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Fig. 6. Frohlich’s diagrams, top triangle corresponds to focal
mechanisms of earthquake between 37 and 40° and bottom triangle
between 35 and 37°.

or detected by a specific hypocentral pattern. It is
difficult to evaluate the existence of incipient subduc-
tion zone in the western Atlantic margin of Portugal
because there are few stress data, in particular focal
mechanisms. The few stress data in the oceans and the
difficulty to evaluate the role of slab pull forces related
to subduction zones has been already pointed by
Wiens and Stein (1985) and corroborated from the
World Stress Map global stress by Zoback (1992).
In our case, an incipient subduction zone (of slow
young oceanic plate) is still more difficult to evaluate.
The strike-slip earthquakes observed along the
western Atlantic margin of Portugal (Fig. 4) are not
typical of subduction zones. Studies for the last 30
years has made it possible to establish that the princi-
pal seismic moment release at subduction zone (at the
frictional interface) occurs by thrusting along the plate
interface during great underthrusting earthquakes
(e.g. Scholz, 1990). Otherwise, earthquake focal
mechanisms presented in this study (1960-1998,
Tables 1 and 2, Fig. 4), are consistent with the general
direction of the quaternary compression, and they are
in good agreement with the seismotectonics of the
Ibero-Maghrebian region (e.g. Bezzeghoud and
Buforn, 1999; Buforn et al., 1988a). The orientation
of the stress obtained in Portugal mainland and its
adjacent Atlantic area is controlled by the continental
collision between Iberia and Africa in the eastern
segment of the Azores-Gibraltar plate boundary
(Figs. 4, 6 and 7).

The contact and stress orientation between Africa
and Eurasia along the Azores-Gorringe zone, except
for the Gloria fault zone, is well-defined by a fairly
linear fracture in the E-W direction with the occur-
rence of large earthquakes of right-lateral strike-slip
character (Buforn et al., 1988a). However, in the
vicinity of the Portugal Atlantic margin, including
the Gulf of Cadiz and the Strait of Gibraltar, the earth-
quakes are of moderate magnitude and the contact
between the plates is more complicated. This
complexity, probably due to the changes in the crust
type from oceanic to continental, is evidenced by

Fig. 5. (a) Details of focal mechanisms and geological faults for the Lisbon and Evora region. 1: Geological lineation; 2: Reverse fault; 3:
Normal fault. Dashed lines represent probable faults. Faults are from Cabral and Ribeiro (1988). DRF: Deixa-o-Resto Fault. See caption of Fig.
1 for other details. (b) Detail of focal mechanisms and geological faults for Algarve region. See caption of Fig. 5a for other details. (c) Tectonic
model for the Algarve basin formed by the four major extensional transfer faults presented by Terrinha (1997) and focal mechanisms for this
region. AF: Algezur fault; PF: PortimZo fault; SMQF: Sdo Marcos-Quarteira fault; GFZ: Guadiana fault zone.



304

384 J.F. Borges et al. / Tectonophysics 337 (2001) 373-387
-12° -11° 100 9 -8 77 -6 -12° 117 100 -9 -8 77 -6
e HORIZONTAL PROJECTION OF P AXES # d HORIZONTAL PROJECTION OF T AXES ol
Cos(8) COs(0)=1.
40° 40°
39° 39° -
ol5 6
38° 38° -
37° 1 37° 4
4
36" 36" 2
35° T T T T T 35° 35° T
-12° -11° 100 -9 -8 77 -6 -12° -11°

Fig. 7. Plot of horizontal projection of P (left) and T (right) axes. Length of lines is proportional to the cosine of plunge (cos 6).

multiple faults, diffused seismicity and by reverse and
oblique faulting becoming predominant. From
Gorringe Bank there are three main seismic align-
ments in NE-SW directions that could be interpreted
as continuations of neotectonic active faults in the
Iberian Peninsula: (1) Messejana, (2) Guadalquivir
and (3) Alicante-Cadiz faults. However, the few
earthquakes recorded in this area have small magni-
tude (M < 5) showing a non-uniform distribution of
epicentres and no clear seismic activity is evidenced
at present along the Messejana and Guadalquivir
faults except along the Alicante-Céadiz fault where a

Table 3

Stress indicator for focal mechanisms determined in this study
(Sumax: azimuth of maximum horizontal stress axis; Q: quality rank-
ing according to the Zoback criteria)

No Date SHmax Q
6 80/11/13 323 C
12 89/04/08 290 B
13 89/09/23 117 C
14 89/11/02 135 C
17 93/02/16 326 C
18 93/06/22 159 C
19 94/09/24 338 C
20 97/01/19 322 C
21 98/07/31 318 C

significant seismic activity is continuous in time and
space (Fig. 2, see also Bezzeghoud and Buforn, 1999).
The focal mechanisms of the southern part of Portugal
and its adjacent margin, presented in this study, could
be associated with these faults or/and other secondary
faults linked to them. This interpretation is based only
on recent seismological data. To understand the seis-
motectonics and geodynamics of this zone it is funda-
mental to use other geological and geophysical
information as well as historical and paleoseismic
studies. For instance, a geodetic monitoring program
in Portugal could provide a most complete and
reliable data set on this problem. Nevertheless, in
the present-day, these studies are almost non-existent
and an effort must be made by the scientific commu-
nity to solve this problem; especially with regard to
the paleoseismic studies in the Iberian Peninsula. In
this study, it was deduced that the Portugal continental
and its Atlantic margins are under horizontal pressure
in the NW-SE direction, resulting in strike-slip
mechanisms to the north and in reverse and oblique
faulting to the south with underthrusting of the Africa
plate. This motion is consistent with the recent results
given by Bezzeghoud and Buforn (1999), for the east-
ern part of Strait of Gibraltar (Betic-Alboran-Rif-Tell
zZone).

The focal mechanisms and stress indicators
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Fig. 8. Map of all stress indicators available in the studied area.

presented in this work suggest a rotation of the direc-
tion of maximum compression from Pliocene (NNW -
SSE) to present (NW-SE) in accordance with the
stress field data presented by Ribeiro et al. (1996).
However, the dispersion of the fault-slip data deserves
particular attention. This tectonic stress rotation could

be due to local crustal structure, rheology and strength
contrast as argued by Zoback et al. (1989) and Zoback
(1992). Several examples of apparent rotation of Sypax
have been observed (e.g. Amazonas rift in Brasil) by
Zoback (1992). Otherwise, Zoback et al. (1989)
suggest that the continental margins strongly
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Fig. 9. Azimuth of Sy, for the three stress indicators in the geographic area limited by the dashed line. The arrows represent the mean azimuth
of Sumax for Geological indicators (GI), Breakouts (BK) and Focal mechanisms (FM).

influence the tectonic stress orientation, and along the
North American continental margin in particular. In our
case, along the Portugal Atlantic margin as shown in
Fig. 7, we do not have the same behaviour. The stress
orientation NW-SE maintains itself excepts in two
cases as follow: one fault-slip indicator located in the
northwestern region of Portugal and, three others, in
particular, located in the southwest near the continental
margin indicating the N—S compression parallel to the
continental shell. This singularity indicates a particular
behaviour of the Portugal Atlantic margin.
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