,rrn, (3.3)

N
ai;l(i,/') : I i,k,At:I8-il[

r:l

N

+ I i,k"Ai:;ll:-,']# * i"r,a;,';i$:li#,
";"=1

Q 1P, QrP:1,...rffi, (3.4)

NN
ai;l(i,/') : t i,k,A;:;Itq-ii# * I i,k"A?:;f;,'i# * r"r,a;,:il;-,i#,

r:1 r,s:L

e ) p, e,p : !, ...,ffi. (3.5)

So we have

+,) :

cj+k+t,

8l ,ciax+t

€11**U,n

€ enNu,n

6ah

€exAX

,cl

ck

Ck

k,

,;:

,)

A(ci e j ,cke^

/$t'l(i,fic1,
I

l

\ $ e'^*1i,t1"r

€dl(i,tr,t,i+k+

€,qT1,k,t,i + k +

:l8ct

:", 
(

su+k

,":)'
(i,k,l, i

(i,k,l, i

k

+,)) :

+r.+r I (l +

+k+l)cp

+ k +l)q,
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where

55

N
Al(i,k,l,i +k+,) : D,t,(i,+

r:l
1V

+ t (1,U, + k" + l,) * I,U' +
r,s:1

k, + t,)A;Ifi:liilri, rl+

k, + t,D Ail$_i]fl tr, k), p : 1, ..., rn,

N
A|U,k,t, i + k+,) : \t,{i,* k, *,")A;i[|-i]fl(r, k)+

r:1
N

+ t t,(j" + /c" + r")Ai]8-ililti, k) + t,(i, * k. * ayai][i-l]fl9, r1,

';.=1
q 1P, QrP: L,...,ffi,

N
A|(i,k,t,i + k+,) : Dt,(i,* k, *,,)A;i[fiiil (i,k)+

r:!
N

+ f t,(j"-t /c" + r")ai][x-l]ilfi, k) + t"(j,* k, * r,lai{[i-i]fl1i, r'1,

';-=r

Q ) P, Q,P:1,...rffi.

To achieve this formulas one just has to make a second iteration with the
formulas (3.3), (3.4), (3.5) and use the distributivity of the matrix multipli-
cation with respect to its sum. Finally, we have

A (ci & j, c* @ k, c1 & l, ciak+t8 (r + k +,)) - ai'k't'i+k+t (ci, cx, c1, ci4k+t) t

for

7j,k,t,j+k+l _

AT(j,k,l, j +k+l) AT,(i,k,l,i +k+l)
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If we apply this method to Ar and Az and simplify the notation by intro'
ducing

aj,k,t,j+k+r - Ai'k'l'i+k+l ,

b i,n,t,i+k+t - ai'k't'i +k+t,

the first-order optimality conditions will then be

D (b j,*,t,j+x+t - ), ai,k,t,i+k{) ((1, 0, ...0), ck, ct, ci+k+t)+
k,leZN
*(bi,n,t,i-x-, - )'ai,*,t,i-t-r)((1,0, ...,0), ck,ct,ci-k-r)) : 0,

foreach je ZN

D (bi,x,t,i+k+t - 
^aj,k,t,j+k+r)((0,...,0,1), 

ck,ct,cj+k+t)+ 
(3'6)

k,lezN
+(bi,x,t,i-x-t - 

^aj,k,t,j-t-r)((0,'..,0, 
1), ck,ct,ci-k-r)) : 0,

D aj,k,r,j+k+r(cj,ck,cr,c3+tat) : 1.
j,k,le zN

If. C : (ci)iez* is a critical point, we can multiply

, 
(bi,t,t,i*r+ t - 

^ai,k,t,i+k+t)((0, 
.", 1, "',0), ct, ct,ci+k+t)+

*(bi,x,t,i-x-, - ),ai,x,t,i-k-t)((0, ..., 1, '..,0), ct, c1, ci-x-)) : 0

by { and sum in P : !,..., rn, thus obtaining

I (b j Jr,t,j +*+t - \ a i,*,t,i +x+i kj, c1,, c1, ci ak+t) *
k,leZN

+ (b i,x,t,i - x_., - ), a i,x,t,i _.k-i (ci, ck, ct, ci -k-r ) ) : 0.

Then summing in j e ZN gsves

2 L (bi,x,t,i+k+t - 
^ai,k,t,i+k*1) 

cicl"ctci+&*t : 0,

j,k,tezN

and using the last equation from (3.6) leads to

t bi,x,t,iana7(ci,cktcttci+*+t) : A

j,k,teZN

D
,tez
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and then to / \
[ *r( I'o 61*"ik'x) a':'r're -\6. 

)
We are now entitled to formulate the following

Theorem 4 Let gr,gz: MmxN --+ IR be homogeneous polynomials of degree

four, with 91 strictly conueo and consider

p(€) :pr(€)-"pz(il.

Then g is quasiconuex at zero if anil only if

1. c€ [c-,"+], t'f *!.0;
2. c € (-*, 

"+1, 
if L.- : 0;

c €.lc-,*-), i/ * :0,

! (,"'o;) : inr.\ (resp sup r),

where the ualues of \ can be obtained as the solutions of (3.6)

Unfortunately, the set of equations (3.6) does not provide us with better

understanding of the problem than those given by itself, even if we consider

deformations with just a few terms. This is the major reason why we proceed

to the case of the second gradients, where the c; are scalars.

3.3 The case of the second gradients

Suppose that u e C?(Q,IR) where we set g : (-r,n)N. Let 91,92 :

Mil;, -, IR be homogeneous polynomials of degree four, with rp1 strictly
convex and take

p(€) : er(€) - "pz(€), 
c € IR.

In order to determine the values of c for which the corresponding I is 2-

quasiconvex, we want to determine the extrema of the function

3.

with

[qvz(€ + v2u(r)) - Pz(0 d"
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for every ( € M{},N and for every u e C?(Q,IR). We will study the case

( : 0, as in the gradient case. For checking the 2-quasiconvexity of tp at the

origin' one must check 
[qvz(v2u(r))d'r

Eer(v'"(")) d"'

as p;(0) : 0. We can now expand u as a Fourier series with real coefficients,

with the help of the following lemma, whose proof is similar to the gradient

case.

Lemma S ,p , M{},N -* IR is 2-quasiconaer if anil only if

t ,p(€ + v2u(r)) d,* 2 [ pG) dx (3.7)
J 1-r,n)N J ('rs)N

for each q e Ut![hN and u e C?((-n,o)N,R) such that "(-") 
: u(r), r e

(-r, o)N'

By the above lemma one can take, without loss of generality u €

C?(Q,IR) with u(-"): u(r), r e Q. Then

u(r): D ","ii'', "i: # tou@)"-ni'a*,jezN \-'

and so, in particular we have

Y2u(r):- t i@icieii'*,
JEZN

with
c-j:cj1 iezN'

The problem is now to find the extrema (now in the c;) of

Iorr(,0.i@iciuu'*) o*

lor, (,0.i e i ci"n,*) o*

or, as we did in the previous section, to flnd the extrema of

Ir'(,r,^i@ici"n'*) o*



CHAPTER 3. QUASICONVEXITY: THE QUADRATIC CASE... 59

subject to

I o" (,D*.i @ i ci "n'*) o* :''
If ) is a Lagrange multiplier and C : (cj) jez* , we write

L(c,^) : Io*, (,8., a i "i "ni*) a*+

- 
^ (lr" (L,^' * i "' "0' 

-)* -')
In order to obtain the first-order necessaxy conditions one has to compute

'* Ir'' (E; I k cx'n**) a* :

f -,.^(- \ A / \
- Jo"''\uE.r@kcx"*-) *(-A- @kc*"no*) a*:

: 
Ioo'n (8.r8 k ca "'u*) ' 

I i (eii' + e-ii o) dn'

Because gt are homogeneous polynomials of degree four, we can write

p {V2 u) : Ar (Y2 u, Y2 u, v2 u, Y2 u), 92(V2 r) : Az(V2 u, Y2 u, Y2 u, Y2 u),

where At,Az are 4th order (totally symmetric) tensors with N8 constant
coefficients, and so the last equality above becomes

I 8 i 1s't'" I "-tlr) 
dr :

: n 
lo 

^,.Pr*

Ai (/c B lr,l & l,m @ m) ckcte4nei(k+t+n'L)'t

i A i lsti'' ,, "-ii'") dr :
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- 4 I Ai@8k,l@l,m@nx,i @ j)cpc1c,o

k,l,m,eZN

:4 t (Ar(j a i,k8k,tet,(j + k+,)s (j + k + l))c1,c1ci,,1,a1*

k,le zN

+At (iIi,k 8 k,l &l,U - n-,) s (i - tr - l)) q,qci-t -i.
With respect to the last equation of the set of first-order optimality condi-
tions, one obtains

Ir' (E; @ k c1' "ur*) 
a*- 1 -

: I t Ar (i a j,k @ k,l8l,rn @ m) cic1,c1c,nei'(i+k+t+rn)'* d,r -1 :l- ,L '-r\J
tQ j,k,l,rnezN

: t AtU @ j,k& k,l@1,(i + k +,)o (r + k + l))cic1"c2ci1641-1 :0
j,k,tezN

Consequently, simplifying the notation and writing

aj,k,t,j+k+t : At(j8i,/c I le,l I l,U + n+ r) I (i + n+ r)),

bi,r,r,i*r*, : Az(i8i,&I k,l @l,(i + *+ I) I (i + t + r)),

the desired set of equations will read

f D (bi,x,t,i+k+t - \ai,n1,i+r"+t) cxctci+x+t*
I x,tezN

) +@1,x,t,i-k-t - \ai,x,t,i--r;--t) c1,c1ci-x-i: 0, for each 7 e ZN , (3.g)
)
I D ai,x,t,j+k+tcic1,ctcil*4t: l.
I i,tc,tezN

lf C : (ci)iez* is a critical point, we can multiply

I (b i,x,t,i+*+t - ), a i,x,t,i+xa:) cpclciaxat*
k,leZN

*(bi,rc1,i-x-t - 
^o,j,k,t,j-,r-1) 

qrqci-x-t) : 0

lo"nr**r*,")-7uti.a 
a "-ii.,1dr 

:
:l if j+k+l+rn:O or j-k-l-rn:O



Then using the last equation from (3.8) leads to

I bi,x,t,i+x+tcicpclcialxql : \
j,k,lezN
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by c7 and sum in i € ZN, thus obtaining

2 D (bi,x,t,i+k+t - )'ai,k,t,i+kr"1) ciclrclci,r&+t : 0'

j,k,leZN

and then to

lf' (E.k I tc cl'"'*') d'n : \'

We a^re now entitled to state the following

Theorem 5 Letgr,pz 
' 
MS;N -- IR be homogeneous polynomials of degrce

four, with q strictly conaer and consider

p(€):pr(€)-cpz(€).

Then g is l-quasiconuex at zero if and only if
1. ce ["-,"+], lf *! <O;

2. ce (--,"+], if *:O;
3. c € [c-, *m), il L* : O,

with

* ('"'o+) : inr'\(resP suP '\)'

where the ualues of ), can be obtained as the solutions ol @.8)

In general it is hard to solve (3.8), because the equations are extremely

connected and determined as they share its variables, and so it is not possible

to simplify the problem as one can do in the quadratic case. Nevertheless,

one can consider, in some particular cases, Fourier expansions of u with just

a few terms, aiming to understand better the details involved.

3.4 The classical examples for N-2
In this case j : (h, iz) e 22 and we will consider competing deformations

with just a few terms.

i:

,'*

r'
r

t
h

[*
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3.4,L One term

In this case we consider cj : c-j I 0, cx: 0 for k * i, -j. Notice that
(3.8) is now

( 6(bi,i,i,i - \oi,i,i,i"? : 0,
t

I u,r,r,r,, "l 
: r.

For
p(€) : pr(€) - cvz(t): l(14 - c l(12 det(

a,nd

p(€) : er(€) - "pz(€): l(la - c(det{)2,

one has
ai,i,i,i :1il + iila,

bi,i,i,i -- o,

a.nd then .\ : 0. Consequently, this case is not interesting.

3.4.2 Two terms

For this case we consider "i,"x * 0, c-j : ci' c-k : c* (with k * ai,
otherwise it will lead to ,\:0), ct:Ofor I I i,-i,k,-k. The first order

necessary conditions will now be

( 6(bi,i,i,i - )oi,i,ii cl + tz1Ur,t,r,r - ),ai,i,x,1,) cic2p:0
I

I n@1i,x,* - ),ai,i,x,x) clc1, +6(br,t,t,t - )at,r,r,*) ci : 0 <+

I

I u o,,,,r,, c| + z+ ai,i,i,i cl&1,* 6 4r,7.,1,,s ct : 1

In the case

( (bi,i,i,i - \oi,i,ii cl + 2(bi,i,x,o - )'ai,i,*,k) 
"2x 

: 0

I

I z@i,i,*,n- ),ai,i,x,x)4 + (ur,r,*,* - lor,r.,t,*) c2k:o
I

I O or,r,r,, c| + z+ai,i,i,i clc21, + 6 ax,x,t ,x ct : I

of
pz(€) : (det O2 or pz(€) : l(12 det €,
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bhis system is equivalent to

( -\ai,i,i,i $ + 2(bi,i,x,,, - ),ai,i,*,k) c2x : 0

I

| 2(bi,i,n,x - \ai,i,x,x) 
"? - ^ak,k,k,kc7: 

o

I
I 6 o j,j,j,j c! + 24ai,i,i,i fi"| + 6 ak,k,k,k ct : L.

Notice that using %: l€la,

ai,i,k,k :'rti? + i3)2(k? + k\)z +2rtirt*, * izkz)a

and
1

bi,i,x,t,: iUtr, + izk)2(izkt - i*z)2, pz(€) : 1612 det6

bi,i,k,k :'uli,,r, - izkr)a, pz(€) : (det ()2

axe non-negative, and so ) must be non-negative also, otherwise the above

system is impossible.
F\rrthermore, we have to imPose

\2 ai,i,i,iap,p,t,x * A(bi,i,t,1, - \ ai,i,x,x)2 : 0 e

l=\:@
J a j,j,j,j ak,k,k,k + za j,j,k,k

again by the non-negativity of ). To compute the extrema of ), one has only

to compute the maximum because tr ) 0, and 0 is attained.

with
pz(€): (det{)2,

one has

suP '\ : s--- (itkz - izte)a

j,k w
In the above quotient, j, k can be taken such that Ul : lkl : 1, leading to

(jrkz - jzk)a
5 + 4(jrh-t izkz)a'

and then 
..- \ - ^..^ (jrkz &!il- - !

iTf 
o : 'i! iT +11,1,;* ,VY' 

: 
u



This ma:rimum is attained in the initial fraction by taking any 2 orthonormal
vectors j, k.

For
pz(4) : 1612 aet 6,

one has to compute

sup.\ : s--- 2(it.,l- + izkilz(itkz - izki2
j,k W

In this quotient, one can again take i : (h, iz), k: (/cr, k2) with Ul : |/cl :
1 and then get

sup ) : 
"up2!-' 

!"Y-\i-U-,-;i ;i 5 + 4U,k)4 '

where i: (-kz,k1). As j,k are unit vectors a,nd k,E are orthogonal, this
can be further simplified into

zcos2(0)(t-cos2(0)) 2r(L-r) 1,3/5
,fio%r@ :,?rffit -i +@ : - 4- 20'

As we easily observe, the quotient
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is obviously positive in the case were

pr : l€la, ,, : (det €)2 ,

but it surely takes both positive and negative values when

p2: l(12det(.

One might be tempted to try to find a counterexample for N : 2, but notice

that we are restricted to check the 2-quasiconvexity of. I at 0. First of all,
we rreed to know for which values of c € IR the corresponding tp is convex

along its characteristic cone. Then, if the smallest value obtained is zero,

this will provide the desired conclusion (if one has an example of a periodic

deformation with more tha"n two terms, which is easy).

The characteristic cone ([18]) associated with 2-quasiconvexity is

A:{0@a,a€RN}.

Iqvz(Y2u(r)) dr

[qe{V2u(r)) d'r
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The determination of which values of c provide functions rp that a,re convex

along the directions of A can be done with the techniques developed in [5],
applied to this particular case. It is then easy to conclude that

p: Mffi-* IR

is convex along A if and only if

I 4 4l
"'l-a'a)'

that is, the maximum value for .\ (with at most two terms, considering all

possible e e M?;:,and not only { : 0) is f *d the minimum is -f . tt
could seem quite surprising that the values are exactly the same here, but in
fact the computations in [5] for the classical example of [14] shows that the

extrema are attained, e.g., for

which is, in particular, a symmetric matrix, and for any direction, provided

that it is of rank-one (that is, in particular one can choose to take a matrix
in A).

We have then to proceed to computations with deformations of three or

more terms, if we want to study the possibility of finding a counterexample.

3.4.3 Three terms

In this case we consider three non-zero terms cj,ck,ct I 0. As N : 2, we

know that one of the j, k,l must be a linear combination of the other two.

We must arralyze several subcases. In all the subcases we get ) ) 0 from

the necessary conditions (3.8), except one, which will be treated below' For

example, in the subcase of. j,k,l, with i * ak,k I al,l * ai, we have

- \a i,i,i,i c] + 2(b i,i,x,r" - ),a i,i,x,x) czr + 2 (b i, i,t,t - \a i,i,t,) c! : 0

2(b i,i,x,n - \a i,i,x,x) c] - \a p,p,1a,6cf; + 2 (b k,k,t,t - ),ap,p,1,) cl : 0

2 (b i,i,t,t - ).a i,i,t,) c] * 2(b p 3,1,1 - ),a p,p,1,) c21" - \a41,1 pl : 0

6 a i, i, i, i ct + 2 4a i, i, n,x fi c2r + 2 4 a i, i,t,t c2i cl 

lr\?:*f ti. r,r,r,, 
" 

rn 
: t,

€:(3+)
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and in the other subcases we have at least one equation of the kind of the

first 3 equations of this system, which implies that ) ) 0, as stated (with
the above mentioned exception). Despite the fact that this system looks

harmless, the computations involved to solve it become too hard to find the

exact solutions, as we did in the previous cases with less terms, and the same

happens in the other subcases, in general.

The exception in terms of the positivity of I is the subcase were I :2i+k
for k t' dj, d € IR. In this subcase it is possible to obtain negative values

of ) (for pz(€) : l(l2det(), which means that for deformations with three

terms' the quotient 
;qvz(y2u(r))d,r

tr@;68
attain negative values. An example of such a deformation is

u(r1, 12) : -;("t{r,o)'{",") a 
"-l1r'o;'1"'"')) 

+

-! 1"n10,r1.@1,a2) y.-i(0,1).(u,azf ) + 1 ("i12,r1'1u,,2) 1r-t(z,r;'1cr,cz)\5\- tY /-zot" )'
and the corresponding value attained,

2944I : -619il'

We recatl that this does not provide any counterexample, because the mini-
mum value attained by ,\ with at most two terms (if the first moment is not
fixed) is \ --rt/\mln _ 

4 
.



Chapter 4

On the characterization of
laminates for 2 x 2 symmetric
gradients

In this chapter we explore the problem of the equivalence between rank-one

convexity and quasiconvexity for 2x2 syrnmetric matrices from the viewpoint

of probability measures, that is, we search for the existence of a gradient

Young measure that is not a laminate, following the approach of [36]. As a

by-product, we have reached a characterization of a couple of laurninates, by

using the concept of 3-edge-laminate.

4.L Introduction

The question whether rank-one convexity implies quasiconvexity can be

restated in terms of laminates and (homogeneous) gradient Young mea^sures:

is every (homogeneous) gradient Young measure a larninate?

Several authors have tried to answer the above question about the equiv-

alence between quasiconvexity a.nd rank-one convexity when rn : 2 (see

e.g. [34], [36], [39]) without success. The interested reader may find general

reviews on this subject in [37]. A wider reference is [12].
Here we follow the attempt of Pedregal [36] to adapt the approach of

Sverd,k [42] to the space of 2 x 2 symmetric matrices, which uses measures

supported on the 8 vertices of the cube [-t, t]3. Pedregal attempted the

following strategy: to generate a point Q- in the set of gradicnt Young

measures, as extreme in this set as possible, with the aim of showing the

impossibility of generating such Q- as a laminate. Gradient Young measures

67
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with barycenter (0,0,0) and supported on the vertices of the [-1,L]3 cube

were used in his attempt.
Our contribution aims at analyzing what we believe to be one of the best

choices to find a counterexample in the case of 2 x 2 symmetric matrices.

Our initial aim was to try the same strategy of [36], with other barycenters.

We have considered not only (0,0,0) but also, for several reasons (mostly to
keep the symmetry between the r and y coordinates, which translates into
symmetry of the different sets of measures), (*, t,o) u"d (+, |,0). But, uft"t
severa,l attempts, we have succeeded, unfortunately, to generate also their
corresponding laminates.

This is why we have then changed our focus, towards the problem of
characterizing exactly the laminates involved. The characterization we have

reached in Theorem 6 below concerns a precise class of laminates, which

we call 3-edge-Iaminates (see Definition 3). They seem to generate (through

convexity) all the laminates; but we were unable to prove this. It is amazingly

difficult, in general, to prove rigorously (in concrete examples) that a given

gradient Young measule or polyconvex measure is not a laminate. SimilarlS
if we fix an arbitrary polyconvex measure then it looks equally difficult to
prove that it is not a gradient Young measure. AII the computations done

do not seem to relieve our doubts: they just reinforce our feeling that the
relationship between ra,nk-one convexity and quasiconvexity is not at all
trivial or superficiat; and (beyond the question of being able to find or not
a counterexample) that both concepts, of laminates and gradient Young

measures, are not yet weII understood.
The organization of this chapter is as follows. In Section 4.2 we explain

in detail our initial aim. This is complemented by Section 4.3, which exhibits

sets of points generating the laminates mentioned before. As to Section 4.4,

it dea,ls with sets of polyconvex measures; while Section 4.5 concerns sets

of gradient Young measules. These four sections constitute the first part of
this chapter, which is a kind of preparation for the second, and main, part.
This one starts with Section 4.6, where after some preliminaries we reach

Theorem 6, characterizing, in a precise sense, the extreme points of the 3
sets of laminates (i.e. those corresponding to the barycenter (4, a,0) with
a : 0, o : i, " 

: Lr) along their edges, which is our main result. FinallS
Section 4.7 describes computational experiments designed to confirm, via a
different route, such characterization.
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4.2 Statement of the conclusions which we have
reached

Since we generalize the work of [36], in a sense, by considering different

barycenters, we use the same notations, namely the ones of its section 4.

Thus we consider Lipschitz deformations u : IR2 -- IR2 of the type

u(t):VP(") + P[r

where g i R2 --+ IR is [0, 1]2-periodic; with z the sum of 3 plane-waves along

directions (1,0), (0,1) and (1, L) respectively, and

,6 : ( o,I,o,
orT or) ' to : (ot' az'.,t) e [-t' t]3'

These Lipschitz deformations have gradients represented, pointwise, by sym-

metric matrices
("*z z ).
\ z y+z)'

hence by vectors (r,a,r), assuming only 8 different values. These values

a.re the vertices of the 3-dimensional cube [-f , f]'. We also have laminates,

gradient Young measures and polyconvex measures supported on the above

8 vertices. These are characterized by their barycenter P6 and by the weights

a,b, c oL 3 vertices of the cube. Thus we represent them as (compact convex)

sets in (o, b, c)-space.
To simplify the presentation, instead of probability measures we use here

measures with total mass : 576 : 242, so that our relevant vector measures

become triples (a,b,c) of integer numbers, with few exceptions (which involve

the numbers 64.8, 74.(6) : 74 + ?,76.5, 106.(6) : 106 + 3, 157.(09) :
1bZ + +, 1b8.4); we thus avoid writing lots of cumbersome fractions.

Let us start by presenting the result in [36]. There the barycenter is
P6 : (0,0,0), and (as shown below in Section 4.4) the set of obtainable
polyconvex measures having weights on the vertices of the cube [-1,1]3
which we denote as follows (see figure 4.1):

a.* (1,1,1), b- (-1,1,1), cr-+ (L,-1,1), d:288-a -b-c* (-1,-1,1),
a:432 - 3a -b - cr- (1,1, -1), b:2a* c- 144 - (-1,1, -1),

C--2a+b- l44r--+ (1, -1, -1), A : lM- a+ (-1,-1, -1)'

Using this notation, the polyconvex measules constitute the polyhedron in
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6=2o+c-144

Figure 4.1: weights on the vertices of the cube [-1, 1]3 for P6 : (0,0,0).

A=<O.144.144

=(144,0,0)

Figure 4.2: sets of measures in (o, b, c)-space for Ps : (0,0,0).

(a, b, c)-space which is the convex hull of its vertices:

A : (0, 144,744), Bs: (72,0,0), .B1 : (72,216,0), 82 : (72,0,216),

c : (144,0,0).

(This 3-dimensional solid is easily visualized: 86, Bt, Bz are the vertices of a

vertical triangle which is the common basis of two opposite pyramids having
vertex at A,C respectively, see flgure 4.2.)

Inside this set of polyconvex measures we have the corresponding set

of gradient Young measures obtained in [36] from the Riemann-Lebesgue

lemma (see, e.g., [35]) for periodic gradients, which is a segment (see Section

d =432-30-b-c
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4.5 below). For the barycenter zero, the extremities of this segment are

q- : (36, 108, 108), q+ : (108,36,36).

We prefer, however, in order to simplify further the geometric picture of
the relationship between gradient Young measures and la^rninates, to present

each one of these sets of polyconvex measures in (a,b,c)-space through its
intersection with the bisector plane b : c. For example, the edge BtBz -
with extremities (4, b,c) : (72,216,0) and (a,c,b) - is thus represented by

its point of intersection with the bisector plane: 3 : (72,108)' In this way

the above polyhedron (which is the set of polyconvex measures) becomes

represented by a polygon, the convex hull of its 4 vertices:

A : (0, 144), Bs: (72,0), B : (72,108), C: (144,0),

see figure 4.3. (Notice: in this figure, and also in the next ones, Q; *d
Q6- represent the points of intersection of the vertical line through Q- with
thL boundary of the above polygon; similarly for Q| and Qi,F. The reader

should not pay attention, for the moment, to the points in these figures which

are denoted using the letter r?, namely R-, Ri, ".; indeed, these points

will be the subject of Section 4.6 below.) Notice that the set of gradient

Young measules mentioned above is contained in the bisector plane, with its
extremities being now represented by Q- : (36,108) and Q+ : (108,36)'

As to the set of laminates, its intersection with the bisector plane - as

happens with the set of polyconvex measures - coincides with its orthogonal
projection into this plane.

. We now present some definitions to simplify the notation.
In the search for a counterexample, one important question is how to

obtain all the gradient Young measules which can be generated directly
from the Riemann-Lebesgue Iemma (i.e. not indirectly through laminates).

Definition L D will d,enote the class of Li,pschitz d,eformations u : IR2 *'
R2 ol the type

u(t):VP(")'t P[r,

where g: IR2 * IR is [0, l)2-periodic, whi,ch is the sum of 3 plane-waaes in
directions (1,0), (0, L) and, (l,l) respectiaely, with

,6 : ( o,I,o,
orT or) ' 'o 

: (ot' az'a1) € [-1' 1]3'
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Figure 4.3: P, R-polygons and Q-segment for Ps: (0,0,0)-

Definition 2 D, denotes the set of deformutions u(.) in the class D which

can be erpressed, as

ut(*,a) : 
fo" 

,rt, - 5i dt * 
Ir"*u xz(t - fu) d,t,

uz(r,a) : 
lro 

,rl, - 6il d,t * 
Io"*o xs(t - fu) dt,

with 6; e (0,1) and

( t, s € (0, s;),

xr(") ,: {
[ -t, s€(s;,1),

ertended periodically to R, where

,n,:*(1+c4).

go=<za.o> q=od=<rogn) -c=(144'o)
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The class D, isjust the natural generalization of the para,metrized form of
the deformations appearing in [36], for a barycenter Po: (ar,a2,o3). We

were unable to write down a more general expression for the deformations

in the class D, capable of yielding more extreme Sradient Young measures,

namely outside of the Q-segment, which we define below.

Definition 3 We call S-eilge-laminate to any third order lami,nate supported

on edges of the l-L,ll3 cube, which lies on an elge of the closeil conuer hull
of the set of all laminates.

Definition 4 For mch fiaed barycenter, the intersection of the bisrctor plane

b: c:

(a\ wi,th the set of gradi,ent Young nzesures (obtained through the Riemann'
Lebesgue lemma with the deformations u e Dr) is denoted by Q-
segmentl

(b) with the set of ?-eilge-laminates is denote by R-polygon;

(c) with the set of Ttolyconuer n?nasures is denoted, by P-polygon.

Remark 4 Notice that in the case oJ polyconuex; rneasureE, we arn generate

all such rneo,sures.

Therefore, in trying to reach the answer "no" (to the question starting the
introduction), the aim would be: to show that the extremities Q-, Q+ of the

Q-segment could not be reached by laminates. However, for the barycenter
(0,0,0) such aim was frustrated in [36, proposition 4.1], showing that the
measures Qi : Q6,72) and Q; : (36,126) are indeed laminates, so that

Q- belongs to the set of laminates. The same happens with Q+: just apply
symmetry.

We proceed now to present our own work concerning the other barycen-

ters Pe. With
/1 

'.0)ro: (E'I' /
one obtains the following weights on the vertices of the cube [-1,1]3:

a * (1,1,1), b * (-1,1,1), cr--+ (1,-1,1), d:288-a-b- c l- (-1,-1,1),
a:640-3a- b-cr-+ (1,1,-1), b:2a*c-256 H (-1,1,-1),

c:2a * c - 256 r--+ (1, -1, -1, A: 160 - a e (-1, -1, -1).
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=( 74.(6),106.(6))

=048,80)

R- =(158.4,64.8)
Ro =<go'oa C=(160,64)

=(160,0)
=( 157.(09),0)

Figure 4.4; P, R-polygons and Q-segment for P0 : (t, *,0).

Using this notation, the corresponding set of polyconvex measures has ex-

treme points:

A : (74.(6), 106.(6), 106.(6)) , Bo : (128,0, 0) , Br : (128, 160,0) ,

82: (L28,0,160) , Co: (160,0,0), Cr - (160,128,0) ,C2: (160,0,128)

(yielding again two opposite pyramids, but now a vertical plane cuts a tri-
arrgular face, in the second pyramid, with vertices Co,Ct,C2 ); so that the
corresponding P-polygon is the convex hull of its vertices

A: (74.(6),106.(6)) ,Bo: (128,0) ,B: (128,80),Cs: (160,0),C: (160,64),

see figure 4.4. On the other hand (directty) by the Riemann-Lebesgue lemma,
we were able to obtain no more than the Q-segment with extremities

g- : (100,92), Q+: (156,36).

Thus, concerning the barycenter Po : (*,],0), ou, airn was to show these

Q- , Q+ to be out of reach of la"rninates ; but it got frustrated, when we

ol=<1s6,se

o =( 100,5e>
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carne to the conclusion (see Proposition 2) that one may indeed obtain the
laminates

Qi : (100,56), QI : (tOO, g4), QI : (156,0), 8+ : (156,66),

hence the corresponding Q-segment.
Finally, with

P^: (!.1.0\.
" \2',2' /'

we denote the weights on the vertices of the cube [-L,1]3 by:

o * (1,1,1), b* (-1,1,1), cr--+ (1,-1,1), d:288 -o -b- c H (-1,-1,1),
a : 756- 3o - b - ct+ (1, 1, -1), 6 : 2a * c - 324H (-1, 1, -1),

7 : 2a +b - 324r-, (1,-1, -1), A : 180 - a e (-1, -1, -1).

The vertices of the corresponding set of polyconvex measures are then:

A : (120,84,84), Bs : (162,0,0) , .B1 : (162, 126,0) , 82 : (162,0, 126) ,

Cs : (180,0,0), Cl : (180,108,0) , C2: (180,0,108)

(yielding again: two opposite pyramids with the second one cut by a vertical
plane); so that the P-polygon is the convex hull of its vertices

a : (120,84), ,86 : (162,0), B : (162,63),Cs : (180,0), C : (180,54),

see figure 4.5. As to the Q-segment, it has now extremities

q- : (L44,72), Q+: (180,36);

which, again, axe convex combinations of the following laminates (see Propo-
sition 2)

Qi : (144,36), Q1 : (t++,72), QI : (180,0), 8+ : (180,54).

4.3 Presenting the sets of points which generate

Qo, Q;, Qf and Q]
To describe these structures, we use the same notations which were used irt

[36]. And as there, instead of providing the required sets of pairs (verifying



CHAPTER 4. ON THE CHARACTEHIZ{TION OF LAMINATES... 76

=(135,76,5)
=Q*=(I44,7?)

=(16?,63)

R; =( 135,54 =p+ =pl=q199,54;

Q o=( 144,36 Q+ =(180,36)

Bo =( 162 q =$=qj=11sg,g;

Figure 4.5: P, R-polygons and Q-segment for Po: e2,r,O).

some (.F/6) condition) which generate a specific laminate, we provide a set of
points from which one can obtain univocally the rnentioned set of pairs. A
set of points which gives Qo-- for the ba,rycenter zero is ([36])

(Notice that these sets of points are not unique in general.) Each segment

P1P2, P3Pa, P5P6 has rank-one direction. This means, e.g. for P1P2, that if
one writes Pz- Pt: (fr,y,2) then the determina,nt of P2 - P1, gtven (as

one easily checks ) by *y * rz * yz, is zero.

Starting, as explained in Sectiot 4.2, with the weight 576 from the

barycenter P6 : (0,0,0), the above set of points generates (as in (a) below)

the measure (36,72,72). Similarly one reaches the measures

(36, 180, 72), (36,72, 180), (108,0,0), (108, 108,0), (108,0, 108).

This shows that, for this barycenter, the following points indeed belong (as

P6: (o,o,o), ,r: (-;,r,r) , ,r: (*,-i,-;) , Pt: (t,-i,r) ,

'. 
: (-+,-+,-*) , Ps:(r',1, -1), P6 : (-1, -1,0)'
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Ps

Figure 4.6: example of a laminate for P6 : (0,0,0).

mentioned above) to the intersection of the laminate with the bisector plane:

Qi : (36,72), Q-,. : (36,126), QI: (108,0), QI : (108,54)'

This is a result of [36], included in the next

Proposition 2 The following points belong to the R-polygon generated by

starting with the weight 576 from the barycenter Ps:

Qo : (36,72), Qi: (36,126), Qt : (108,0), QI: (108,54) for
P6 : (0,0,0) ;

Qo : (100,56), Qi: (100,94), Qi : (156,0), QI: (156,66) /or
16: ($, $,0);

Qo : (144, 36), Qi : (L44,72), Q6t : (180,0), QI : (180,54) for Ps :
(*, ;,0) .

Proof. (a) The proof of this proposition consists in exhibiting, for each

rleasure, arr adequate set of points. To find such measure one finds weights

p1, p2 adequate to have p1 * pz : ps :: 576 and prPr * pzPz: p6P6; then

proceeds in a similar way until the weight po : pr*pz-lps*po has been thus

distributed into weights Pt,Ps,ps,p6 on points Pt,Ps,Ps,Pa € A[-1,1]3'
Finatly, one distributes these weights Pr,Ps,ps,p6 into appropriate weights
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on the vertices of this cube, obtaining in particular the total weights a on

(1, 1, 1), b on (-1, 1, 1), c on (L, -1, 1). The measure (4, b, c) of the laminate

is thus obtained, and hence also the measure (a,c,b) and the point (a, $)
of the intersection of the set of laminates with the bisector plane.

(b) If one computes in this manner the measure associated with the set

of points

(r,,,-i) , P2: (-*,-*,rrr) ,

*: (-';,r,r) , .n: (*l,-ffi,#) ,

"u 
: (r,-#,r) , P6: (-t,*,-r)

then the result is (a,b,c): (100, 132, 56), hence (a,c,b): (100, 56, 132) and

(",*): (100,94).
Similarly for the other measures associated to this ba,rycenter, as follows:

the measure (100,56,56), hence the point (100,56), is generated by

,, : (*,*,0) , o : (', -*,t) , P2:(rur', iH,-#) ,

", 
: (-*,,,,), r, : (#,#,-#),

., : (,,r,}|) , P6:(-t, -,, rra) ,

the measure (1.56,0,0), hence the point (156,0), is generated by

",:(i,*,0) ,*:

".:(*,1,0) ,*
PB:

\ /347 209 49\
-r,-t ) , 

P2: (1293-, AZt, 4n ) ,

r,-,) ,P4:(#,#,ffi) ,

,,r,-#) , P6: (-t,-t,iH) 
'

/t9_t- \21'
/89I __
\ t2s'

,r: (
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and the measure (156,132,0), hence the point (156,66), is generated by

,,: (i,l,o), o : (-,,#,-,), P2:(#, ffi,h),
,, : (!|,-r,-r) , P4: (#,r, H) , ,r: (r, r,#) ,

"u 
: (_r,r,#)

Similarly for the measures associated to the barycenter fo : (|,|,0):
the measure (144,36,36), hence the point (144,36), is generated by

,,: (i,l,o) , o: (t,,,t) , ,,: (#, +,-*), Pt: (t,*,t) ,

'. 
: (*,* -#) , P5: (',', -i) , P6: (-', -'' ]) '

the measure (144,36,108), hence the point (144,72), is generated by

,o: (i,*,0) , o: (r,,,-i) , P2: (o,o,i) , P3: (-i,t,,; ,

,* : (*,-*,*) , Ps: (-,,*,-') , 
'u 

: (', -3,') 
'

the measure Cs : (180,0,0), hence the point Cs : (180,0), is generated by

t : (i,i,o) , *: (',-i,-t) , P2: (+,#,+) '

., : (-*,,,-,) , P4: (*,*,*) ,

P5 : (-1, -1,1), P6 : (1,1,0);

and the measure C1 : (180, 108,0), hence the point C : (180,54), is gener-

ated by

,, : (1,i,0) , ,,: (-!r,,,-,) , ,r: (r,i,;) ,P, : (1, ,, ;) ,

,n : (r,_r,;)

As to the barycenter zero) see the paragraph before the staternent of the
proposition. r
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The reader should be aware of the fact that what is difficult here is not
bo prove Proposition 2, but to state it.

Notice also that all the sets of points presented in this paper have all
their odd points (i.e. &, Ps, P5, P6) on edges of the [-1,1,]3 cube: this
makes sense since what matters is to find extreme laminates.

4.4 The characterization of the sets of polyconvex
measures

We want to determine the set of polyconvex measures supported on the

vertices of the cube [-1, 1]3, with barycenter Ps : (a1, az, o,s) (for sim-

plicity we again take the total weight- p2, instead of 1). Denote again by
a,b,c,d the weights thus generated on the four upper vertices,

(1,1,1), (-1,1,1), (1, -1,1), (-1, -1,1);

and by d,6,Zd the weights generated on its four lower vertices,

(1, 1, -1), (-1, 1, -1), (1, -1, -1), (-1, -1, -1).

Defining now the parameters

1

"t,:'i(1+oi),

-Y i: p2 
l(', - ;) (", - ;) * s1s3 + ,2,,] ,

one easily checks that the set ofpossible weights associated to polyconvexity

can be thus represented as the set in (4, b, c)-space described by the restric-
tions

a ) 0,b ) 0,c ) 0,

d,r:p2q-a-b-c)0

D2a,:l* 
Z

b:: -'y *

(

t
2

sr*sz-;) - za -b

(; -', *',) *'o

-c )0

*c )0
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rPe,:-ltT (l*',-',) *2a.tb2o

d,::.Y-+ ('r*sz+ 2ss-l) -, -0.

As we saw in the introduction (for each fixed barycenter) the set of poly-
convex measures contains both the set of gradient Young mea^sures and the
set of laminates. Consequently, the P-polygon contains both the Q-segment
and the R-polygon.

4.5 The characterization of the gradient Young
measures generated by D* defotmations

Each deformation z(.) € 2* generates (as described in the proof below)
weights a,b,c,d on the 4 upper vertices of the cube [-1,1]3

(1,1,1), (-1,1,1), (1, -1,1), (-1, -1,1)

and weights d,6,ed on the 4lower vertices,

(1,1, -,1), (-1,1, -1), (1, -1, -1), (-1, -1, -1).

Or, in other words, each such deformation u(.) generates a gradient Young
measure with barycenter Ps, represented by the triple (a,b,c), consisting of
the weights generated on the first 3 of these vertices; which may be compared

with laminates (o, b, c) having weights a, b, c generated, on the vertices

(1,1,1), (-1,1,1), (1, -1,1),

by sets of points contained in the cube [-1,1]3 and having barycenter P6.

ln particular, if one fixes P6 ,: (cr,o,0), with o : 0, |, |, then examples of
such sets of points appear in the proof of Proposition 2.

In the next proposition we consider gradient Young measures not as prob-
ability measures but as measures having total mass: p2. This is convenient
to avoid many cumbercome fractions when treating concrete examples, as

above with p:24.
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Proposition 3 The gradient Young rneasures generatd by deformations

"(.) e D, are atl the points of a segment, namely the conue,x hull of its
ertremities Q-,Q+ t

Q- ,: (o-,dz - a-,dB - a-), Q+ ,: (o+,dz - a*,ds - o+),

with

d,2 :: p12 52 53 r dg ::'P12 51 53 , (1 + o6),
1Sli:i

o- ':o'(

where

lrr+rz+s3-1]+
)' , o* ,: n, 

[r, ", 
- (t', +'z-'s1+)'] 

,

[r]+ :: max{O, r}.

Proof. To compute the weights o, b, c, d and d,,6,ed generated by this

general deformation u(.), one has to compute the areas of the corresponding

regions (denoted by the same letters o, b, c, . . .) determined on the squaxe

[0,p]2 by the lines

fr:p61, r:p5t*pst, A:p62, U:p6z*psz,

r*y : p 6s, x*A : p 6s+-P $3, rlA : p*p 6s, it*y : p*p 6s*p ss.

One easily checks, geometricall5 that

a:p2 sr s2 -a) b:p2 (1 -"r) s2 -b, a:p2 rt(1- tr)-"

and

d:p2s3-o-b-c, -d : p2 [(1 - rr) (1 - rz) - rr] * a* b + c.

On the other hand, we must have

b:p2 s2sZ- al c:p2 sr sB-tz.

In this way one expresses the coordinates b, c,d,.. ' as a.ffine functions of
a (dependent on the chosen P6). Therefore the gradient Young measures

generated by deformations u(') e 2, form a segment; and to characterize

it and thus end the proof, we only need to obtain its extreme values. But
these are obtained by plugging in the extreme values a , a* of a, whose

expressions are those stated above. I
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Remark 5 The results of the sections 4.4, 1.5 can be ertended lrom the cube

[-1, 1]3 to a rectangular parallelepi'ped'

l- Ar, Al x l- Az, A2l x l- As, Asl,

where A1, Az, As € (0, +oo).

4.6 The characterization of the 3-edge-laminates

one easily checks that the three P-polygons considered in section 4.2 all
have the same form, their only difference being that the vertices Co, C
collapse, in the case of the barycenter zero, into the unique vertex c. (one

may also observe the following: for the other 2 barycenters, if one extends

the edges BoCo, BC then they meet at the point (288,0) which is, however,

out of reach for the polyconvex measures.

Proposition 4 For each one of the aboue 3 barycenters, the points Bs, B of
the P-polygon always belong to the corresponding R-polygon.

We leave the proof of this proposition to the interested reader; it is similar

to the proof of Proposition 2, but here it involves only the discovery of three

first order laminates and two second order laminates.

But the main aim of this section is the determination - for the intersection

of the bisector plane with each one of the three sets of laminates - of the

extreme points R; , R- along the edges .Eo-, E- of. the P-polygon (i.e. those

joining the vertices BsA, BA); and of the extreme points Eot, fi* along the

edges E6+, E+ (i.e. BoCo, BC assuming, in case P6 : (0,0,0), Cs ,: C).
Then what we do below is the determination of the extreme points

fi., Ei, Rf (respectively Eot, Rf , n+) afong the edges E;, Et , E, (r*
spectively Et , E{ , E{) of the convex hull of the set of all 3-edge-laminates.

We believe these are atl the extreme points of the set of general laminates,

together with .86, Br, Bz; but were unable to prove it.
What is remarkable here is that, for some barycenters, the Q-segment is

entirely contained in the interior of the corresponding R-polygon, hence does

not reach at least its boundary, as one would expect. This is what happens for

the barycenter (*,$,0); while for (|, |, O) ttre lower value of the coordinate

o along the laminate is strictly smaller than its lower value along the Q-

segment. This situation is unfortunate for the search of couuterexamples,

but we were unable to improve it, as was remarked in Section 4.2.
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Theorem 6 The ertreme points of the intersection of the bi'sector plane with
the conaer hull of the set of ?-edge-laminates are, besides Bs, B:

for the barycenter P6 : (0,0,0),

&- : (36, 72), l?- : (36, 126), Ril : (108,0), 6+ : (108,54) ;

for the barycenter .Po : (i,i,0),
Ro-: (96,64), p-: (96,96), .Rf : (157.(09),0), 6+: (158.4,64.8);

and, for the barycenter Ps: (+,+,0),

E[: (135,54), R-: (135,76.5),.Bil -Co: (180,0), R+:C: (180,54).

Proof.
(a) For the barycenter P6: (0,0,0) the points &-, ft-,.RoF,,R+ are

generated as listed in the pa^ragraph before Proposition 2.

For the barycenter Po : (t,|,0) tte measure &- : (96,64,64), hence

the point E[ : (96,64), is generated by

"o 
: (i, i,o) , o : (-*, ,, ,) , ",: (#,*, -*) ,

p, : (r,-*,,) , P4: (*,*,-*) ,

P5 : (-1, -1,0), P6 : (1, 1, -t) ;

while rBf : (96,128,64), hence ,E! : (96,64,128) and the point R- :
(96,96), is generated by

Po: (i,i,o) , o : (', -*,t) , P2: (it,#'-*) ,

",: (,,,,-:) , P4: (-*,0,0;,
P5 : (0, -1, -1), P6 : (-1,1,1).

Still for the barycenter P6 : (*,*,0),the measure,Bf, : (157.(09),0,0),
hence the point .Rf : (157.(09),0), is generated by

",: (i,t,o) , *: (f,-,,-,) , P2: (#,#,#) ,

,,: (-3,r,-t) , P4: (*,*,*),
P5 : (1, 1,0), P6 : (-1, -1, 1) ;
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while.Rf : (158.4,129.6,0), hence RIF : (158.4,0,129'6) and the point

6+ : (158.4,64.8), is generated by

,.: (*,*,0) , o: (#,-,,-,) , P2: (#,#,.,rt) ,

P3: (-1,1,-1), ,.: (#,#,#) ,

,u : (r,-*,-r) , P6: (*,r, r;

For the barycenter Po: (L,|,0) tte measure q- : (135,54,54), hence

the point Eo : (135,54), is generated by

,, : (i,*,0), o : (;,t,,),
Pn: (Y'Y'

\87'32'
while Rl : (135,99,54), hence

(135,76.5), is generated by

(H,*+,-*) , P3: (',#,') ,

, P5 : (-1, -1,0), Po : 11, 1, -1);

: (,,,,_i) , ., : (_*,_i,*u) ,P3: (_*,',') ,

/t 11 1\,n: (r,-;,;) , P5: (-1,0,-1), Po:11,-1,1).

P2:

27\
-3?)

Ri: (135,54,99) and the point R- -

,,:(1,*,0) ,o

Finatly for the barycenter po: (Lr,|,O), tte measures EoF : Co, R+ : C
are generated as indicated in the proof of Proposition 2, see figure 4.5.

(b) It remains only to show that these measures are extreme, in the sense

explained just before the statement of this theorem.

Consider the barycenter Ps : (t,*,0). One wishes to show that the

measure (96, 128,6a) is R! , namely the extreme point along the segment

which is the convex hull of 1z++fl,roo+ $,too+ f) and (128,160,0) (i.e.

along the edge Et of the corresponding set of polyconvex measures).

Parametrize the part of this edge Et having a ( 96 :

(a,b,c): (a,32l-a,256-2 o), ,,lrn* f ,rU) .

For each o, the weights obtained on the remaining vertices of the cube are:

d : 0 - (-1,-1,1), A : 352 -2ar-r (1,1,-1), 6: 0 r-- (-1,1,-1),
Z: 3a - 224 e (1, -1, -L), A: 160 - a + (-1, -1, -l).
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Our aim is to show that there exists no set of points generating weights
(a,b,c) € Et havin1 o, e 174+ 3,96). We begin by choosing the edges of
the cube upon which one could place each one of the 4 points Pt, Pe, Ps, Pa.

Since d : 0 : b, only the edges Sob, Soo, Sa, Sa 7, .9; may be used. (Here

^9o6, 
say is the edge of the cube which joins the vertices holding weights a, b;

i.e. .9ou : co {(1, 1, 1), (-1, 1, 1)}.)
We begin by choosing an edge to hold Pl, so that PoPr is rank-one. We

have two possibilities:

either (fu) (fr e S"a or Pl e ,Su7);

- or else (b2) (P1 e Soa or Pt € So" ) ,

Then it suffices to convince oneself that none of these choices works, by
exploring wisely all the available possibilities. Indeed, ea,ch one of them leads

to a situation in which one of the restrictions to apply simply turns out to
be impossible to satisfy.

For the other edges, one shows similarly that the extreme points on the
edges are the ones shown in part (a) above. r

4.7 A computational attempt to characterize the 3
sets of laminates

After having computed the above extreme values, the following question
comes naturally to one's mind: are the vertical segments S- :: [Eo-,E-],
,S* :: [R6t, R+] extreme in the intersection of the bisector plane with the
corresponding set of laminates, in each case? (Or, more precisely, con-

sidering the 3-dimensional picture and using the same notation as in the
proof of Theorem 6: are the vertical triangles T- :: co{Rs,Rl,Rf } and
T* :: co{R{ , R{ , Rilr extreme faces of the laminate?) If one could ensure

this, then the intersection of the set of laminates with the bisector plane,

in each case, would become completely characterized as the convex hull of
the 3 vertical segments ,S-,5+ and S ': {Bo, B}. (Or, in the &dimensional
picture; then each set of laminates would be exactly the convex hull of the
3 vertical triangles T- , T'+ and 7 ;: co{Bo, Bt, Bz}, see figure 4.2.)

To show the plausibility of this conjecture, we have tried to characterize

the extreme values ofthe first coordinate o (the weight on the vertex (1,1,1)
of the [-1,1]3 cube), in each one of the above laminates, independently of
the weights on the other vertices of the [-1, 1]3 cube. Or, in other words, to
find the extreme values ofthe coordinate a, regardless ofrestricting attention
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to edges of the corresponding set of laminates. To avoid any bias coming

from wishful thinking, we have constructed (in a personal computer) exact

samples of atl the possible third (at most) order laminates. Since all the

corresponding sets of points constructed here have all their odd points on

edges of the [-1,1]3 cube, in trying to construct a third order la,rrinate

starting from one of tn. chosen barycenters ((a, a,0) with a : 0, a : ],
o : l), the choices one has to make, concerning each odd point (namely

Pr, P3, P5 or P6) lead to less than a dozen possibilities. On the contrary
concerning each even point (i.e. P2 or Pa) the possibilities are, instead, all
the points of a straight-line segment, which we call an even segment; and

our strategy has been to divide each such segment into n : 100 pieces, all
with equal length. In this way we have generated blindly many hundreds of
thousands of different third order laminates for each barycenter-

(Notice: the word "exact" is used above in the following sense: the co-

ordinates are represented as quotients of integers with 16 decimal digits.

Thus the sets of points we have generated have exact coordinates and exact

weight-distributions, hence yield exact - i.e. not approximate - points of
the corresponding laminates. [n a first attempt we have represented all the

coordinates, of the sets of points in our computer, by 64bit doubleprecision
real numbers. However, since errors tended to accumulate in an explosive

way, we have soon shifted towards an exact representation ofcoordinates as

quotients of integers with 16 decimal digits. Thus the sets of points we have

generated have exact coordinates and exact weight-distributions, hence yield
exact - i.e. not approximate - points of the corresponding laminates.)

One might also wonder whether by using fourth order laminates it would

be possible to obtain a more extreme value of a, namely a value not reachable

with third order Iaminates only. In order to try and discard such possibility
we have also generated fourth order laminates on the computer. But since

we have, in this case, 3 even segments instead of 2, we had to reduce the

number n of divisions from 100 to just 30, due to memory limitations.
The computations thus performed tend to indicate that it is sufficient to

consider third order laminates. However, even with such a small n we have

run into problems, frequently, due to an explosive propagation of errors.

Indeed, in marry cases, when computing the last points Pz, Pa of the set

of points corresponding to a fourth order laminate, the integers involved
exceeded the largest integer available (even ifwe have been careful to cancel

out all common factors in the numerator and denominator of all fractions

representing all points and weights). In many other cases, such excess oc-

curred not in the computation of Pz, P8, which were still exirct, but in the

computation of the corresponding weights p7, p8. We have also tried to com-
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pute P7, PB, pz , p8 using approximate double.precision real numbers (instead

of exact quotients of integers), starting from the exact values of the other
points, P6 to P6; but again errors tended to accumulate explosively.

The conclusions we have reached from all these computations simply
confirmed atl the expectations we had from the start, coming from our other
method described above. That is: these computational experiments just
reinforced our confidence on the validity of the conclusions of Section 4.2.
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