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Summary

Essays on Option Pricing under Alternative One-Dimensional Diffusions

Given its analytical attractiveness, the process most commonly used in the financial

and real options literature is the geometric Brownian motion. However, this assump-

tion embodies some unrealistic implications for the dynamical behavior of the under-

lying asset price. To overcome this issue, alternative stochastic processes have been

considered in the valuation of financial and real options. This thesis examines finan-

cial and real options using alternative one-dimensional diffusions, namely the constant

elasticity of variance (CEV) and mean-reverting CEV diffusions.

This thesis has two main purposes. First, it derives closed-form solutions for com-

puting Greeks of European-style options under both the CEV and CIR (Cox, Ingersoll

and Ross) models. Second, it analyzes the optimal entry and exit policy of a firm in

the presence of output price uncertainty and costly reversibility of investment under a

generalized class of one-dimensional diffusions and shows how the hysteretic band is

affected.
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Resumo

Ensaios sobre a Avaliação de Opções sob Difusões Unidimensionais Alternativas

Na avaliação de opções financeiras e reais, o processo mais utilizado na literatura

é o movimento Browniano geométrico. Contudo, esta suposição incorpora algumas

implicações irrealistas para o comportamento dinâmico do preço do activo subjacente.

Para ultrapassar estas limitações, têm sido considerados processos estocásticos al-

ternativos para a avaliação de opções financeiras e reais. Esta tese analisa opções,

financeiras e reais, utilizando difusões unidimensionais alternativas, nomeadamente

as difusões elasticidade constante da variância (CEV - constant elasticity of variance)

e CEV com reversão à média.

Esta tese tem dois objectivos principais. Primeiro, derivar soluções analı́ticas para

calcular as letras gregas de opções de tipo Europeu para os modelos CEV e CIR

(Cox, Ingersoll e Ross). Segundo, analisar a polı́tica óptima de entrada e de saı́da de

uma empresa na presença de incerteza no preço do output e de reversibilidade dos

custos de investimento, para uma classe generalizada de difusões unidimensionais, e

mostrar a influência sobre a banda de histerese económica.
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Chapter 1

Introduction

This thesis examines financial options and real options using alternative one-dimensional

diffusions in six separate and self-contained papers.

The Theorie de la Speculation, Louis Bachelier’s PhD, published in 1900, marks the be-

ginning of options theory, nowdays an integrant part of the modern finance theory, and

applies the concept of the Brownian motion to model the stochastic behavior of stock

prices. Louis Bachelier has proposed a modeling framework for valuing stock options

assuming that the underlying asset follows an arithmetic Brownian motion. However,

since this process allows the possibility of negative values of the state variable, its

application for pricing financial options has been questioned.

The geometric Brownian motion (GBM hereafter), i.e. the multiplicative version of the

arithmetic Brownian motion, has been used in the embryonal work of Black and Sc-

holes (1973) and Merton (1973). Black and Scholes (1973) present a general method-

ology for evaluating stock options without dividends during the option’s life and derive a

simple formula to evaluate a European-style call option. Merton (1973) generalizes the

Black and Scholes model by including dividend payments during the life of the option
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(i.e with a constant dividend yield) and stochastic interest rates. The subsequent stud-

ies on financial options have focused on the development of more realistic model for

valuing financial option contracts, incorporating less restrictive assumptions in order to

accommodate the empirical evidence in the literature (see, for example, Bakshi et al.

(1997)).

A financial option gives the holder the right to buy or sell the underlying asset at a

certain price, which is called strike price or exercise price, by a certain date. The

date in the contract is known as the expiration date or maturity. We can have call and

put options. A call option gives the holder the right to buy the underlying asset for a

strike price within or at a maturity date. A put option gives the holder the right to sell

the underlying asset for a strike price within or at a maturity date. In general terms,

the underlying asset of the financial options can be thought of as a stock, a stock

index, an exchange rate, or a financial futures contracts. Options can be classified in

European-style options, where the option can be exercised only at the expiration date

itself, or American-style options, where the option can be exercised at any time up to

the maturity date of the contract. Options also can be classified by their moneyness,

which results from the comparison between the spot price of the underlying asset and

the strike price of the option contract. Options are referred to as in-the-money, at-the-

money, or out-of-the-money. Let S be the spot price of the underlying asset and K the

strike price. Then, a call (put) option is in-the-money if S > K (S < K), at-the-money if

S = K, and out-of-the-money if S < K (S > K).

Consider a European-style call option that pays cT = max(ST −K,0) = (ST −K)+ at

maturity T . Taking the expectation of cT , and discounting to time t, yields the option

valuation formula for a call option with striking price K:

ct = Et
Q[e−r(T−t)(ST −K)+], (1.1)
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where r is the risk-free interest rate, and Et
Q[.] ≡ EQ[.|Ft ] is the expected value un-

der the risk-neutral probability measure Q conditional on the Ft σ -field generate by

the standard Brownian motion Wt
Q, Ft = σ(Ws

Q;0 6 s 6 t). Similarly, consider now a

European-style put option that pays pT = max(K−ST ,0) = (K−ST )
+ at maturity T . Tak-

ing the expectation of pT , and discounting to time t, yields the option valuation formula

for a put option with striking price K:

pt = Et
Q[e−r(T−t)(K−ST )

+]. (1.2)

Throughout this thesis we will consider one-dimensional stochastic differential equation

(sde) of the form

dSt = a(t,St)dt +b(t,St)dWt (1.3)

where the St is the underlying asset price, a(t,St) and b2(t,St) are given functions,

called drift and diffusion coefficients, and Wt is the Wiener process, with initial condition

S0 = s0.

Real options can be viewed as an extension of financial options to value capital invest-

ment opportunities in real asset such as land, buildings, plant, or investment projects.

A real option is the right, but not the obligation to take an action (for example, deferring,

expanding, contracting or abandoning) at a predetermined investment cost called the

exercise price for a predetermined period of time - the life of the option. The investment

opportunity in a project can be seen as a call option. Similarly, an option to abandon

a project is analogous to a put option on the project’s value. The exercise price is the

residual value of the equipment.
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In the literature of the real options, most of the developed work is based on the papers

of McKean (1965), Black and Scholes (1973), and Merton (1973) by assuming that the

underlying state variable follows a diffusion process with lognormal distribution. Dixit

and Pindyck (1994) made an extensive review for the case in which the state variable

follows a GBM.

The GBM assumption can be a reasonable approximation of the stochastic behavior

of some financial and real asset prices. However, the empirical evidence indicates

that this assumption is not sufficient to capture the implied volatility smile effect or

skew founded in the equity options market (see, for example, Jackwerth and Rubinstein

(2001)).

To overcome these limitations, several alternative diffusion models have emerged in

the literature. Along this thesis we will look with particular emphasis to the constant

elasticity of variance (CEV henceforth) model of Cox (1975) and to the mean-reverting

CEV model, namely the the mean-reverting square-root process of Cox et al. (1985).

The CEV model of Cox (1975) allows the instantaneous conditional variance of the

asset returns to depend on the asset price level, thus exhibiting an implied volatility

smile (or skew) similar to the volatility curves observed in practice (see, for example,

Dennis and Mayhew (2002)). The CEV framework is also consistent with the so-called

leverage effect, i.e. the existence of a negative correlation between stock returns and

realized stock volatility, as documented, for instance, in Bekaert and Wu (2000). Thus,

it is necessary to use a more general assumption for the state variable process that

better captures the empirical regularities found in the finance literature.

The mean-reverting square-root model proposed by Cox et al. (1985), known as the

CIR model, is an equilibrium asset pricing model for the term structure of interest rates

and has been a benchmark for many years because of its analytical tractability. The

4



interest rate behavior implied by this model has empirically relevant properties, namely,

does not allow negative interest rates; if the interest rate reaches zero, it can subse-

quently become positive; the absolute variance of the interest rate increases when

the interest rate itself increases; and there is a steady distribution for the interest rate.

Moreover, this model produces relatively simple closed-form solutions for valuing zero-

coupon bonds, coupon-bearing bonds, and various interest rate derivative securities.

This thesis is essentially divided in three parts. The first part is dedicated to the CEV

model, while the second part is dedicated to the CIR model, both applied to financial

options. Finally, the third part is dedicated to an application of the CEV and mean-

reverting CEV models to real options.

The first part comprises two papers:

1. Absolute Diffusion Process: Sensitive Measures

2. On the Computation of Options Prices and Greeks under the CEV Model.

In the first of these papers, we analyze a particular case of the general CEV model,

namely, the absolute diffusion model, for which the European-style call and put option

pricing formulas are expressed in terms of the cumulative univariate standard normal

distribution. In this paper, we present the analytical expressions of sensitivity mea-

sures, commonly referred in the financial literature as “Greeks”. These measures are

considered vital tools for risk management and they all represent sensitivity measures

of the option to a small change of a given parameter. The most common Greeks are

the first order derivatives, namely delta, theta, vega, and rho, as well as gamma, a

second order derivative of the value function.

The second paper analyzes the general CEV model whose option pricing formulae

typically involve the so-called complementary non-central chi-square distribution func-
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tion. This paper essentially offers two contributions for the existent option pricing liter-

ature. First, it provides comparative results in terms of accuracy and computation time

for existing alternative algorithms for computing the non-central chi-square distribution

function to be used for option pricing and hedging under the CEV model for a large

set of parameter values. Since option valuation under the CEV model is computation-

ally expensive, we think that it is important to know which algorithm offers the best

speed-accuracy tradeoff for pricing options under the CEV model. We believe that the

computational results obtained in this article are an important contribution not only for

pricing and hedging European-style options under the CEV model, but also for a wide

spectrum of options contracts, as for example the valuation of plain-vanilla American-

style options or European and American-style (double) barrier options using the CEV

diffusion. The second contribution of this paper is the derivation of closed-form solu-

tions for computing Greeks of European-style options under the CEV model. These

closed-form solutions are important for practitioners since they are generally prefer-

able to finite difference schemes because of their computational speed advantage.

The knowledge of closed-form solutions for deltas was fundamental to implement the

static hedge approach proposed by Chung and Shih (2009) to price American-style op-

tions under the CEV model for other values of the elasticity parameter besides the 4/3

benchmark used by the authors, as can be viewed in the paper of Ruas et al. (2013).

The second part of this thesis is dedicated to the CIR model and comprises two articles:

1. Valuation of Bond Options under the CIR Model: Some Computational Remarks

2. Bond Options, Sensitivity Measures, and Sinking-Fund Bonds under CIR Frame-

work.

In the first paper, we compare the performance in terms of accuracy and computa-

tional time of alternative methods for computing the noncentral chi-square distribution

6



used for pricing bond options under the CIR model against an externally tested bench-

mark. We have examined the methods proposed by Schroder (1989), Ding (1992), and

Benton and Krishnamoorthy (2003) against a method based on series of incomplete

gamma functions.

In the second article, we offer two contributions to the existent literature on CIR diffu-

sions. First, we obtain closed-form solutions to efficiently and accurately calculate the

sensitivity measures of both zero-coupon and coupon-bearing bonds options under the

CIR model. These analytical solutions are relevant for practitioners of the derivatives

industry since they reduce substantially the computational burden when dealing with

large portfolios of bonds that have to be re-evaluated frequently. The second contri-

bution is the extension of the results of Bacinello et al. (1996) by providing analytical

tractable formulae required for valuing and analyzing comparative statics of sinking-

fund bonds in the CIR diffusion. Based on our analytic solutions, we prove a result that

compares the stochastic duration of the sinking-fund bond to those of corresponding

serial and coupon bonds.

Finally, the third part, as we have referred, is dedicated to the real options literature

and also comprises two articles:

1. A Note on (Dis)Investment Options and Perpetuities under CIR Interest Rates

2. Entry and Exit Decisions under Uncertainty for a Generalized Class of One-

Dimensional Diffusions.

In the first article, we analyze alternative ways of computing the options to invest in

and divest from an investment project in a CIR economy. In particular, we consider the

situation of a firm that can invest I at any time and receive a perpetuity (project) with

constant cash flow, but the perpetuity value is stochastic, since the interest rate used to

7



discount the perpetual flows is assumed to follow a CIR model. We examine different

methods of determining CIR perpetuities, namely, two methods proposed by Delbaen

(1993), and one proposed by Geman and Yor (1993).

In the second article, we consider the problem of a firm’s entry and exit decisions orig-

inally addressed by Dixit (1989a) and Tsekrekos (2010), and analyze how output price

uncertainty and costly reversibility affects the optimal entry and exit policy of a compet-

itive price-taking firm. We extend these previous studies in two ways. First, we assume

that the underlying output price dynamics follows a generalized one-dimensional diffu-

sion, namely the CEV process and the mean-reverting CEV process, which takes the

modeling assumptions of Dixit (1989a) and Tsekrekos (2010) as two special cases.

Second, we analyze the impact of costly reversibility on the dynamic entry and exit

problem, this is, we examine how the choice of the stochastic process for the out-

put price affects the hysteretic band. We believe that our results should be important

for academics and practitioners, since our modeling framework admits the analysis of

the general properties of entry and exit decisions under alternative underlying driving

stochastic factor dynamics and characterizes the circumstances under which the ob-

tained results are significantly different or remain qualitatively valid, depending on the

assumption made for the underlying output price dynamics.

This thesis proceeds as follows. Chapter 2 presents the first paper. Chapter 3 presents

the second paper. Chapter 4 presents the third paper. Chapter 5 presents the fourth

paper. Chapter 6 presents the fifth paper. Chapter 7 presents the sixth paper. Finally,

Chapter 8 concludes.
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Chapter 2

Absolute Diffusion Process: Sensitivity

Measures*

Abstract: The constant elasticity of variance (CEV) model of Cox (1975) captures the

implied volatility smile that is similar to the volatility curves observed in practice. This

diffusion process has been used for pricing several financial options contracts.

In this paper we present the analytical expressions of sensitivity measures for the ab-

solute diffusion process, commonly known as Greeks, and we analyze numerically the

behavior of the measures for European options under the CEV model.

JEL Classification: G13.

Keywords: Sensitivity Measures; Greeks; CEV model; Absolute Diffusion.

*This paper is a joint work with José Carlos Dias and Carlos A. Braumann and is published in Advances in
Regression, Survival Analysis, Extreme Values, Markov Processes and Other Statistical Applications. Studies in
Theoretical and Applied Statistics, Springer, 2013, 249 - 257. ISBN 978-3-642-34903-4
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1 Introduction

Under the risk-neutral probability measure Q, the constant elasticity of variance (CEV)

process of Cox (1975) assumes that the asset price {St ; t ≥ 0} is described by the

following stochastic differential equation

dSt = (r−q)St dt +δ Sβ/2
t dWQ

t , (2.1)

where WQ
t is a Wiener process under Q, r ≥ 0 represents the instantaneous riskless

interest rate, which is assumed to be constant, q≥ 0 denotes the dividend yield for the

underlying asset price, with a local volatility function given by

σ(St) = δ Sβ/2−1
t , (2.2)

where β is a real number, and δ is a positive constant.

The elasticity of return variance with respect to price is equal to β − 2 given that

dv(St)/v(St) = (β −2)dSt/St where v(St) = δ 2 Sβ −2
t is the instantaneous variance of as-

set returns. Since volatility is proportional to a power of the underlying asset price, the

elasticity of variance is independent of the asset price. The model parameter δ can be

interpreted as the scale parameter fixing the initial instantaneous volatility at time t = t0,

σ0 = σ(St0) = δ Sβ/2−1
t0 .

The CEV specification given by equation (2.1) nests the log-normal assumption of Black

and Scholes (1973) and Merton (1973) (β = 2), as well as the square-root diffusion

(β = 1) and the absolute diffusion (β = 0) models of Cox and Ross (1976), as special

cases. For β < 2 (β > 2) the local volatility given by equation (2.2) is a decreasing

10



(increasing) function of the asset price. If β = 2, the stock price has no influence on the

volatility, since the volatility will be a constant over time, σ(St) = δ , regardless of the

underlying asset price.

2 European Options under the CEV Diffusion

The CEV call option pricing formula for valuing European options has been initially ex-

pressed in terms of the standard complementary gamma distribution by Cox (1975) for

β < 2, and by Emanuel and MacBeth (1982) for β > 2. Schroder (1989) has subse-

quently extended the CEV model by expressing the corresponding formulae in terms

of the non-central chi-square distribution as

ct :=


St e−qτ Q(2y;2+ 2

2−β
,2x)−X e−rτ [1− Q(2x; 2

2−β
,2y)] if β < 2

St e−qτ Q(2x; 2
β−2 ,2y)−X e−rτ [1− Q(2y;2+ 2

β−2 ,2x))] if β > 2

, (2.3)

with X being the strike price of option, Q(w;v,λ ) being the complementary distribution

function of a non-central chi-square law with v degrees of freedom and noncentrality

parameter λ , and where

k =
2(r−q)

δ 2(2−β )[e(r−q)(2−β )τ −1]
, (2.4)

x = kS2−β

t e(r−q)(2−β )τ , (2.5)

y = kX2−β , (2.6)

δ = σ0S1−β/2
0 , (2.7)

τ = T − t. (2.8)
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By put-call parity, the CEV put option pricing formulae are

pt :=


X e−rτ Q(2x; 2

2−β
,2y)−St e−qτ [1− Q(2y;2+ 2

2−β
,2x)] if β < 2

X e−rτ Q(2y;2+ 2
β−2 ,2x)−St e−qτ [1− Q(2x; 2

β−2 ,2y))] if β > 2

. (2.9)

In general terms, the underlying asset of the CEV diffusion can be thought of as a

stock, a stock index, an exchange rate, or a financial futures contracts, so long as the

parameter q is understood as, respectively, a dividend yield, an average dividend yield,

the foreign default-free interest rate, or the domestic risk-free interest rate.

There are several alternative methods for computing the cumulative distribution func-

tion of the non-central chi-square in the literature (see, for instance, Schroder (1989);

Ding (1992); Benton and Krishnamoorthy (2003)).

In this work, we use a method based on series of incomplete gamma functions to

compute the complementary non-central chi-square distribution function given by

Q(w;v,λ ) =
∞

∑
i=0

(λ/2)ie−λ/2

i!
Γ(v/2+ i,w/2)

Γ(v/2+ i)
, (2.10)

with Γ(m,n) and Γ(m) being, respectively, the complementary incomplete gamma func-

tion and the Euler gamma function as defined by Abramowitz and Stegun (1972, Equa-

tions 6.5.3 and 6.1.1).

The next figures show the behavior of European call and put options prices. We con-

sider the following parameters for our analysis: the initial asset price is S0 = 100, the

strike price is X = 100, the instantaneous volatility at this price level is 25% per annum

(σ0 = 0.25), the risk-free interest rate is 10% per annum (r = 0.1), the asset pays no

12



dividends (q = 0), and all options have six months to expiration (τ = 0.5). We employ

seven different values to β (−6,−4,−2,0,1,2,4) to show its effects on options prices.

The constant volatility case (β = 2) corresponds to the Black and Scholes model. Let

σ0 be the instantaneous volatility for Black and Scholes model, then the value of δ to

be used for models with different β values is adjusted to be δ = σ0 S1−β/2
0 .
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Figure 2.1: European call and put option prices under CEV processes and Black-Scholes model as
functions of underlying asset price St . Parameters: S0 = 100, X = 100,σ0 = 0.25,τ = 0.5, r = 0.1, and
q = 0.

3 Sensitivity Measures for the Absolute Diffusion

The absolute diffusion process proposed by Cox and Ross (1976) is a particular case

of the CEV diffusion process in equation (2.1) with β = 0.

Proposition 2.1 Under the CEV diffusion (2.1) with β = 0, i.e., with a local volatility

function given by σ(St) = δ S−1
t , the European call and put option prices are equal to:2.1

ct = (Ste−qτ −Xe−rτ)N(y1)+(Ste−qτ +Xe−rτ)N(y2)+u [n(y1)−n(y2)], (2.11)

pt = (Xe−rτ −Ste−qτ)N(−y1)+(Ste−qτ +Xe−rτ)N(y2)+u [n(y1)−n(y2)], (2.12)

2.1Equation (2.11) of Proposition 1 is standard in the literature and can be found, for example, in Cox and Ross
(1976). Equation (2.12) is then easily obtained through the put-call parity relation.
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where N(x) is the cumulative univariate standard normal distribution function, n(x) is

the standard normal density function, and

u = δ

(
e−2qτ − e−2rτ

2(r−q)

)1/2

, (2.13)

y1 =
Ste−qτ −Xe−rτ

u
, (2.14)

y2 =
−Ste−qτ −Xe−rτ

u
. (2.15)

The sensitivity measures, commonly referred in financial literature as “Greek letters”

or simply “Greeks”, are vital tools for risk management and they all represent sensi-

tivity measures of the option price to a small change of a given parameter. The most

common Greeks are the first order derivatives: delta, theta, vega and rho as well as

gamma, a second-order derivative of the value function.

In the following we give the analytical expressions for the greek letters under the abso-

lute diffusion process.2.2

Delta

The delta, ∆, of an option is defined as the rate of change of the option price, V , with

respect to the price of the underlying asset, St , that is, ∆ = ∂V/∂St . It is the slope of

the curve that relates the option price to the underlying asset price. The delta plays a

crucial role for hedging portfolios. For European call and put options under the absolute

diffusion process on an asset paying a dividend yield q we have

2.2Due to constraints of space, we have not included proofs of the analytical expressions of sensitivity measures
but they are available upon request.

14



∆call = e−qτ

(
N(y1)+N(y2)

)
, (2.16)

∆put = e−qτ

(
−N(−y1)+N(y2)

)
, (2.17)

where y1 and y2 are defined as in equations (2.14) and (2.15).
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Figure 2.2: Variation of delta, ∆, with respect to the underlying asset price St . Parameters: S0 = 100,
X = 100,σ0 = 0.25,τ = 0.5, r = 0.1, and q = 0.

Theta

The theta, Θ, of an option is the rate of change of the option price, V , with respect to

the passage of time, t, with all else remaining the same, that is, Θ = ∂V/∂ t. Theta is

sometimes referred to a time decay effect of the option. The theta of European call and

put options under the absolute diffusion process, are found, respectively, to be

Θcall = Stqe−qτ

(
N(y1)+N(y2)

)
−Xre−rτ

(
N(y1)−N(y2)

)
+A, (2.18)

Θput = −Stqe−qτ

(
N(−y1)−N(y2)

)
+Xre−rτ

(
N(−y1)+N(y2)

)
+A, (2.19)
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where

A = u
(

n(y1)−n(y2)
)qe−2qτ − re−2rτ

e−2qτ − e−2rτ
, (2.20)

with u, y1 and y2 being defined as in equations (2.13), (2.14) and (2.15).
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Figure 2.3: Variation of theta, Θ, with respect to the underlying asset price St . Parameters: S0 = 100,
X = 100,σ0 = 0.25,τ = 0.5, r = 0.1, and q = 0.

Vega

The vega, V , of an option is defined to be the rate of change of the value of option, V ,

with respect to asset price volatility, σ , that is, V = ∂V/∂σ . For European call and put

options under the absolute diffusion process, their vegas are found to be

Vcall = Vput =
u
σ

(
n(y1)−n(y2)

)
, (2.21)

where u, y1 and y2 are defined as in equations (2.13), (2.14) and (2.15).

Rho

The rho, ρ, of an option is defined to be the rate of change of the value of an option,

V , with respect to the interest rate, r, that is, ρ = ∂V/∂ r. The rhos of the European call
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Figure 2.4: Variation of vega, V , with respect to the underlying asset price St . Parameters: S0 = 100,
X = 100,σ0 = 0.25,τ = 0.5, r = 0.1, and q = 0.

and put options prices under absolute diffusion process are found to be

ρcall = Xτe−rτ

(
N(y1)−N(y2)

)
+B, (2.22)

ρput = −Xτe−rτ

(
N(−y1)+N(y2)

)
+B, (2.23)

where

B = u
(

n(y1)−n(y2)
)(

τe−2rτ

e−2qτ − e−2rτ
− 1

2(r−q)

)
, (2.24)

with u, y1 and y2 being defined as in equations (2.13), (2.14) and (2.15).

Gamma

The gamma, Γ, of an option is defined as the rate of change of delta, ∆, with respect to

the asset price, St , that is, Γ = ∂ 2V/∂S2
t = ∂∆/∂St . For European call and put options

under the absolute diffusion process, their gammas are found to be
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Figure 2.5: Variation of rho, ρ , with respect to the underlying asset price St . Parameters: S0 = 100,
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Γcall = Γput =
e−2qτ

u

(
n(y1)−n(y2)

)
, (2.25)

where u, y1 and y2 are defined as in equations (2.13), (2.14) and (2.15).
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Figure 2.6: Variation of gamma, Γ, with respect to underlying asset price St . Parameters: S0 = 100,
X = 100,σ0 = 0.25,τ = 0.5, r = 0.1, and q = 0.

The following tables report values of call and put European options under the absolute

diffusion process and the Black and Scholes model, as well as their corresponding

greeks. Overall, our results show that the misspecification of β may result in significant

errors. Thus, similarly to other numerical analysis available in the literature (e.g., Dias

and Nunes (2011)) we conclude that care must be taken when choosing the appropri-

ate diffusion process for pricing and hedging options.
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Table 2.1: Values for call options and greeks under absolute and GBM diffusion processes

X Call price Delta Theta Vega Rho Gamma
β = 0 12.7426 0.7118 -12.0286 23.5433 30.7141 0.0198

95 β = 2 12.5880 0.7458 -11.8663 22.6677 30.9969 0.0181
% Diff 1.23 4.56 1.37 3.86 0.91 9.14
β = 0 9.5915 0.6113 -12.1002 26.4399 27.4513 0.0222

100 β = 2 9.5822 0.6448 -12.0722 26.3311 27.4472 0.0211
% Diff 0.10 5.18 0.23 0.41 0.01 5.52
β = 0 6.9403 0.5028 -11.5632 27.5180 23.4182 0.0231

105 β = 2 7.0996 0.5379 -11.6899 28.0819 23.3470 0.0225
% Diff 2.24 6.53 1.08 2.01 0.31 2.97

Parameters used in calculations: S0 = 100,σ0 = 0.25,τ = 0.5, r = 0.1, and q = 0

Table 2.2: Values for put options and greeks under absolute and GBM diffusion processes

X Put price Delta Theta Vega Rho Gamma
β = 0 3.1094 -0.2882 -2.9920 23.5433 -14.4693 0.0198

95 β = 2 2.9548 -0.2542 -2.8296 22.6677 -14.1865 0.0181
% Diff 5.23 13.39 5.74 3.86 1.99 9.14
β = 0 4.7145 -0.3887 -2.5879 26.4399 -20.1102 0.0222

100 β = 2 4.7052 -0.3552 -2.5599 26.3311 -20.1142 0.0211
% Diff 0.20 9.41 1.09 0.41 0.02 5.52
β = 0 6.8194 -0.4972 -1.5752 27.5180 -26.5213 0.0231

105 β = 2 6.9786 -0.4621 -1.7019 28.0819 -26.5926 0.0225
% Diff 2.28 7.60 7.44 2.01 0.27 2.97

Parameters used in calculations: S0 = 100,σ0 = 0.25,τ = 0.5, r = 0.1, and q = 0.

4 Conclusion

The results of this paper clearly highlight the importance of the model choice for option

pricing and hedging purposes. In fact, we have obtained quite different results when

using the Black and Scholes model, the absolute diffusion model, or some other more

generalized CEV model that is able to capture both direct (β < 2) and inverse (β > 2)

leverage effects frequently observed in options markets.
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Chapter 3

On the Computation of Option Prices and

Greeks under the CEV Model*

Abstract: Pricing options and evaluating Greeks under the constant elasticity of vari-

ance (CEV) model requires the computation of the non-central chi-square distribution

function. In this article, we compare the performance, in terms of accuracy and compu-

tational time, of alternative methods for computing such probability distributions against

an externally tested benchmark. In addition, we present closed-form solutions for com-

puting Greek measures under the unrestricted CEV option pricing model, thus being

able to accommodate direct leverage effects as well as inverse leverage effects that

are frequently observed in the options markets.
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1 Introduction

Every option pricing model has to make a key assumption regarding the “right” distri-

bution to be used when discounting the option’s expected payoff. This expectation is

typically computed by integrating the payoff function over a risk-neutral density function.

Under the log-normal models of Black and Scholes (1973) and Merton (1973) (BSM

model) it is assumed that the underlying asset price follows a geometric Brownian mo-

tion. Yet, this prediction has been convincingly rejected in the finance literature. For

instance, it is well documented—see, for example, Jackwerth and Rubinstein (1996)—

that the log-normal assumption is unable to accommodate the negative skewness and

the high kurtosis that are usually implicit in empirical asset return distributions.

The constant elasticity of variance (CEV) model of Cox (1975) is consistent with two

well known facts that have found empirical support in the literature: the existence of a

negative correlation between stock returns and realized volatility (leverage effect), as

observed, for instance, in Bekaert and Wu (2000); and the inverse relation between the

implied volatility and the strike price of an option contract (implied volatility skew)—see,

for example, Dennis and Mayhew (2002). More importantly, being a “local volatility”

model, the CEV diffusion is consistent with a “complete market” setup and, therefore,

allows the hedging of short option positions only through the underlying asset.

Computing option prices under the CEV model typically involves the use of the so-

called complementary non-central chi-square distribution function. There exists an

extensive literature devoted to the efficient computation of this distribution function,

with several alternative representations available (see, for instance, Farebrother (1987),

Posten (1989), Schroder (1989), Ding (1992), Knüsel and Bablok (1996), Benton and

Krishnamoorthy (2003), and Dyrting (2004)). The complementary non-central chi-
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square distribution function can also be computed using a method based on series

of incomplete gamma functions. For certain ranges of parameter values, some of the

alternative representations available are more computationally efficient than the series

of incomplete gamma functions. Moreover, for some parameter configurations the use

of analytic approximations (e.g. Sankaran (1963), Fraser et al. (1998), and Penev and

Raykov (2000)) may be preferable.

The main purpose of this article is to provide comparative results in terms of accuracy

and computation time of existing alternative algorithms for computing the non-central

chi-square distribution function to be used for option pricing and hedging under the

CEV model for a large set of parameter values. A similar study has been conducted

by Ağca and Chance (2003) to price compound options and min-max options whose

computation requires approximations of the bivariate normal probability.

All tested methods are generally accurate over a wide range of parameters that are

frequently needed for pricing options, though they all present relevant differences in

terms of running times. As expected, the analytic approximations run quickly but have

an accuracy that varies significantly over the considered parameter space. Option

pricing under the CEV assumption is computationally expensive especially when the

elasticity parameter β of the local volatility function is close to two, volatility is low, or

the time to maturity is small in the CEV formulae. Overall, we conclude that the iterative

procedure of Benton and Krishnamoorthy (2003) clearly offers the best speed-accuracy

tradeoff for pricing options under the CEV model.

Even though our numerical analysis focus on CEV European-style options, our findings

are important also for valuing others European options contracts using the non-central

chi-square distribution, including options on bonds (e.g. Cox et al. (1985)), volatility

options (e.g. Grünbichler and Longstaff (1996)), and warrants (e.g. Bajo and Barbi

(2010)).
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Furthermore, our results are also of interest for some options contracts with early ex-

ercise features and/or exotic payoffs. For instance, the valuation of plain-vanilla Amer-

ican options under the optimal stopping approach as proposed by Nunes (2009) re-

quires an explicit solution of its European counterpart option contract and knowledge

of the transition density function of the underlying price process. Thus, an efficient

method in terms of accuracy and computation time for pricing European-style options

should be similarly efficient for valuing plain-vanilla American options within this frame-

work and under the CEV diffusion. The same line of reasoning applies when valuing

both European- and American-style (double) barrier options using the CEV assumption

within the general multi-factor pricing model offered by Nunes and Dias (2012).

In other strand of the literature, Chung and Shih (2009) use the static hedge portfolio

(SHP) approach to price and hedge standard American options under both the BSM

and CEV models. The main idea of this approach is to create a static portfolio of stan-

dard European options whose values match the payoff of the option been hedged at

expiration and along the boundary. The static hedge portfolio of an American option is

formulated by applying the value-matching and smooth-pasting conditions on the early

exercise boundary. Under the CEV diffusion, the numerical efficiency of the resulting

valuation formulae of the n-point static hedge portfolio on the early exercise boundary

requires also the use of an efficient algorithm for computing non-central chi-square

distribution functions.

In summary, the results of this paper are important not only for pricing and hedging

European-style options under the CEV model, but also for a wide spectrum of options

contracts with early exercise features and exotic payoffs.

The theoretical contribution of this paper is the derivation of closed-form solutions for

computing Greeks of European-style options under the CEV model that to our knowl-

edge are not known in the finance literature. These new formulae are important for
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practitioners since closed-form solutions, when available, are generally preferable to

finite difference schemes because of their computational speed advantage. Further-

more, the use of these solutions becomes a viable alternative for many practical appli-

cations arising within the context of the financial engineering industry. In addition, as

we will discuss later, the existence of closed-form solutions for deltas is also relevant

for pricing standard American options under the CEV model using the SHP approach

proposed by Chung and Shih (2009).

The structure of the paper is organized as follows. Section 2 outlines the non-central

chi-square distribution and presents different methods for computing it. Section 3

briefly reviews the CEV option pricing formulae expressed in terms of the non-central

chi-square distribution for valuing European-style options. Section 4 compares the al-

ternative methods in terms of speed and accuracy. Section 5 gives some concluding

remarks. Proofs are presented in the Appendix.

2 Alternative Methods for Computing the Non-central Chi-

Square Distribution

2.1 The Non-central Chi-Square Distribution

If Z1,Z2, ...,Zv are independent unit normal random variables, and δ1,δ2, ...,δv are con-

stants, then

Y =
v

∑
j=1

(Z j +δ j)
2 (3.1)

possesses a non-central chi-square distribution with v degrees of freedom and non-
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centrality parameter λ = ∑
v
j=1 δ 2

j , which is denoted as χ2
v (λ ). When δ j = 0 for all j, then

Y is distributed as the central chi-square distribution with v degrees of freedom, and is

denoted as χ2
v .

Hereafter, pχ2
v (λ )

(w) = p(w;v,λ ) is the probability density function of a non-central chi-

square distribution χ2
v (λ ), and pχ2

v
(w) = p(w;v,0) is the probability density function of a

central chi-square distribution χ2
v . Likewise, P[χ2

v (λ )≤ w] = F(w;v,λ ) is the cumulative

distribution function of χ2
v (λ ), and P[χ2

v ≤ w] = F(w;v,0) is the cumulative distribution

function of χ2
v . The complementary distribution functions of χ2

v (λ ) and χ2
v are denoted

as Q(w;v,λ ) and Q(w;v,0), respectively.

The cumulative distribution function of χ2
v (λ ) is given by (see, for instance, Johnson et

al. (1995, equation 29.2)):

P[χ2
v (λ )≤ w] = F(w;v,λ ) (3.2)

= e−λ/2
∞

∑
j=0

(λ/2) j

j!2v/2+ j Γ(v/2+ j)

∫ w

0
yv/2+ j−1 e−y/2 dy, w > 0,

with Γ(m) being the Euler gamma function as defined by Abramowitz and Stegun (1972,

equation 6.1.1), while F(w;v,λ ) = 0 for w < 0. Alternatively, it is possible to express

F(w;v,λ ), for w > 0, as a weighted sum of central chi-square probabilities with weights

equal to the probabilities of a Poisson distribution with expected value λ/2. This is (see,

for instance, Johnson et al. (1995, equation 29.3), or Abramowitz and Stegun (1972,

equation 26.4.25)),
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F(w;v,λ ) =
∞

∑
j=0

(
(λ/2) j

j!
e−λ/2

)
P[χ2

v+2 j ≤ w]

=
∞

∑
j=0

(
(λ/2) j

j!
e−λ/2

)
F(w;v+2 j,0), (3.3)

where the central chi-square probability function F(w;v+2 j,0) is given by Abramowitz

and Stegun (1972, equation 26.4.1).

The complementary distribution function of χ2
v (λ ) is

Q(w;v,λ ) = 1−F(w;v,λ )

=
∞

∑
j=0

(
(λ/2) j

j!
e−λ/2

)
Q(w;v+2 j,0), (3.4)

where the complementary central chi-square probability function Q(w;v+2 j,0) is given

by Abramowitz and Stegun (1972, equation 26.4.2).

The probability density function of χ2
v (λ ) can, similarly, be expressed as a mixture of

central chi-square probability density functions (see, for instance, Johnson et al. (1995,

equation 29.4)):
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pχ2
v (λ )

(w) = p(w;v,λ )

=
∞

∑
j=0

(
(λ/2) j

j!
e−λ/2

)
p(w;v+2 j,0)

=
e−(λ+w)/2

2v/2

∞

∑
j=0

(
λ

4

) j wv/2+ j−1

j!Γ(v/2+ j)

=
1
2

e−(λ+w)/2
(

w
λ

)(v−2)/4

I(v−2)/2(
√

λw), w > 0, (3.5)

where Iq(·) is the modified Bessel function of the first kind of order q, as defined by

Abramowitz and Stegun (1972, equation 9.6.10):

Iq(z) =
(

z
2

)q ∞

∑
j=0

(z2/4) j

j!Γ(q+ j+1)
. (3.6)

Using equation (3.5) we may also express the functions F(w;v,λ ) and Q(w;v,λ ) as

integral representations:

F(w;v,λ ) =
∫ w

0

1
2

e−(λ+u)/2
(

u
λ

)(v−2)/4

I(v−2)/2(
√

λu)du, (3.7)

Q(w;v,λ ) =
∫

∞

w

1
2

e−(λ+u)/2
(

u
λ

)(v−2)/4

I(v−2)/2(
√

λu)du. (3.8)

2.2 The Gamma Series Method

It is well-known that the functions F(w;v+2n,0) and Q(w;v+2n,0) are related to the so-

called incomplete gamma functions (see, for instance, Abramowitz and Stegun (1972,
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equation 26.4.19)). Hence, we may express non-central chi-square distribution func-

tions (3.3) and (3.4) using series of incomplete gamma functions as follows:

F(w;v,λ ) =
∞

∑
i=0

(λ/2)i e−λ/2

i!
γ(v/2+ i,w/2)

Γ(v/2+ i)
, (3.9)

Q(w;v,λ ) =
∞

∑
i=0

(λ/2)i e−λ/2

i!
Γ(v/2+ i,w/2)

Γ(v/2+ i)
, (3.10)

with γ(m, t) and Γ(m, t) being, respectively, the incomplete gamma function and the

complementary incomplete gamma function as defined by Abramowitz and Stegun

(1972, equations 6.5.2 and 6.5.3).

The gamma series method has been applied by Fraser et al. (1998) as a benchmark

for computing exact probabilities to be compared with several alternative methods for

approximating the non-central chi-square distribution function, and by Dyrting (2004)

for computing the non-central chi-square distribution function to be used under Cox et

al. (1985) diffusion processes. Carr and Linetsky (2006) also use the gamma series

approach but for computing option prices under a jump-to-default CEV framework.

While this method is accurate over a wide range of parameters, the number of terms

that must be summed increases with the non-centrality parameter λ . To avoid the

infinite sum of the series we use the stopping rule proposed by Knüsel and Bablok

(1996), which allows the specification of a given error tolerance by the user.

There have been several alternative proposals for evaluating expressions (3.9) and

(3.10)—see, for instance, Farebrother (1987), Posten (1989), Schroder (1989), Ding

(1992), Knüsel and Bablok (1996), Benton and Krishnamoorthy (2003), and Dyrting

(2004)—all of which involve a partial summation of the series. For certain ranges of

parameter values, some of the alternative representations available are more computa-
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tionally efficient than the series of incomplete gamma functions. Hence, it is important

to evaluate the speed and accuracy of each method for computing the non-central

chi-square distribution as well as for option pricing and hedging purposes.

For the numerical analysis of this article we will concentrate the discussion on Schroder

(1989) and Ding (1992) methods since both are commonly used in the finance liter-

ature. The algorithm provided by Schroder (1989) has been subsequently used by

Davydov and Linetsky (2001). The popular book on derivatives of Hull (2008) suggests

the use of the Ding (1992) procedure. We will also use the suggested approach of Ben-

ton and Krishnamoorthy (2003), since it is argued by the authors that their algorithm is

more computationally efficient than the one suggested by Ding (1992).

2.3 Analytic Approximations

The cumulative distribution function of the non-central chi-square distribution with de-

grees of freedom v > 0 and a non-centrality parameter λ ≥ 0 is usually expressed as

an infinite weighted sum of central chi-square cumulative distribution functions. For nu-

merical evaluation purposes this infinite sum is being approximated by a finite sum. For

large values of the non-centrality parameter, the sum converges slowly. To overcome

this issue, a number of approximations have been proposed in the literature. A com-

parison of early approximation methods is given in Johnson et al. (1995, chapter 29).

In this article, we will consider the approximation method of Sankaran (1963) which is

well-known in the finance literature due to Schroder (1989) who recommends its use for

large values of w and λ . In addition, two more recent approximations, namely Fraser et

al. (1998) and Penev and Raykov (2000), will be considered also since both of them are

commonly referenced by the statistic literature as accurate methods for approximating

the non-central chi-square distribution.
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3 The CEV Option Pricing Model

Under the risk-neutral probability measure Q, the CEV process of Cox (1975) assumes

that the asset price {St , t ≥ 0} is described by the following stochastic differential equa-

tion:

dSt = (r−q)St dt +σ(St)St dWQ
t , (3.11)

with a local volatility function given by

σ(St) = δ S
β

2−1
t , (3.12)

for δ ∈ R+, β ∈ R, and where r ≥ 0 denotes the instantaneous riskless interest rate,

which is assumed to be constant, q≥ 0 represents the dividend yield for the underlying

asset price, σ(St) corresponds to the instantaneous volatility per unit of time of asset

returns, and WQ
t ∈ R is a standard Brownian motion under Q, initialized at zero and

generating the augmented, right continuous and complete filtration F= {Ft : t ≥ t0}.

The CEV specification given by equation (3.11) nests the lognormal assumption of

Black and Scholes (1973) and Merton (1973) (β = 2), as well as the absolute diffusion

(β = 0) and the square-root diffusion (β = 1) models of Cox and Ross (1976), as special

cases. For β < 2 (β > 2) the local volatility given by equation (3.12) is a decreasing

(increasing) function of the asset price. If β = 2, the stock price has no influence on the

volatility, since the volatility will be a constant over time, σ(St) = δ , regardless of the

underlying asset price.

The elasticity of return variance with respect to price is equal to β − 2 given that
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dv(St)/v(St) = (β −2)dSt/St , where v(St) = δ 2 Sβ−2
t is the instantaneous variance of as-

set returns. Since volatility is proportional to a power of the underlying asset price, the

elasticity of the variance is independent of the asset price. If β = 2, the elasticity is zero

thus implying that asset prices are lognormally distributed and the variance of returns

is constant, as is assumed in the BSM framework. The model parameter δ is a positive

constant that can be interpreted as the scale parameter fixing the initial instantaneous

volatility at time t = 0, σ0 = σ(S0) = δ Sβ/2−1
0 .

While Cox (1975) has restricted the β parameter to the range 0 ≤ β ≤ 2, Jackwerth

and Rubinstein (2001) document that typical values of β implicit in the S&P 500 stock

index option prices are as low as β = −6 in the post-crash of 1987. Elasticity values

of β < 2 (i.e., with a direct leverage effect) are expected for stock index options and

crude oil prices, whereas values of β > 2 (i.e., with an inverse leverage effect) are

characteristic of some commodity spot prices and futures options with upward sloping

implied volatility smiles (see, for instance, Davydov and Linetsky (2001), Geman and

Shih (2009), and Dias and Nunes (2011)).

The CEV call option pricing formula for valuing European options has been initially

expressed in terms of the standard complementary gamma distribution function by Cox

(1975) for β < 2, and by Emanuel and MacBeth (1982) for β > 2. Schroder (1989) has

subsequently extended the CEV model by expressing the time-t value of a European-

style call option on the asset price S at time t, with strike X , and maturity at time T (≥ t)

in terms of the non-central chi-square distribution as

ct(St ,X ,T ) =


St e−qτ Q

(
2y;2+ 2

2−β
,2x
)
−X e−rτ

[
1−Q

(
2x; 2

2−β
,2y
)]
⇐ β < 2

St e−qτ Q
(

2x; 2
β−2 ,2y

)
−X e−rτ

[
1−Q

(
2y;2+ 2

β−2 ,2x
)]
⇐ β > 2

, (3.13)
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with Q(w;v,λ ) being the complementary distribution function of a non-central chi-square

law with v degrees of freedom and non-centrality parameter λ , and where

k =
2(r−q)

δ 2(2−β )[e(r−q)(2−β )τ −1]
, (3.14a)

x = k S2−β

t e(r−q)(2−β )τ , (3.14b)

y = kX2−β , (3.14c)

δ
2 = σ

2
0 S2−β

0 , (3.14d)

τ = T − t. (3.14e)

Even though we will concentrate our analysis on call options, the corresponding CEV

put option formulae arise immediately if one applies the put-call parity, whose analytical

solutions will be also used for deriving the Greeks of put options. Thus, the time-t value

of a European-style put is given by

pt(St ,X ,T ) =


X e−rτ Q

(
2x; 2

2−β
,2y
)
−St e−qτ

[
1−Q

(
2y;2+ 2

2−β
,2x
)]
⇐ β < 2

X e−rτ Q
(

2y;2+ 2
β−2 ,2x

)
−St e−qτ

[
1−Q

(
2x; 2

β−2 ,2y
)]
⇐ β > 2

.

(3.15)

4 Computational Results

This section aims to present computational comparisons of the alternative methods of

computing the non-central chi-square distribution function for pricing and hedging Eu-
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ropean options under the CEV diffusion. Hence, to better assess the speed-accuracy

tradeoff between these competing methods we follow the guidelines of Broadie and

Detemple (1996) by conducting a careful large sample evaluation of 2,500 randomly

generated European-style call option prices under the CEV model, and therefore 5,000

randomly generated complementary non-central chi-square distribution functions. The

probability distribution of option parameters and the benchmark selection are described

next.

We fix the initial asset price at St0 = 100 and take the strike price X to be uniform

between 70 and 130. The β parameter is distributed uniformly between −6 and 5. The

volatility σ is distributed uniformly between 0.10 and 0.60, and the scale parameter δ

is then computed. Time to maturity is, with probability 0.75, uniform between 0.1 and

1.0 years and, with probability 0.25, uniform between 1.0 and 5.0 years. The dividend

yield q is uniform between 0.0 and 0.1. The riskless rate r is uniform between 0.0 and

0.1.

To compare methods, in terms of speed and accuracy, for computing non-central chi-

square probabilities for pricing and hedging under the CEV model we need to choose

a benchmark. An obvious candidate for a benchmark is to use the non-central chi-

square distribution F(w;v,λ ) and its complementary function Q(w;v,λ ) expressed as

gamma series as given by equations (3.9) and (3.10), respectively. For instance, Fraser

et al. (1998) use the gamma series method as a benchmark for computing exact

probabilities to be compared with several alternative methods for approximating the

non-central chi-square distribution function. Alternatively, we can employ a standard

numerical integration method for computing equations (3.7) and (3.8) or use a routine

from an external source, such as Matlab or R, for computing non-central chi-square

probabilities. The non-central chi-square distribution function F(w;v,λ ) as well as its

complementary function Q(w;v,λ ) require values for w, v, and λ . For option pricing and
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hedging under the CEV model both w and λ can assume values of 2x or 2y. We have

performed extensive computational experiments (which are available upon request)

with more than 200,000 parameters combinations and we have concluded that the

gamma series method is an appropriate choice for our benchmark.

All the calculations in this article were made using Mathematica 7.0 running on a Pen-

tium IV (2.53 GhZ) personal computer. Option prices and Greeks are computed using

each of the alternative algorithms for approximating the complementary non-central

chi-square distribution. We have truncated all the series with an error tolerance of

1E−10. In order to understand the computational speed of the alternative algorithms,

we have computed the CPU times for all the algorithms using the function Timing[.]

available in Mathematica. Since the CPU time for a single evaluation is very small, we

have computed the CPU time for multiple computations.

4.1 Non-central Chi-Square Distribution Using Alternative Methods

Now we want to evaluate the differences in approximations of non-central chi-square

probabilities F(w;v,λ ) for the iterative procedures of Schroder (1989) (S89), Ding (1992)

(D92) and Benton and Krishnamoorthy (2003) (BK03), and the analytic approxima-

tions of Sankaran (1963) (S63), Fraser et al. (1998) (FWW98) and Penev and Raykov

(2000)3.1 compared against the benchmark based on the gamma series approach. We

have excluded option parameter configurations with both 2x ≥ 5,000 and 2y ≥ 5,000,

since it is well-known—see, for instance, Schroder (1989)—that the algorithms for com-

puting the non-central chi-square distribution may converge slowly when 2x and 2y are

large, and overflow and underflow errors may also be encountered. Out of the 2,500

options, 2,477 (and thus 4,954 non-central chi-square distribution functions) satisfied

3.1For the analytic method of Penev and Raykov (2000) we have considered both the second order Wiener germ
approximation (PR00a) and the improved first order Wiener germ approximation (PR00b).
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Table 3.1: Differences in approximations of non-central chi-square probabilities F(w;v,λ ) for
each method compared against a benchmark based on the gamma series approach.

Methods MaxAE MaxRE RMSE MeanAE CPU time k1

S89 7.74E−10 3.56E−03 7.77E−11 2.65E−11 7,088.97 0
D92 9.73E−11 3.73E−05 5.07E−11 4.37E−11 6,333.75 0
BK03 2.31E−11 4.85E−10 2.52E−12 1.27E−12 3,560.02 0
S63 1.10E−02 7.69E−01 3.22E−03 2.14E−03 532.23 4,910
FWW98 2.03E−01 6.20E−01 2.21E−02 7.04E−03 425.59 4,912
PR00a 3.36E−01 4.99E−01 3.96E−02 1.15E−02 1,610.15 4,675
PR00b 3.36E−01 4.99E−01 3.95E−02 1.15E−02 1,543.30 4,835

This table values the differences in approximations of 4,954 non-central chi-square probabilities F(w;v,λ ) for the
iterative procedures of Schroder (1989), Ding (1992) and Benton and Krishnamoorthy (2003), and the analytic
approximations of Sankaran (1963), Fraser et al. (1998) and Penev and Raykov (2000) compared against a bench-
mark based on the gamma series approach, which took a CPU time of 33,689.60 seconds to compute 1,000 times
the whole set of 4,954 non-central chi-square distribution functions. The second rightmost column of the table
reports the CPU time for computing 1,000 times the 4,954 non-central chi-square distribution functions under each
alternative method. The MaxAE, MaxRE, RMSE, MeanAE, and k1 denote, respectively, the maximum absolute
error, the maximum relative error, the root mean absolute error, the mean absolute error, and the number of times
the absolute difference between the two methods exceeds E−07.

the criterion 2x < 5,000 and 2y < 5,000.

Table 3.1 reports the differences in approximations of non-central chi-square probabil-

ities F(w;v,λ ) for each method compared against a benchmark based on the gamma

series approach, which took a CPU time of 33,689.60 seconds to compute 1,000

times the whole set of 4,954 non-central chi-square distribution functions. The sec-

ond rightmost column of the table reports the CPU time for computing 1,000 times the

4,954 non-central chi-square distribution functions under each alternative method. The

MaxAE, MaxRE, RMSE, MeanAE, and k1 denote, respectively, the maximum absolute

error, the maximum relative error, the root mean squared error, the mean absolute er-

ror, and the number of times the absolute difference between the two methods exceeds

1E−07.

The iterative procedures based on S89, D92, and BK03 methods are accurate for
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determining non-central chi-square probabilities that are needed for computing option

prices under the CEV model. The S89, D92, and BK03 methods are, respectively,

4.75, 5.32, and 9.46 times faster than the benchmark GS method. The computational

results show that the iterative procedure of BK03 is the best choice for computing the

non-central chi-square distribution function since it is the most accurate one and the

fastest.

As expected, the analytic approximations run quickly but have an accuracy that varies

significantly over the considered parameter space. Thus, for small to moderate values

of 2y and 2x none of the approximation methods should be used and the preference is

to use the BK03 method.

It is well-known that the running time needed for computing the non-central chi-square

distribution F(w;v,λ ), and its complementary distribution function Q(w;v,λ ), increases

when w and λ are large. Option pricing under the CEV assumption is computationally

expensive especially when β is close to two, volatility is low, or the time to maturity is

small in the CEV formulae. For this reason, Schroder (1989) has suggested a two-

part strategy for computing the non-central chi-square distribution where for small to

moderate values of w and λ the iterative procedure is used, otherwise the distribution

is evaluated using the analytic approximation of Sankaran (1963).

Computational experiments of the remaining 46 parameter configurations reveal, how-

ever, that while GS, S89, and D92 methods may converge slowly or produce overflow

and underflow errors, the BK03 method always gives the correct value without addi-

tional commensurate computational burden. Thus, even though S63, FWW98, PR00a,

and PR00b methods all produce accurate results when w and λ are very large, our

computational results have shown that it is not necessary to use a combined two-part

strategy for computing the non-central chi-square distribution, since the Benton and

Krishnamoorthy (2003) algorithm clearly offers the best speed-accuracy tradeoff.
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4.2 Option Pricing under the CEV Model

Even thought we have already analyzed the speed and accuracy of alternative methods

for computing the non-central chi-square distribution at the statistic level, it is also rele-

vant to understand how quickly and accurate are those competing methods for pricing

and hedging purposes under the CEV model. We will concentrate our analysis on call

options, but the same line of reasoning applies also for put options. Following Broadie

and Detemple (1996), and to make the relative error meaningful, we have excluded call

options whose price was lower than 50 cents. Out of the 2,477 options, 2,393 satisfied

this criterion. However, all error measures yielded qualitatively similar results when we

have included option values less than 50 cents.

Table 3.2 values the differences in call option prices under the CEV assumption us-

ing the iterative procedures of Schroder (1989) (S89), Ding (1992) (D92) and Ben-

ton and Krishnamoorthy (2003) (BK03), and the analytic approximations of Sankaran

(1963) (S63), Fraser et al. (1998) (FWW98) and Penev and Raykov (2000) (PR00a

and PR00b) compared against the benchmark based on the gamma series approach,

which took a CPU time of 22,460.00 seconds to compute 1,000 times the whole set

of 2,393 call option prices. The second rightmost column of the table reports the CPU

time for computing 1,000 times the 2,393 call option prices under each alternative

method. The MaxAE, MaxRE, RMSE, MeanAE, and k2 denote, respectively, the max-

imum absolute error, the maximum relative error, the root mean squared error, the

mean absolute error, and the number of times the absolute difference between the two

methods exceeds $0.01.

The results of Table 3.2 highlight that the iterative procedures of S89, D92, and BK03

are all accurate for computing options prices under the CEV assumption, though the

iterative procedure of BK03 is still the most efficient for determining option prices. The
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Table 3.2: Differences in call option prices using each alternative method for computing the
noncentral chi-square distribution compared against a benchmark based on the gamma series
approach.

Methods MaxAE MaxRE RMSE MeanAE CPU time k2

S89 1.31E−07 2.48E−07 1.32E−08 4.48E−09 5,740.57 0
D92 2.09E−08 3.92E−08 9.05E−09 8.09E−09 5,082.62 0
BK03 1.92E−09 3.21E−09 3.65E−10 2.20E−10 3,155.60 0
S63 1.46E+00 8.26E−02 2.60E−01 1.58E−01 475.10 1,887
FWW98 1.87E+01 4.28E−01 2.82E+00 1.10E+00 378.54 2,129
PR00a 2.51E+01 4.69E+00 4.79E+00 2.01E+00 1,498.78 1,849
PR00b 2.50E+01 4.67E+00 4.78E+00 2.00E+00 1,441.67 1,910

This table values the differences in call option prices under the CEV model using the iterative procedures
of Schroder (1989), Ding (1992) and Benton and Krishnamoorthy (2003), and the analytic approximations of
Sankaran (1963), Fraser et al. (1998) and Penev and Raykov (2000) compared against a benchmark based on the
gamma series approach, which took a CPU time of 22,460.00 seconds to compute 1,000 times the whole set of
2,393 call option prices. The second rightmost column of the table reports the CPU time for computing 1,000
times the 2,393 call option prices under each alternative method. The MaxAE, MaxRE, RMSE, MeanAE, and k2
denote, respectively, the maximum absolute error, the maximum relative error, the root mean absolute error, the
mean absolute error, and the number of times the absolute difference between the two methods exceeds $0.01.

S89, D92, and BK03 methods are, respectively, 3.91, 4.42, and 7.12 times faster than

the benchmark GS method.

The analytic approximations run quickly but all have an unsatisfactory accuracy given

the high k2 value they generate, though all approximation methods returns a value

k2 = 0 when w and λ are very large.

To sum up, we can conclude that the GS benchmark method is not worth considering

due to speed and that the Benton and Krishnamoorthy (2003) algorithm offers the best

speed-accuracy tradeoff for pricing and hedging options under the CEV model. This

findings are clearly relevant for future work aiming to value options contracts with early

exercise features and/or exotic payoffs under the one-dimensional CEV model.
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4.3 Greeks under the CEV Model

Information about derivatives of options (commonly known as Greeks) is of practical

and theoretical importance. In addition to pricing an option, a dealer of the finan-

cial services industry must also be able to hedge it. Thus, a practitioner needs to

have knowledge regarding the sensitivity measures of derivative securities for design-

ing hedging strategies to reduce the risk of a given security or a portfolio of securities,

when closing the position is not viable or desirable. Greeks also enjoy many other

multiple applications such as for market risk measurement, profit and loss attribution,

model risk assessment and optimal contract design, and to imply out parameters from

market prices.

For European-type options on dividend paying assets under the log-normal assump-

tion, closed-form expressions for delta (∂/∂S), gamma (∂ 2/∂S2), vega (∂/∂σ ), theta

(∂/∂ t), rho (∂/∂ r), and phi (or rho-q, (∂/∂q)) are well documented in the literature (e.g.,

Hull (2008, Chapter 17)). Shadwick and Shadwick (2002) consider the implications of

the use of the general BSM model for pricing and sensitivities calculations. Pelsser and

Vorst (1994) discuss the computation of these Greeks under the binomial option pricing

model of Cox et al. (1979). Garman (1992) introduces three more partial derivatives

for derivative instruments, namely the speed (∂ 3/∂S3), the charm (∂ 2/∂S∂ t), and the

colour (∂ 3/∂S2∂ t). Many other Greeks of options are discussed in Haug (2006).

Derivative information of option prices are also important at a theoretical level. For

instance, Breeden and Litzenberger (1978) show that the second derivative with re-

spect to the strike price (∂ 2/∂X2) can be interpreted as a state price density. Carr

(2001) shows how delta, gamma, speed and other higher-order derivatives of an op-

tion’s price with respect to the initial price of the underlying asset can be viewed as an

expectation, through an appropriate change of measure, of the corresponding deriva-
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tive at the terminal date. Bergman et al. (1996) derive a general theoretical expression

for delta when volatility is a function of stock price and time.

In the Appendix we present closed-form solutions for delta, gamma, vega, theta3.2, and

rho under the CEV option pricing model for both β < 2 and β > 2 that, to our knowledge,

have not been published in the literature.3.3 Based on these new closed-form solutions,

we should also consider how different methods for computing the complementary non-

central chi-square distribution affect the computation of Greeks.

Table 3.3 shows results for deltas (∆), gammas (Γ), vegas (V ), thetas (Θ), and rhos

(ρ) for European-style standard call and put options under the CEV assumption for

different specifications of the option parameters. The last five lines of the table report

the CPU times for computing 1,000 times the Greeks of the twenty one option contracts

using the closed-form solutions presented in the Appendix based on the gamma series

method (CPU time 1), on the iterative procedures of Schroder (1989), Ding (1992), and

Benton and Krishnamoorthy (2003) (CPU time 2-4, respectively), and via elementary

differentiation of the gamma series method through Mathematica with nmax= 200 (CPU

time 5).

Several points are noteworthy from Table 3.3. While symbolic algebra programs such

as Mathematica or Maple can derive such sensitivity measures3.4, these new closed-

form solutions for determining Greeks under the CEV model are important at least

for three reasons. Firstly, as stated by Carr (2001), the derivation of Greeks through
3.2The sign of the theta of an option is generally negative, but there are some exceptions: for example, an in-the-

money European put option on a non-dividend-paying stock or an in-the-money European call option on a currency
with a very high interest rate. For this reason, we have omitted the sign behavior for thetas. However, it is well-
known that if the underlying asset pays no dividends over the life of the contingent claim, then the corresponding
call option is always a wasting asset in any one-dimensional diffusion setting (see, for instance, Bergman et al.
(1996, Proposition 3)).

3.3In addition, we have determined also other partial derivatives for options under the CEV model. Even though
their closed-form solutions are omitted here due to constraints of space, they are available upon request.

3.4For instance, Shaw (1998) shows how to derive Greeks under the geometric Brownian motion assumption
via elementary differentiation using Mathematica. A similar symbolic algebra procedure can be used to derive any
other arbitrary Greek under alternative stochastic processes.
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symbolic algebra programs cannot replace an intuitive understanding of the role, gene-

sis, and relationships between all the various Greeks. Secondly, the computation time

needed for computing analytic Greeks will diminish substantially, which is extremely rel-

evant when one needs to design hedging strategies through time. For example, while

options under the CEV model have non-zero gammas and vegas, these two Greek

measures are not affected by the complementary non-central chi-square distribution.

Thus, the small computational expense needed for computing gammas and vegas is

especially notable. For the other Greeks (i.e., delta, theta, and rho) the BK03 is, as

expected, the most efficient method. Lastly, the existence of analytical solutions allows

that they can be coded in any desired computer language such as Matlab, Fortran, R,

or C.

The knowledge of these new analytical solutions for deltas is also of interest for pricing

standard American options under the CEV model using the SHP approach offered

by Chung and Shih (2009). Even though they argue that their SHP approach works

well for pricing American options under the CEV model, they only consider the case

where β = 4/3 to simplify their numerical analysis and given the absence of closed-

form solutions of deltas for a general β parameter. As observed by Schroder (1989),

the prices of standard European calls and puts under the CEV assumption with β = 4/3

are easy to compute since the corresponding complementary non-central chi-square

distribution functions Q(w;1,λ ), Q(w;3,λ ), and Q(w;5,λ ) can be determined using only

the standard normal density function N′(.) and the standard normal distribution function

N(.). This also means that when β = 4/3 we may determine the analytical expression

for the corresponding delta using the same type of algebra as in a BSM world. With

our closed-form solutions for deltas we may price (and hedge) plain-vanilla American

options under the SHP approach as proposed by Chung and Shih (2009), but now

for any β parameter able to accommodate direct leverage effects or inverse leverage
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effects. This will be left for future research.

5 Conclusions

In this article, we compare the performance of alternative algorithms for computing

the non-central chi-square distribution function in terms of accuracy and computation

time for evaluating option prices and Greeks under the CEV model. We find that the

gamma series method and the iterative procedures of Schroder (1989), Ding (1992),

and Benton and Krishnamoorthy (2003) are all accurate over a wide range of param-

eters, though presenting significative speed computation differences. The analytic ap-

proximations of Sankaran (1963), Fraser et al. (1998), and Penev and Raykov (2000)

run quickly but produce significant errors when w and λ are not too large. Our compu-

tational experiments have shown that the Benton and Krishnamoorthy (2003) algorithm

clearly offers the best speed-accuracy tradeoff. Finally, we present closed-form solu-

tions for computing Greek measures under the unrestricted CEV option pricing model

for both β < 2 and β > 2, thus being able to accommodate direct leverage effects as

well as inverse leverage effects that are frequently observed in the options markets.
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Appendix A: Greeks for the CEV Option Pricing Model

This appendix shows in detail how to compute Greeks for European options under the

CEV diffusion. To simplify notation all subscripts t are omitted throughout this appendix.

To determine all Greeks we need to compute the auxiliary functions 2x and 2y. After

straightforward calculations it follows that

2x =
4(r−q)e(r−q)(2−β )τ

δ 2(2−β )[e(r−q)(2−β )τ −1]
S2−β , (A.1a)

2y =
4(r−q)

δ 2(2−β )[e(r−q)(2−β )τ −1]
X2−β . (A.1b)

There are a few relations that are useful for deriving Greeks under the CEV diffusion.

Let us start with the well-known relation Q(w;v,λ ) = 1− F(w;v,λ ). Now, based on

Johnson et al. (1995, pp. 442-443) we conclude that

∂Q(w;v,λ )
∂w

=
∂ [1−F(w;v,λ )]

∂w
=−∂F(w;v,λ )

∂w
=−p(w;v,λ ), (A.2a)

∂Q(w;v,λ )
∂λ

=
∂ [1−F(w;v,λ )]

∂λ
=−∂F(w;v,λ )

∂λ
= p(w;v+2,λ ), (A.2b)
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where p(w;v,λ ) is the probability density function of a non-central chi-square distribu-

tion as given by equation (3.5). Armed with these formulae, we are now ready to derive

all Greeks under the CEV diffusion process. For each Greek letter, four cases will be

considered.

A.1 Delta

To compute deltas (and gammas) we also need the following auxiliary functions:

∂2x
∂S

=
2x(2−β )

S
, (A.3a)

∂2y
∂S

= 0. (A.3b)

1. Call delta for β < 2.

∆call =
∂c
∂S

= e−qτ Q
(

2y;2+
2

2−β
,2x
)
+Se−qτ

∂Q
(

2y;2+ 2
2−β

,2x
)

∂S

+Xe−rτ
∂Q
(

2x; 2
2−β

,2y
)

∂S
. (A.4)

Using equations (A.2a), (A.2b), (A.3a), and (A.3b) we are able to compute the

following partial derivatives:

∂Q(2y;v,2x)
∂S

=
∂Q(2y;v,2x)

∂2x
∂2x
∂S

=
2x(2−β )

S
p(2y;v+2,2x), (A.5)

∂Q(2x;v,2y)
∂S

=
∂Q(2x;v,2y)

∂2x
∂2x
∂S

=−2x(2−β )

S
p(2x;v,2y). (A.6)
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Substituting equations (A.5) and (A.6) in equation (A.4) yields

∆call = e−qτ Q
(

2y;2+2/(2−β ),2x
)
+

2x(2−β )

S
(A.7)[

Se−qτ p(2y;4+2/(2−β ),2x)−Xe−rτ p(2x;2/(2−β ),2y)
]
> 0.

2. Put delta for β < 2.

∆put =
∂ p
∂S

= −e−qτ

[
1−Q

(
2y;2+2/(2−β ),2x

)]
+

2x(2−β )

S
(A.8)[

Se−qτ p(2y;4+2/(2−β ),2x)−Xe−rτ p(2x;2/(2−β ),2y)
]
< 0.

3. Call delta for β > 2.

∆call =
∂c
∂S

= e−qτ Q
(

2x;2/(β −2),2y
)
− 2x(2−β )

S
(A.9)[

Se−qτ p(2x;2/(β −2),2y)−Xe−rτ p(2y;4+2/(β −2),2x)
]
> 0.

4. Put delta for β > 2.

∆put =
∂ p
∂S

= −e−qτ

[
1−Q

(
2x;2/(β −2),2y

)]
− 2x(2−β )

S
(A.10)[

Se−qτ p(2x;2/(β −2),2y)−Xe−rτ p(2y;4+2/(β −2),2x)
]
< 0.
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A.2 Gamma

To compute gammas we also need to use the following recurrence relations obtained

by Cohen (1988):

∂ p(w;v,λ )
∂λ

=
1
2
[−p(w;v,λ )+ p(w;v+2,λ )], (A.11a)

∂ p(w;v,λ )
∂w

=
1
2
[−p(w;v,λ )+ p(w;v−2,λ )], (A.11b)

p(w;v−2,λ ) =
λ

w
p(w;v+2,λ )+

v−2
w

p(w;v,λ ). (A.11c)

1. Call and put gamma for β < 2.

Γcall =
∂ 2c
∂S2 =

∂∆call

∂S
= Γput =

∂ 2 p
∂S2 =

∂∆put

∂S
=

2x(2−β )2

S
e−qτ (A.12)[

((3−β )/(2−β )− x) p(2y;4+2/(2−β ),2x)+ x p(2y;6+2/(2−β ),2x)
]

+
2x(2−β )2

S
e−rτ X

S

[
x p(2x;2/(2−β ),2y)− y p(2x;2+2/(2−β ),2y)

]
> 0.

2. Call and put gamma for β > 2.

Γcall =
∂ 2c
∂S2 =

∂∆call

∂S
= Γput =

∂ 2 p
∂S2 =

∂∆put

∂S
=

2x(2−β )2

S
e−rτ X

S
(A.13)[

((1−β )/(2−β )− x) p(2y;4+2/(β −2),2x)+ x p(2y;6+2/(β −2),2x)
]

+
2x(2−β )2

S
e−qτ

[
x p(2x;2/(β −2),2y)− y p(2x;2+2/(β −2),2y)

]
> 0.
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A.3 Vega

1. Call and put vega for β < 2.

Vcall =
∂c
∂σ

= Vput =
∂ p
∂σ

(A.14)

= −4x
δ

[
Se−qτ p(2y;4+2/(2−β ),2x)−X e−rτ p(2x;2/(2−β ),2y)

]
S(2−β )/2

0

= −4x
σ0

[
Se−qτ p(2y;4+2/(2−β ),2x)−X e−rτ p(2x;2/(2−β ),2y)

]
> 0.

2. Call and put vega for β > 2.

Vcall =
∂c
∂σ

= Vput =
∂ p
∂σ

(A.15)

=
4x
δ

[
Se−qτ p(2x;2/(β −2),2y)−X e−rτ p(2y;4+2/(β −2),2x)

]
S(2−β )/2

0

=
4x
σ0

[
Se−qτ p(2x;2/(β −2),2y)−X e−rτ p(2y;4+2/(β −2),2x)

]
> 0.

A.4 Theta

1. Call theta for β < 2.

Θcall =
∂c
∂ t

=−∂c
∂τ

= Sqe−qτ Q
(

2y;2+2/(2−β ),2x
)

(A.16)

−X r e−rτ

[
1−Q

(
2x;2/(2−β ),2y

)]
+

2x(r−q)(2−β )

e(r−q)(2−β )τ −1[
Se−qτ p(2y;4+2/(2−β ),2x)−X e−rτ p(2x;2/(2−β ),2y)

]
.
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2. Put theta for β < 2.

Θput =
∂ p
∂ t

=−∂ p
∂τ

= X r e−rτ Q
(

2x;2/(2−β ),2y
)

(A.17)

−Sqe−qτ

[
1−Q

(
2y;2+2/(2−β ),2x

)]
+

2x(r−q)(2−β )

e(r−q)(2−β )τ −1[
Se−qτ p(2y;4+2/(2−β ),2x)−X e−rτ p(2x;2/(2−β ),2y)

]
.

3. Call theta for β > 2.

Θcall =
∂c
∂ t

=−∂c
∂τ

= Sqe−qτ Q
(

2x;2/(β −2),2y
)

(A.18)

−X r e−rτ

[
1−Q

(
2y;2+2/(β −2),2x

)]
− 2x(r−q)(2−β )

e(r−q)(2−β )τ −1[
Se−qτ p(2x;2/(β −2),2y)−X e−rτ p(2y;4+2/(β −2),2x)

]
.

4. Put theta for β > 2.

Θput =
∂ p
∂ t

=−∂ p
∂τ

= X r e−rτ Q
(

2y;2+2/(β −2),2x
)

(A.19)

−Sqe−qτ

[
1−Q

(
2x;2/(β −2),2y

)]
− 2x(r−q)(2−β )

e(r−q)(2−β )τ −1[
Se−qτ p(2x;2/(β −2),2y)−X e−rτ p(2y;4+2/(β −2),2x)

]
.
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A.5 Rho

1. Call rho for β < 2.

ρcall =
∂c
∂ r

= X τ e−rτ

[
1−Q

(
2x;2/(2−β ),2y

)]
+2x

(
1

r−q
− (2−β )τ

e(r−q)(2−β )τ −1

)
[
Se−qτ p(2y;4+2/(2−β ),2x)−X e−rτ p(2x;2/(2−β ),2y)

]
> 0. (A.20)

2. Put rho for β < 2.

ρput =
∂ p
∂ r

=−X τ e−rτ Q
(

2x;2/(2−β ),2y
)
+2x

(
1

r−q
− (2−β )τ

e(r−q)(2−β )τ −1

)
[
Se−qτ p(2y;4+2/(2−β ),2x)−X e−rτ p(2x;2/(2−β ),2y)

]
< 0. (A.21)

3. Call rho for β > 2.

ρcall =
∂c
∂ r

= X τ e−rτ

[
1−Q

(
2y;2+2/(β −2),2x

)]
−2x

(
1

r−q
− (2−β )τ

e(r−q)(2−β )τ −1

)
[
Se−qτ p(2x;2/(β −2),2y)−X e−rτ p(2y;4+2/(β −2),2x)

]
> 0. (A.22)

4. Put rho for β > 2.

ρput =
∂ p
∂ r

=−X τ e−rτ Q
(

2y;2+2/(β −2),2x
)
−2x

(
1

r−q
− (2−β )τ

e(r−q)(2−β )τ −1

)
[
Se−qτ p(2x;2/(β −2),2y)−X e−rτ p(2y;4+2/(β −2),2x)

]
< 0. (A.23)
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Dias, José Carlos and João Pedro Nunes, 2011, Pricing Real Options under the Con-

stant Elasticity of Variance Diffusion, Journal of Futures Markets 31, 230–250.

55



Ding, Cherng G., 1992, Algorithm AS 275: Computing the Non-Central χ2 Distribution

Function, Applied Statistics 41, 478–482.

Dyrting, S., 2004, Evaluating the Noncentral Chi-Square Distribution for the Cox-

Ingersoll-Ross Process, Computational Economics 24, 35–50.

Emanuel, David C. and James D. MacBeth, 1982, Further Results on the Constant

Elasticity of Variance Call Option Pricing Model, Journal of Financial and Quantitative

Analysis 17, 533–554.

Farebrother, R. W., 1987, Algorithm AS 231: The Distribution of a Noncentral χ2 Vari-

able with Nonnegative Degrees of Freedom, Applied Statistics 36, 402–405.

Fraser, D. A. S., J. Wu, and A. C. M. Wong, 1998, An Approximation for the Noncentral

Chi-Squared Distribution, Communications in Statistics - Simulation and Computation 27,

275–287.

Garman, Mark, 1992, Charm School, Risk 5, 53–56.
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Chapter 4

Valuation of Bond Options under the CIR

Model: Some Computational Remarks*

Abstract: Pricing bond options under the Cox, Ingersoll and Ross (CIR) model of the

term structure of interest rates requires the computation of the noncentral chi-square

distribution function. In this article, we compare the performance in terms of accuracy

and computational time of alternative methods for computing such probability distribu-

tions against an externally tested benchmark. All methods are generally accurate over

a wide range of parameters that are frequently needed for pricing bond options, though

they all present relevant differences in terms of running times. The iterative procedure

of Benton and Krishnamoorthy (2003) is the most efficient in terms of accuracy and

computational burden for determining bond option prices under the CIR assumption.

JEL Classification: G13.

Keywords: CIR model; Bond options; Computational finance.

*This paper is a joint work with José Carlos Dias and Carlos A. Braumann and is accepted for publication in
selected papers of SPE 2011.
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1 Introduction

The CIR model is a general single-factor equilibrium model developed by Cox et al.

(1985), and has been used throughout the years because of its analytical tractability

and the fact that the short rate is always positive, contrary to the well-known Vasicek

model of Vasicek (1977).

The CIR model is used to price zero-coupon bonds, coupon bonds and to price options

on these bonds. To compute option prices under this process we need to use the non-

central chi-square distribution function. There exists an extensive literature devoted to

the efficient computation of this distribution function. In this article, we will examine the

methods proposed by Schroder (1989), Ding (1992), and Benton and Krishnamoorthy

(2003). The non-central chi-square distribution function can also be computed us-

ing methods based on series of incomplete gamma series, which will be used as our

benchmark.

2 Non-central χ2 Distribution and Alternative Methods

If Z1,Z2, ...,Zv are independent unit normal random variables, and δ1,δ2, ...,δv are con-

stants, then Y = ∑
v
j=1 (Z j +δ j)

2 has a non-central chi-square distribution with v degrees

of freedom and non-centrality parameter λ = ∑
v
j=1 δ 2

j , which is denoted as χ
′
v
2
(λ ).

When δ j = 0 for all j, then Y is distributed as the central chi-square distribution with

v degrees of freedom, which is denoted as χ2
v . Hereafter, P[χ

′
v
2
(λ ) ≤ w] = F(w;v,λ ) is

the cumulative distribution function of χ
′
v
2
(λ )and P[χ2

v ≤w] = F(w;v,0) is the cumulative

distribution function of χ2
v .

The cumulative distribution function of χ
′
v
2
(λ ) is given by:
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F(w;v,λ ) = e−λ/2
∞

∑
j=0

(λ/2) j

j!2v/2+ j Γ(v/2+ j)

∫ w

0
yv/2+ j−1 e−y/2 dy, w > 0, (4.1)

while F(w;v,λ ) = 0 for w < 0. Alternatively, it is possible to express F(w;v,λ ), for w > 0,

as a weighted sum of central chi-square probabilities with weights equal to the proba-

bilities of a Poisson distribution with expected value λ/2, that is,

F(w;v,λ ) =
∞

∑
j=0

(
(λ/2) j

j!
e−λ/2

)
F(w;v+2 j,0), (4.2)

where the central chi-square probability function F(w;v+2 j,0) is given by Abramowitz

and Stegun (1972, Equation 26.4.1).

The Gamma Series Method

It is well-known that the function F(w;v+ 2n,0) is related to the so-called incomplete

gamma function (see, for instance, Abramowitz and Stegun (1972, Equation 26.4.19)).

Hence, we may express the function (4.2) using series of incomplete gamma functions

as follows:

F(w;v,λ ) =
∞

∑
i=0

(λ/2)i e−λ/2

i!
γ(v/2+ i,w/2)

Γ(v/2+ i)
, (4.3)

with γ(m, t) and Γ(m) being, respectively, the incomplete gamma function and the Euler

gamma function as defined by Abramowitz and Stegun (1972, Equations 6.5.2 and

6.1.1).

While this method is accurate over a wide range of parameters, the number of terms

that must be summed increases with the non-centrality parameter λ . To avoid the
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infinite sum of the series we use the stopping rule as proposed by Knüsel and Bablok

(1996) which allows the specification of a given error tolerance by the user.

For the numerical analysis of this article we will concentrate the discussion on Schroder

(1989) and Ding (1992) methods since both are commonly used in the finance litera-

ture. We will also use the suggested approach of Benton and Krishnamoorthy (2003),

since it is argued by the authors that their algorithm is computationally more efficient

than the one suggested by Ding (1992). A detailed explanation of how to compute the

non-central chi-square distribution function using these three algorithms is presented

below.

The Schroder Method

In the method proposed by Schroder (1989), the non-central chi-square distribution is

expressed as an infinite double sum of gamma densities which does not require the

computation of incomplete gamma functions, that is

F(w;v,λ ) =
∞

∑
n=1

g(n+ v/2,w/2)
n

∑
i=1

g(i,λ/2), (4.4)

where g(m,u) = e−uum−1/Γ(m) is the standard form of the gamma density function. As

noted by Schroder (1989), equation (4.4) allows the following simple iterative algorithm

to be used for computing the infinite sum when w and λ are not too large. First, initialize

the following four variables (with n = 1): gA = e−w/2 (w/2)v/2

Γ(1+v/2) , gB = e−λ/2, Sg = gB, and

R = gA× Sg. Then repeat the following loop beginning with n = 2 and incrementing

n by one after each iteration: gA← gA× w/2
n+v/2−1 , gB← gB× λ/2

n−1 , Sg← Sg+ gB, and

R← R+ gA× Sg. The loop is terminated when the contributions to the sum, R, are

declining and very small.
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The Ding Method

A similar simple recursive algorithm for evaluating the non-central chi-square distribu-

tion is provided also by Ding (1992). Let us define t0 = 1
Γ(v/2+1)

(w
2

)v/2 e−w/2, ti = ti−1
w

v+2i ,

y0 = u0 = e−λ/2, ui =
ui−1 λ

2i , and yi = yi−1+ui. Then the required probability that the vari-

able with the non-central chi-square distribution will take values smaller than w is

F(w;v,λ ) =
∞

∑
i=0

yi ti. (4.5)

By taking a sufficient number of terms in the series or using the bound as defined

by Ding (1992) for the error tolerance incurred by truncating the series, the required

accuracy can be obtained.

The Benton and Krishnamoorthy Method

The function F(w;v,λ ) is also expressed by Benton and Krishnamoorthy (2003) using

series of incomplete gamma functions as given by equation (4.3), where P(m, t) = γ(m,t)
Γ(m)

is the standard gamma distribution function, with γ(m, t) and Γ(m) as defined in (4.3).

To compute F(w;v,λ ), Benton and Krishnamoorthy (2003) makes use of the following

recurrence relations obtained from Abramowitz and Stegun (1972, Equation 6.5.21):

P(a+1,x) = P(a,x)− xa e−x

Γ(a+1)
, (4.6)

P(a−1,x) = P(a,x)+
xa−1 e−x

Γ(a)
. (4.7)

From equation (4.6) it follows that
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P(a,x) =
xa e−x

Γ(a+1)

(
1+

x
(a+1)

+
x2

(a+1)(a+2)
+ · · ·

)
, (4.8)

which can be used to evaluate P(a,x). The computational algorithm also differs from the

others essentially because, in order to compute the noncentral chi-square distribution

function F(w;v,λ ), it starts by evaluating the kth term, where k is the integer part of

λ/2, and then the other terms k± i are computed recursively. The proposed method

runs in the following steps. First, evaluate Pk = P(Y = k) = e−λ/2(λ/2)k/k! and P(v/2+

k,w/2) using equation (4.8). Then, compute P(Y = k+ i) and P(Y = k− i), for i = 1,2, . . . ,

using the initial value P(Y = k), and the recursion relations for Poisson probabilities

Pi+1 = λ/2
i+1 Pi, Pi−1 = i

λ/2 Pi. Finally, using recursion relations (4.6) and (4.7) compute

P(v/2+ k+ i,w/2) and P(v/2+ k− i,w/2). By taking a sufficient number of terms in the

series or by specifying a given error tolerance the required accuracy is then obtained.

3 Bond Options under the CIR Model

Under the risk-neutral measure Q, Cox et al. (1985) modeled the evolution of the inter-

est rate, rt , by the stochastic differential equation (sde):

drt =
[
κθ − (λ +κ)rt

]
dt +σ

√
rtdWt

Q, (4.9)

where WQ
t is a standard Brownian motion under Q, κ, θ and σ are positive constants

representing reversion rate, asymptotic rate and volatility parameters, respectively, and

λ is the market risk. The condition 2κθ > σ2 has to be imposed to ensure that the

interest rate remains positive. Following Cox et al. (1985), the price of a general inter-

est rate claim F(r, t) with cash flow rate C(r, t) satisfies the following partial differential
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equation (pde)

1
2

σ
2r

∂ 2F(r, t)
∂ r2 +κ(θ − r)

∂F(r, t)
∂ r

+
∂F(r, t)

∂ t
−λ r

∂F(r, t)
∂ r

− rF(r, t)+C(r, t) = 0. (4.10)

Zero-Coupon and Coupon Bonds

A bond is a contract that pays its holder a known amount, the principal, at a known

future date, called maturity. The bond may also pay periodically to its holder fixed cash

dividends, called coupons. When it gives no dividends, it is known as a zero-coupon

bond, sometimes referred to as pure discount bond. The price of a zero-coupon bond

with maturity at time s, Z(r, t,s), satisfies the pde (4.10), with C(r, t) = 0, subject to the

boundary condition Z(r,s,s) = 1, and is given by

Z(r, t,s) = A(t,s)e−B(t,s)r (4.11)

where A(t,s) =
(

2γ e

(
(κ+λ+γ)(s−t)

)
/2

(κ+λ+γ)
(

eγ(s−t)−1
)
+2γ

) 2κθ

σ2

, B(t,s) =
2
(

eγ(s−t)−1
)

(κ+λ+γ)
(

eγ(s−t)−1
)
+2γ

, and γ =

(
(κ +

λ )2 +2σ2
)1/2

.

Since a coupon bond is just a portfolio of zero-coupon bonds of different maturities, the

value of any riskless coupon bond can be expressed as a weighted sum of zero-coupon

bond prices

P(r, t,s) =
N

∑
i=1

aiZ(r, t,si), (4.12)

where s1,s2, · · · ,sN represent the N dates on which payments are made, and the ai > 0
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terms denote the amount of the payments made. 4.1

Bond Options

A bond option provides the investor with the right, but not the obligation, to buy or

sell a given bond at a fixed price either or before a specific date. In this article, we

analyze European-style plain-vanilla options on bonds, which confer the right to buy or

sell at a known future date for a predetermined price, i.e. the exercise price. Denote by

czc(r, t,T,s,K) the price at time t of a European call option with maturity T > t, strike price

K, written on a zero-coupon bond with maturity at time s> T and with the instantaneous

rate at time t given by rt . K is restricted to be less than A(T,s), the maximum possible

bond price at time T , since otherwise the option would never be exercised and would

be worthless. The option price will follow the basic valuation equation with terminal

condition czc(r, t,T,s,K) = max[Z(r,T,s)−K,0] to the pde (4.10), with C(r, t) = 0, and is

given by

czc(r, t,T,s,K) = Z(r, t,s)F(x1;a,b1)−KZ(r, t,T )F(x2;a,b2), (4.13)

where x1 = 2r∗[φ +ψ +B(T,s)], x2 = 2r∗[φ +ψ], a = 2κθ

σ2 , b1 =
2φ 2reγ(T−t)

φ+ψ+B(T,s) , b2 =
2φ 2reγ(T−t)

φ+ψ
,

ψ = κ+λ+γ

σ2 , φ = 2γ

σ2
(

eγ(T−t)−1
) , r∗ =

[
ln
(

A(T,s)
K

)]
/B(T,s), F(.;ν ,λ ) is the non-central chi-

square distribution function with ν degrees of freedom and non-centrality parameter λ

and, r∗ is the critical rate below which exercise will occur, this is, K = Z(r∗,T,s).

To compute options on coupon bonds we will use the Jamshidian’s approach, Jamshid-

ian (1989), which states that an option on a portfolio of zero-coupon bonds is equivalent

to a portfolio of options with appropriate strike prices. The individual options all have

4.1As an example, consider a 10-year 6% bond with a face amount of 100. In this case, N = 20 since the bond
makes 19 semiannual coupon payments of 3% as well as a final payment of 103%. That is, ai = 3%, i= 1,2, · · · ,19,
a20 = 3+100 = 103%, and s1 = 0.5,s2 = 1, · · · ,s19 = 9.5,s20 = 10.
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the same maturity and are written on the individual zero-coupon bonds in the bond

portfolio. Based on this result, a European call option with exercise price K and ma-

turity T on a bond portfolio consisting of N zero-coupon bonds with distinct maturities

si (i = 1,2, · · · ,N and T < s1 < s2 < · · ·< sN) and ai(ai > 0, i = 1,2, · · · ,N) issues of each

can be priced as

ccb(r, t,T,s,K) =
N

∑
i=1

aiczc(r, t,T,si,Ki), (4.14)

where Ki = Z(r∗∗,T,si) and r∗∗ is the solution to ∑
N
i=1 aiZ(r∗∗,T,si) = K.

4 Numerical Analysis

This section aims to present computational comparisons of the alternative methods of

computing the non-central chi-square distribution function for pricing European options

on bonds under the CIR diffusion. We examine this CIR option pricing model using

alternative combinations of input values over a wide range parameter space. All the

calculations in this article were made using Mathematica 7.0 running on a Pentium IV

(2.53 GhZ) personal computer. We have truncated all the series with an error tolerance

of 1E−10. All values are rounded to four decimal places. In order to understand the

computational speed of the alternative algorithms, we have computed the CPU times

for all the algorithms using the function Timing[.] available in Mathematica. Since

the CPU time for a single evaluation is very small, we have computed the CPU time

for multiple computations. Note that the difference in computation time among the

alternative tested methods is clearly due to the specific definition of each algorithm and

the corresponding stopping rule, and not on the particular software implementation.
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Benchmark Selection

The non-central chi-square distribution function F(w;v,λ ) requires values for w, ν , and

λ . Our benchmark is the non-central chi-square distribution F(w;ν ,λ ) expressed as a

gamma series (GS) as given by Equation (4.3), with a pre-defined error tolerance of

1E−10, which is tested against three external benchmarks based on the Mathematica,

Matlab, and R built-in-functions that are available for computing the cumulative distri-

bution function (CDF) of the non-central chi-square distribution. The set of parameters

used in the benchmark selection: is κ ∈ {0.15,0.25, · · · ,0.85}, θ ∈ {0.03,0.06, · · · ,0.15},

r ∈ {0.01,0.02, · · · ,0.15}, σ ∈ {0.03,0.05, · · · ,0.15}, and λ ∈ {−0.1,0}. We also consider

the next two set of parameters: for the bond maturity s = 2, we have T ∈ {1,1.5,1.75},

and in this case the strike price set is K ∈ {0.90,0.95}; for the bond maturity of s = 10,

we consider T ∈ {3,5,7}, and in this situation the strike prices are K ∈ {0.25,0.35}.

These combinations of parameters produce 98,280 probabilities.4.2 Table 4.1 reports

the results obtained.

Table 4.1: Benchmark selection.

Methods MaxAE RMSE k1 k2
GS vs CDF of Mathematica 1.29E−04 4.13E−07 79 1,769
GS vs CDF of Matlab 6.46E−11 1.16E−11 0 0
GS vs CDF of R 6.45E−11 1.16E−11 0 0

The results show that the maximum absolute error (MaxAE) and root mean absolute

error (RMSE) are higher for the comparison between the GS vs CDF of Mathematica,

though the number of times the absolute difference between the two methods exceeds

1E−07 (k1) is small in relative terms (it represents about 0.08% of the 98,280 computed

probabilities). However, the number of times a computed probability is greater than 1

(k2) is slightly higher for the CDF of Mathematica4.3 (about 1.80% of computed proba-
4.2We obtained these probabilities by computing the values of F(x1;ν ,b1) for this set of parameters.
4.3This means that care must be taken if one wants to use the CDF built-in-function of Mathematica for com-

puting the non-central chi-square distribution function.
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bilities computed). The results comparing the GS vs CDF of Matlab and GS vs CDF

of R show that the corresponding differences are smaller and very similar (never ex-

ceeds 1E−07). Under the selected wide parameter space we have not obtained any

probability value greater than 1 either in the gamma series method, Matlab or R. In

summary, the results show that the gamma series method is an appropriate choice for

the benchmark.

Bond options with alternative methods

Now we want to evaluate the differences in approximations of non-central chi-square

probabilities F(w;ν ,λ ) and in zero-coupon and coupon bond option prices using the

iterative procedures of Schroder (1989) (S89), Ding (1992) (D92) and Benton and Kr-

ishnamoorthy (2003) (BK03) compared against the benchmark based on the gamma

series approach. We will concentrate our analysis on call options, but the same line of

reasoning applies also for put options. Panels A and B of Table 4.2 report such com-

parison results using the following set of parameters: κ ∈ {0.35,0.65}, θ = 0.08, σ ∈

{0.04,0.10,0.16}, r ∈ {0.01,0.02, · · · ,0.15}, λ ∈ {−0.1,0.0}, K ∈ {0.25,0.30}, T ∈ {2,5},

and s ∈ {10,15}. Panel C of Table 4.2 analyzes the impact of these competing meth-

ods for pricing call options on coupon bonds under the CIR diffusion. In this analysis

we used the following set of parameters:κ ∈ {0.35,0.65}, θ = 0.08, σ ∈ {0.04,0.10,0.16},

r ∈ {0.01,0.02, · · · ,0.15}, λ ∈ {−0.1,0.0}, K ∈ {95,100,105}, face value = 100, T ∈ {2,5},

s ∈ {10,15}, and a coupon rate ∈ {0.10,0.12}. The third rightmost column of the ta-

ble reports the CPU time for computing 1,000 times the 2,880 probabilities and 1,440

unique contracts of zero-coupon bond options4.4 and the CPU time for determining 100

times the 4,320 unique contracts of coupon bond options. The MaxRE, MeanAE and

k3 denote, respectively, the maximum relative error, the mean absolute error, and the

number of times the absolute difference between the two methods exceeds $0.01.
4.4The CPU time for the gamma series method is 3,303.23 seconds for probabilities, 3,340.48 seconds for zero-

coupon bond options and 10,714.40 for coupon bond options.
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Table 4.2: Differences in approximations for each method compared against a benchmark.

Methods MaxAE MaxRE RMSE MeanAE CPU time k1 k3
Panel A: Differences in probabilities
S89 3.79E−10 4.19E−01 1.21E−10 9.03E−11 9,773.37 0 –
D92 9.60E−11 1.83E−02 6.20E−11 5.94E−11 9,085.95 0 –
BK03 4.23E−11 1.71E−07 4.29E−12 1.29E−12 1,946.11 0 –
Panel B: Differences in call option prices on zero-coupon bonds
S89 1.22E−10 5.24E+00 2.60E−11 1.63E−11 9,796.68 – 0
D92 3.96E−11 3.43E−02 1.25E−11 1.00E−11 9,013.49 – 0
BK03 6.97E−12 4.76E−05 6.61E−13 1.59E−13 1,967.84 – 0

Panel C: Differences in call option prices on coupon bonds
S89 1.24E−08 1.52E+00 1.98E−09 1.35E−09 14,101.40 – 0
D92 7.00E−09 2.58E−01 2.06E−09 1.66E−09 13,309.00 – 0
BK03 2.03E−09 1.97E−06 1.58E−10 3.03E−11 6,274.70 – 0

5 Conclusion

In this article, we compare the performance of alternative algorithms for computing

the non-central chi-square distribution function in terms of accuracy and computation

time for evaluating option prices under the CIR model. We find that all algorithms are

accurate over a wide range of parameters, though presenting significative differences

on computational expenses. Overall, we find that the Benton and Krishnamoorthy

(2003) algorithm is clearly the most accurate and efficient in terms of computation time

needed for determining option prices under the CIR assumption. Moreover, it has a

running time that does not vary significantly with the parameters w,v and λ .
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Chapter 5

Bond Options, Sensitivity Measures, and

Sinking-Fund Bonds under the CIR

Framework*

Abstract: In this article, we derive simple closed-form solutions for computing sensitiv-

ity measures, commonly referred as Greeks, for both zero-coupon and coupon-paying

bond options under the Cox et al. (1985) (CIR) model of the term structure of interest

rates, which are shown to be accurate, easy to implement, and computationally highly

efficient. We then apply these new formulae to analytically derive the comparative

static properties of sinking-fund bonds in a CIR economy.

JEL Classification: G1, G13.

Keywords: CIR model; Zero-coupon bonds; Coupon-paying bonds; Bond options;

Greeks; Sinking-fund bonds
*This paper is a joint work with José Carlos Dias and Carlos A. Braumann and is submitted to an international
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1 Introduction

A bond is a contract which pays its holder a known amount, the principal, at a known

future date, called the maturity of the contract. The bond may also pay periodically to

its holder fixed cash dividends, called the coupons. This type of bonds are known as

coupon bonds (sometimes also called coupon-paying or coupon-bearing bonds). If the

bond pays no dividends, it is known as a zero-coupon bond (or pure discount bond).

Several bonds may contain special clauses or some embedded options. There are also

some derivative contracts whose underlying asset is a bond.

In this paper, we want to discuss how to compute, efficiently and accurately, sensitiv-

ity measures of bond options under the Cox et al. (1985) mean-reverting square-root

model (hereafter, the CIR model). Moreover, the option-like features of a sinking-fund

bond will be also analyzed under the same interest rate dynamics setting.

The CIR model is an equilibrium asset pricing model for the term structure of interest

rates. The CIR framework is important for several reasons: it provides a link between

intertemporal asset pricing theory and the term structure of interest rates; it is exten-

sible to several factors; it allows a complete characterization of the term structure of

interest rates, which incorporates risk premiums and expectations for future interest

rates; it ensures that interest rates remain non-negative (thus avoiding the potentially

undesirable feature of the Gaussian interest rate model, as in Vasicek (1977), which al-

lows negative interest rates); and it produces relatively simple closed-form solutions for

valuing zero-coupon bonds, coupon-bearing bonds, and various interest rate derivative

securities.

Cox et al. (1985) derive analytic solutions for the prices of both discount bonds and Eu-

ropean call options on discount bonds. Given its analytical tractability and its ability to
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accommodate several desirable properties expected from an attractive term structure

model, the CIR framework has been extensively studied in the finance literature and

has lead to different generalizations in several directions.

For instance, Jamshidian (1989) shows that in all one-factor term structure models an

option on a portfolio is equivalent to a portfolio of options with appropriate strike prices.

Thus, using the decomposition technique offered by Jamshidian (1989) it is possible to

price coupon-bearing bond options under the CIR model using an analytically tractable

formula. Longstaff (1993) derives also equivalent closed-form expressions for valuing

European-style calls and puts on coupon-paying bonds under the CIR framework, but

by directly solving a partial differential equation. Wei (1997) shows that in the one-

dimensional CIR model the price of a European coupon bond option can be accurately

approximated by a multiple of the price of a European zero-coupon bond option having

a time to maturity equal to the stochastic duration of the coupon bond.

The form and risk-sensitivity of zero-coupon bonds and other interest rate contingent

claims have been analyzed by Alvarez (2001) for a broad class of single-factor diffu-

sion models of interest rates. More recently, Mallier and Alobaidi (2004) price interest

rate swaps under the CIR one-factor model, while Allegretto et al. (2003), ShuJin and

ShengHong (2006), and Zhou et al. (2011) discuss the valuation of American-style

put options on zero-coupon bonds under single-factor models of the short-term rate,

including the CIR model.

An extended CIR model of the term structure of interest rates which allows for time-

dependent parameters has been first proposed by Hull and White (1990), though

requiring numerical procedures for computing European zero-coupon bond options.

Analytically tractable solutions for zero-coupon bond options under the CIR model

with time-varying coefficients have been proposed by Jamshidian (1995), Maghsoodi

(1996), and Brigo and Mercurio (2001). Using the method of eigenfunction expan-

75



sions, Gorovoi and Linetsky (2004) derive analytical solutions for zero-coupon bonds

and bond options under a shifted CIR process which is particularly useful to model low

interest rate regimes.

Extensions from a single-factor CIR model to a two-factor CIR-type interest rate setting

have been proposed by Beaglehole and Tenney (1991), Chen and Scott (1992), and

Longstaff and Schwartz (1992), while Chen and Scott (1995) provide solutions for the

multi-factor version of the CIR model.5.1

The CIR model has also been used for valuing other assets with option-like features.

For instance, Bacinello et al. (1996) propose a framework for valuing the delivery op-

tion associated to a sinking-fund bond in a CIR economy with only one sinking-fund

date, while Bacinello and Ortu (1999) extend this valuation problem for the case where

multiple sinking-fund dates are allowed, though requiring a backward induction pricing

procedure. More recently, Ben-Ameur et al. (2007) propose a dynamic programming

approach for pricing call and put options embedded in bonds in a CIR framework, while

Dias and Shackleton (2011) provide closed-form solutions for valuing real investment

and divestment options on a project, and thus model hysteresis effects under the same

interest rate dynamics setting.

This paper offers two contributions to the existent literature on the CIR diffusion. First,

we provide closed-form solutions to efficiently and accurately calculate the so-called

Greeks (that is, sensitivities of the price of financial derivatives with respect to pertur-

bations of the parameters in the underlying model) of both pure discount and coupon-

bearing bonds under the CIR model, which, to the best of our knowledge, are new in

the option pricing literature. We restrict ourselves to the derivation of Greeks under the

5.1Several empirical tests to estimate the parameters of the single- and multi-factor versions of the CIR model
of the term structure of interest rates have been conducted in the literature (see, for instance, Brown and Dybvig
(1986), Chan et al. (1992), Chen and Scott (1993), Brown and Schaefer (1994), Pearson and Sun (1994), and Chen
and Scott (2003)).
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time-independent parameters version of the single-factor CIR model, but the same line

of reasoning can be applied to derive some Greeks under the time-varying coefficients

version of the one-factor CIR models of Jamshidian (1995) and Maghsoodi (1996), or

under the CIR++ model of Brigo and Mercurio (2001).

The analytical solutions proposed for the Greeks under the CIR model are relevant for

practitioners of the derivatives industry since they reduce substantially the computa-

tional burden when dealing with large portfolios of bonds that have to be re-evaluated

frequently, e.g. in a risk or portfolio management context, and allow that they can be

easily coded in any desired computer language. Given these aforementioned reasons,

many attempts have been made to offer Greek formulae in closed-form for asset price

dynamics described by many well-known stochastic processes of practical interest, be-

sides the usual log-normal model of Black and Scholes (1973) and Merton (1973), e.g.

Kawai and Takeuchi (2011) for gamma processes, or Larguinho et al. (2013) under the

constant elasticity of variance (CEV) diffusion.

Second, we extend Bacinello et al. (1996) results by providing analytical tractable for-

mulae required for valuing and analyzing comparative statics of sinking-fund bonds in

the CIR framework. While Bacinello et al. (1996) have been able to study such issues in

closed-form under the Vasicek (1977) model, they analyze numerically the comparative

static properties of the sinking-fund bond in the CIR framework. Based on our analytic

solutions, we prove a result that compares the stochastic duration of the sinking-fund

bond to those of the corresponding serial and coupon ones.

The structure of the paper is organized as follows. Section 2 outlines a brief sum-

mary of the CIR interest rate dynamics and the analytical formulae for computing dis-

count bonds, coupon-bearing bonds, and European-style options on discount bonds

and coupon-paying bonds in a CIR economy. Section 3 derives analytical tractable so-

lutions of some sensitivity measures of bond options under the same interest rate dy-
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namics setting. Section 4 presents some numerical examples to enhance the computa-

tional efficiency of our closed-form solutions. Section 5 provides analytically tractable

formulae to analyze the comparative-statics properties of a sinking-fund bond in the

CIR framework. Section 6 concludes.

2 Model Setup and Bond Option Valuation

In this section, we will present a brief remainder of the CIR interest rate dynamics

and the analytical formulae for computing discount bonds, coupon-bearing bonds, and

European-style call and put options on zero-coupon bonds and coupon-paying bonds

in a CIR economy.

2.1 CIR Interest Rate Dynamics

Consider a CIR economy in which EQ
t denotes expectations, at time t, under the mar-

tingale (or risk-neutral) probability measure Q, with respect to the risk-adjusted process

for the instantaneous interest rate rt

drt = (κ +λ )

[
κθ

(κ +λ )
− rt

]
dt +σ

√
rtdWQ

t , (5.1)

where κ∗ = κ + λ is the parameter that the speed of adjustment (reversion rate or

reverting rate), θ ∗ = κθ/k∗ is the long-run mean of the instantaneous interest rate

(asymptotic interest rate or reverting level), σ is the volatility of the process, λ is the

market price of risk parameter, and WQ
t is a standard Brownian motion under Q. It is

well known that the κθ term plays a key role under this diffusion and has important
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implications for capture of the interest rate process r at a value of zero. The condition

2κθ ≥ σ2 ensures that the interest rate remains positive.5.2

2.2 Zero-Coupon Bonds under the CIR Model

Following Cox et al. (1985), the price of a general interest rate claim F(r, t) with cash

flow rate C(r, t) satisfies the following partial differential equation

1
2

σ
2r

∂ 2F(r, t)
∂ r2 +κ(θ − r)

∂F(r, t)
∂ r

+
∂F(r, t)

∂ t
−λ r

∂F(r, t)
∂ r

− rF(r, t)+C(r, t) = 0. (5.2)

In a CIR economy, the price of a zero-coupon bond, at the valuation date t, and maturity

date at time s (with s > t), Z(r, t,s), satisfies this equation with C(r, t) = 0 subject to the

boundary condition Z(r,s,s) = 1, and is given by

Z(r, t,s) = EQ
t

[
e−

∫ s
t r(u)du

]
= A(t,s)e−B(t,s)r, (5.3)

where constants A(t,s), B(t,s), and γ > 0 are given by

A(t,s) :=
[

2γe[(κ+λ+γ)(s−t)]/2

(κ +λ + γ)(eγ(s−t)−1)+2γ

]2κθ/σ2

, (5.4a)

B(t,s) :=
2(eγ(s−t)−1)

(κ +λ + γ)(eγ(s−t)−1)+2γ
, (5.4b)

γ :=
[
(κ +λ )2 +2σ

2]1/2
. (5.4c)

5.2See Feller (1951) for a complete description of the boundary conditions.
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2.3 Coupon-Paying Bonds under the CIR Model

Since a coupon bond is just a portfolio of zero-coupon bonds of different maturities,

the value of a riskless coupon bond, at the valuation date t, and maturity date at time s

(with s > t), P(r, t,s), can be expressed as a weighted sum of zero-coupon bond prices,

that is

P(r, t,s) =
N

∑
i=1

aiZ(r, t,si), (5.5)

where s1,s2, · · · ,sN represent the N dates on which payments are made, and each ai > 0

term denote the amount of the payments made.5.3

2.4 Zero-Coupon Bond Options under the CIR Model

Analytic solutions for pricing call options on discount bonds have been proposed by Cox

et al. (1985). Denote as c zc(r, t,T,s,K) the price, at the valuation date t, of a European

call option with expiration date T , strike price K, written on a zero-coupon bond with

maturity date s (with s > T > t), and with the instantaneous interest rate at time t given

by r.5.4

Applying the terminal condition c zc(r, t,T,s,K) = max[Z(r,T,s)−K,0] to the partial dif-

ferential equation (5.2) with C(r, t) = 0, then the zero-coupon bond call option price is

given by

5.3For example, consider a 10-year 6% coupon bond with a par value of 100 and semiannual coupon payments.
In this case, N = 20 since the bond makes 19 semiannual coupon payments of 3% as well as a final payment of
103%. Thus, ai = 100×6%/2= 3% for i= 1,2, · · · ,19, a20 = 3+100= 103%, and s1 = 0.5,s2 = 1, · · · ,s19 = 9.5,
and s20 = 10.

5.4It is well-known that K is restricted to be less than A(T,s), the maximum possible bond price at time T , since
otherwise the option would never be exercised and would be worthless.
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czc(r, t,T,s,K) = Z(r, t,s)F(x1;a,b1)−K Z(r, t,T )F(x2;a,b2), (5.6)

where F(x;a,b) is the non-central chi-square distribution function with a degrees of

freedom and non-centrality parameter b,5.5

x1 := 2r∗
[
φ +ψ +B(T,s)

]
, (5.7a)

x2 := 2r∗
[
φ +ψ

]
, (5.7b)

a :=
4κθ

σ2 , (5.7c)

b1 :=
2φ 2reγ(T−t)

φ +ψ +B(T,s)
, (5.7d)

b2 :=
2φ 2reγ(T−t)

φ +ψ
, (5.7e)

where

φ :=
2γ

σ2
(
eγ(T−t)−1

) , (5.8a)

ψ :=
κ +λ + γ

σ2 , (5.8b)

r∗ :=
[

ln
(

A(T,s)
K

)]
/B(T,s), (5.8c)

with r∗ being the critical interest rate below which exercise will occur, i.e. K = Z(r∗,T,s).

The price of the corresponding European put option, p zc(r, t,T,s,K), can be obtained

5.5An exhaustive numerical analysis comparing different alternative approximation schemes for efficiently com-
pute the non-central chi-square distribution function in the context of the CEV model is provided by Larguinho et
al. (2013).
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through the put-call parity relation for bond options, that is

pzc(r, t,T,s,K) = czc(r, t,T,s,K)+KZ(r, t,T )−Z(r, t,s)

= K Z(r, t,T )Q(x2;a,b2)−Z(r, t,s)Q(x1;a,b1), (5.9)

where Q(.;a,b) is the complementary non-central chi-square distribution function with

a degrees of freedom and non-centrality parameter b.

2.5 Coupon-Paying Bond Options under the CIR Model

Jamshidian (1989) shows that in all one-factor term structure models an option on a

portfolio of zero-coupon bonds decomposes into a portfolio of options on the individual

discount bonds in the portfolio. Based on this result, a European call option with strike

price K and maturity date T on a portfolio consisting of N zero-coupon bonds with

different expiry dates si is given by

ccb(r, t,T,s,K) =
N

∑
i=1

aiczc(r, t,T,si,Ki), (5.10)

with T < s1 < s2 < · · · < sN , ai > 0, Ki = Z(r∗∗,T,si), and where r∗∗ is the solution to

∑
N
i=1 aiZ(r∗∗,T,si) = K. Alternatively, we could use the equivalent closed-form expres-

sion offered by Longstaff (1993, Equation 7). The corresponding coupon bond put

prices can be obtained through put-call parity, that is
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pcb(r, t,T,s,K) = ccb(r, t,T,s,K)+KZ(r, t,T )−
N

∑
i=1

aiZ(r, t,si)

=
N

∑
i=1

ai pzc(r, t,T,si,Ki). (5.11)

Note that the underlying asset for coupon bond options is actually the portfolio of dis-

count bonds expiring after the option’s maturity date. However, the value of this port-

folio is strictly less than the current price of the coupon bond if the bond pays coupons

before the expiry date of the option. As shown in Longstaff (1993), the value of the un-

derlying asset for a 5-year option on a 10-year bond is not the current price of a 15-year

bond, but the price of a 15-year bond minus the present value of coupon payments to

be made during the next 5 years. In other words, the option’s payoff, and hence the

coupon bond option price, does not depend on the payments of the coupon bond to be

made before the expiry date of the option.

3 Greeks of Bond Options under the CIR Model

3.1 Preliminaries

Let us begin with two general relations which will be used for deriving Greeks under

the CIR diffusion process. From Johnson et al. (1995, pp. 442-443) we know that

∂F(x;a,b)
∂x

= p(x;a,b), (5.12a)

∂F(x;a,b)
∂b

= −p(x;a+2,b), (5.12b)
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where p(x;a,b) is the probability density function of a non-central chi-square distribution

as given by Johnson et al. (1995, Equation 29.4), that is

p(x;a,b) =
1
2

e−(b+x)/2
(

x
b

)(a−2)/4

I(a−2)/2(
√

bx), x > 0, (5.13)

with Iq(·) being the modified Bessel function of the first kind of order q, as defined by

Abramowitz and Stegun (1972, Equation 9.6.10). We will need to use the first derivative

of the probability density function (5.13) with respect to the non-centrality parameter b,

which can be computed through the following recurrence relation offered by Cohen

(1988):

∂ p(x;a,b)
∂b

=
1
2
[−p(x;a,b)+ p(x;a+2,b)]. (5.14)

3.2 Greeks Formulas

The next propositions and remarks present the closed-form solutions for computing the

rho (or interest rate delta), delta, interest rate gamma, theta, and eta (or strike delta)

sensitivity measures of options on bonds under a CIR economy.5.6

Proposition 5.1 Consider the formulae for pricing zero-coupon bond options under

the CIR model as defined in equations (5.6) and (5.9).

5.6Note that the so-called vega—which is the sensitivity of the bond option price with respect to the volatility
parameter σ—depends on the degrees of freedom parameter a of the noncentral chi-square distribution function,
for which (to the authors knowledge) there is no simple relationship as those given in equations (5.12a) and (5.12b).
See Alvarez (2001) who discusses the conditions which determine the sign of the effect of increased volatility on
the price of a general interest rate claim under a broad class of interest rate models.
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i. Call rho (or interest rate call delta) for zero-coupon bond options

ρ
zc
c :=

∂c zc(.)

∂ r
= Z(r, t,s)

[
−B(t,s)F(x1;a,b1)−

b1

r
p(x1;a+2,b1)

]

−KZ(r, t,T )

[
−B(t,T )F(x2;a,b2)−

b2

r
p(x2;a+2,b2)

]
.(5.15)

ii. Put rho (or interest rate put delta) for zero-coupon bond options

ρ
zc
p :=

∂ p zc(.)

∂ r
= KZ(r, t,T )

[
−B(t,T )Q(x2;a,b2)+

b2

r
p(x2;a+2,b2)

]

−Z(r, t,s)

[
−B(t,s)Q(x1;a,b1)+

b1

r
p(x1;a+2,b1)

]
. (5.16)

Proof. Let us first consider the following auxiliary functions:

∂Z(r, t, j)
∂ r

=−B(t, j)Z(r, t, j), j ∈ {T,s}, (5.17a)

∂x1

∂ r
=

∂x2

∂ r
= 0, (5.17b)

∂b1

∂ r
=

b1

r
, (5.17c)

∂b2

∂ r
=

b2

r
. (5.17d)

The call rho for a zero-coupon bond option is computed as

ρ
zc
c :=

∂czc(.)

∂ r
=

∂Z(r, t,s)
∂ r

F(x1;a,b1)+Z(r, t,s)
∂F(x1;a,b1)

∂ r

−K

[
∂Z(r, t,T )

∂ r
F(x2;a,b2)+Z(r, t,T )

∂F(x2;a,b2)

∂ r

]
. (5.18)
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Using equations (5.12b), (5.17a), (5.17c), and (5.17d) we are able to compute the follow-

ing partial derivatives:

∂F(x1;a,b1)

∂ r
=

∂F(x1;a,b1)

∂b1

∂b1

∂ r
=−b1

r
p(x1;a+2,b1), (5.19)

∂F(x2;a,b2)

∂ r
=

∂F(x2;a,b2)

∂b2

∂b2

∂ r
=−b2

r
p(x2;a+2,b2). (5.20)

Finally, substituting equations (5.19) and (5.20) in equation (5.18) yields equation (5.15).

The put rho for a zero-coupon bond option is treated similarly or obtained via put-call

parity.�

The next remark shows that it is straightforward to compute the call (and put) interest

rate deltas in closed-form for coupon-paying bond options under the CIR framework.

Then, we are able to compare the obtained solutions with the values shown in Wei

(1997, Table II).

Remark 5.1 The call and put rho (or interest rate delta) for coupon bond options arise

immediately if one applies the decomposition technique of Jamshidian (1989), that is

ρ
cb
c :=

∂ccb(.)

∂ r
=

N

∑
i=1

ai
∂czc(r, t,T,si,Ki)

∂ r
=

N

∑
i=1

aiρ
zc
c (r, t,T,si,Ki), (5.21)

ρ
cb
p :=

∂ pcb(.)

∂ r
=

N

∑
i=1

ai
∂ pzc(r, t,T,si,Ki)

∂ r
=

N

∑
i=1

aiρ
zc
p (r, t,T,si,Ki). (5.22)

Longstaff (1993, Tables 1 and 2) report the first and the second derivatives of the option

prices with respect to the underlying bond price, that is the so-called delta and gamma

of the options, that have been computed using finite difference schemes. The next
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remark shows that we are also able to compute call and put deltas in closed-form for

both zero-coupon and coupon-paying bond options under the CIR framework (gammas

can be treated similarly).

Remark 5.2 The call and put delta (with respect to the underlying bond price) for both

zero-coupon and coupon-paying bond options arise immediately if one uses the results

obtained in Proposition 5.1 and Remark 5.1, that is

∆
zc
c :=

∂czc(r, t,T,s,K)

∂Z(r, t,s)
=

∂czc(r, t,T,s,K)/∂ r
∂Z(r, t,s)/∂ r

=−ρzc
c (r, t,T,s,K)

B(t,s)Z(r, t,s)
, (5.23)

∆
zc
p :=

∂ pzc(r, t,T,s,K)

∂Z(r, t,s)
=

∂ pzc(r, t,T,s,K)/∂ r
∂Z(r, t,s)/∂ r

=−
ρzc

p (r, t,T,s,K)

B(t,s)Z(r, t,s)
, (5.24)

∆
cb
c :=

∂ccb(r, t,T,s,K)

∂P(r, t,s)
=

∂ccb(r, t,T,s,K)/∂ r
∂P(r, t,s)/∂ r

=− ρcb
c (r, t,T,s,K)

∑
N
i=1 aiB(t,si)Z(r, t,si)

, (5.25)

∆
cb
p :=

∂ pcb(r, t,T,s,K)

∂P(r, t,s)
=

∂ pcb(r, t,T,s,K)/∂ r
∂P(r, t,s)/∂ r

=−
ρcb

p (r, t,T,s,K)

∑
N
i=1 aiB(t,si)Z(r, t,si)

. (5.26)

Proposition 5.2 Consider the formulae for pricing zero-coupon bond options under

the CIR model as defined in equations (5.6) and (5.9).

i. Interest rate call gamma for zero-coupon bond options

Γ
zc
r,c :=

∂ 2czc(.)

∂ r2 = Z(r, t,s)

[
B2(t,s)F(x1;a,b1)+2B(t,s)

b1

r
p(x1;a+2,b1)

−1
2

(
b1

r

)2 (
− p(x1;a+2,b1)+ p(x1;a+4,b1)

)]

−KZ(r, t,T )

[
B2(t,T )F(x2;a,b2)+2B(t,T )

b2

r
p(x2;a+2,b2)

−1
2

(
b2

r

)2 (
− p(x2;a+2,b2)+ p(x2;a+4,b2)

)]
. (5.27)
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ii. Interest rate put gamma for zero-coupon bond options

Γ
zc
r,p :=

∂ 2 pzc(.)

∂ r2 = Z(r, t,s)

[
−B2(t,s)Q(x1;a,b1)+2B(t,s)

b1

r
p(x1;a+2,b1)

−1
2

(
b1

r

)2 (
− p(x1;a+2,b1)+ p(x1;a+4,b1)

)]

−KZ(r, t,T )

[
−B2(t,T )Q(x2;a,b2)+2B(t,T )

b2

r
p(x2;a+2,b2)

−1
2

(
b2

r

)2 (
− p(x2;a+2,b2)+ p(x2;a+4,b2)

)]
. (5.28)

Proof. Use equation (5.14) and follow the same line of reasoning as in Proposition

5.1.�

Remark 5.3 The call and put interest rate gamma for coupon bond options arise im-

mediately if one applies the decomposition technique of Jamshidian (1989), that is

Γ
cb
r,c :=

∂ 2ccb(.)

∂ r2 =
N

∑
i=1

ai
∂ρzc

c (r, t,T,si,Ki)

∂ r
=

N

∑
i=1

aiΓ
zc
r,c(r, t,T,si,Ki), (5.29)

Γ
cb
r,p :=

∂ 2 pcb(.)

∂ r2 =
N

∑
i=1

ai
∂ρzc

p (r, t,T,si,Ki)

∂ r
=

N

∑
i=1

aiΓ
zc
r,p(r, t,T,si,Ki). (5.30)

Proposition 5.3 Consider the formulae for pricing zero-coupon bond options under

the CIR model as defined in equations (5.6) and (5.9).

i. Call theta for zero-coupon bond options

θ
zc
c :=

∂czc(.)

∂ t
= Z(r, t,s)

[
ζs F(x1;a,b1)+ξ p(x1;a,b1)−ρ1 p(x1;a+2,b1)

]
(5.31)

−K Z(r, t,T )

[
ζT F(x2;a,b2)+ξ p(x2,a,b2)−ρ2 p(x2;a+2,b2)

]
.
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ii. Put theta for zero-coupon bond options

θ
zc
p :=

∂ pzc(.)

∂ t

= K Z(r, t,T )

[
ζT Q(x2;a,b2)−ξ p(x2,a,b2)+ρ2 p(x2;a+2,b2)

]

−Z(r, t,s)

[
ζs Q(x1;a,b1)−ξ p(x1;a,b1)+ρ1 p(x1;a+2,b1)

]
. (5.32)

Proof. Let us first consider the following auxiliary functions:

∂A(t,T )
∂ t

=
κθ

σ2
(κ +λ + γ)(eγ(T−t)−1)(2γ− (κ +λ + γ)

(κ +λ + γ)(eγ(T−t)−1)+2γ
A(t,T ), (5.33a)

∂B(t,T )
∂ t

=− 4γ2eγ(T−t)[
(κ +λ + γ)(eγ(T−t)−1)+2γ

]2 , (5.33b)

∂Z(r, t, j)
∂ t

= Z(r, t, j)

[
1

A(t, j)
∂A(t, j)

∂ t
− r

∂B(t, j)
∂ t

]
= Z(r, t, j)ζ j, j ∈ {T,s}, (5.33c)

ξ =
∂x1

∂ t
=

∂x2

∂ t
=

4r∗γ2eγ(T−t)

σ2(eγ(T−t)−1)2
, (5.33d)

ρ1 =
∂b1

∂ t
= b1γ

(φ +ψ +B(T,s))+(ψ +B(T,s))eγ(T−t)

(eγ(T−t)−1)(φ +ψ +B(T,s))
, (5.33e)

ρ2 =
∂b2

∂ t
= b2γ

(φ +ψ)+ψeγ(T−t)

(eγ(T−t)−1)(φ +ψ)
. (5.33f)

The call theta for a zero-coupon bond option is computed as

θ
zc
c :=

∂czc(.)

∂ t
=

∂Z(r, t,s)
∂ t

F(x1;a,b1)+Z(r, t,s)
∂F(x1;a,b1)

∂ t

−K

[
∂Z(r, t,T )

∂ t
F(x2;a,b2)+Z(r, t,T )

∂F(x2;a,b2)

∂ t

]
. (5.34)
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Using equations (5.12a), (5.12b), (5.33d), (5.33e), and (5.33f) we are able to compute the

following partial derivatives:

∂F(x1;a,b1)

∂ t
=

∂F(x1;a,b1)

∂x1

∂x1

∂ t
+

∂F(x1;a,b1)

∂b1

∂b1

∂ t

= p(x1;a,b1)ξ − p(x1;a+2,b1)ρ1, (5.35)

∂F(x2;a,b2)

∂ t
=

∂F(x2;a,b2)

∂x2

∂x2

∂ t
+

∂F(x2;a,b2)

∂b2

∂b2

∂ t

= p(x2;a,b2)ξ − p(x2;a+2,b2)ρ2. (5.36)

Finally, substituting equations (5.33c), (5.35) and (5.36) in equation (5.34) yields equation

(5.31). The put theta for a zero-coupon bond option is treated similarly or obtained via

put-call parity.�

Remark 5.4 The call and put theta for coupon bond options arise immediately if one

applies the decomposition technique of Jamshidian (1989), that is

θ
cb
c :=

∂ccb(.)

∂ t
=

N

∑
i=1

ai
∂czc(r, t,T,si,Ki)

∂ t
=

N

∑
i=1

aiθ
zc
c (r, t,T,si,Ki), (5.37)

θ
cb
p :=

∂ pcb(.)

∂ t
=

N

∑
i=1

ai
∂ pzc(r, t,T,si,Ki)

∂ t
=

N

∑
i=1

aiθ
zc
p (r, t,T,si,Ki). (5.38)

Remark 5.5 Clearly, equations (5.15), (5.27), and (5.31) satisfy the required partial

differential equation (5.2), with C(r, t) = 0, assuming the interest rate claim is a zero-

coupon bond call option contract. The same line of reasoning applies also for the other

three interest rate claims under analysis, that is call options on coupon-paying bonds

and put options on both zero-coupon and coupon-bearing bonds.
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Proposition 5.4 Consider the formulae for pricing zero-coupon bond options under

the CIR model as defined in equations (5.6) and (5.9).

i. Call eta for zero-coupon bond options

η
zc
c :=

∂czc(.)

∂K
= Z(r, t,T )

[
−F(x2;a,b2)+2 p(x2;a,b2)

(φ +ψ)

B(T,s)

]

−2Z(r, t,s) p(x1;a,b1)
(φ +ψ +B(T,s))

B(T,s)K
. (5.39)

ii. Put eta for zero-coupon bond options

η
zc
p :=

∂ pzc(.)

∂K
= Z(r, t,T )

[
Q(x2;a,b2)+2 p(x2;a,b2)

(φ +ψ)

B(T,s)

]

−2Z(r, t,s) p(x1;a,b1)
(φ +ψ +B(T,s))

B(T,s)K
. (5.40)

Proof. Let us first consider the following auxiliary functions:

∂x1

∂K
=−2(φ +ψ +B(T,s))

B(T,s)K
, (5.41a)

∂x2

∂K
=−2(φ +ψ)

B(T,s)K
, (5.41b)

∂b1

∂K
=

∂b2

∂K
= 0, (5.41c)

The call eta for a zero-coupon bond option is computed as

η
zc
c :=

∂czc(.)

∂K
= Z(r, t,s)

∂F(x1;a,b1)

∂K

−

[
Z(r, t,T )F(x2;a,b2)+K Z(r, t,T )

∂F(x2;a,b2)

∂K

]
. (5.42)
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Using equations (5.12a), (5.41a), and (5.41b) we are able to compute the following partial

derivatives:

∂F(x1;a,b1)

∂K
=

∂F(x1;a,b1)

∂x1

∂x1

∂K
=−2 p(x1;a,b1)

(φ +ψ +B(T,s))
B(T,s)K

, (5.43)

∂F(x2;a,b2)

∂K
=

∂F(x2;a,b2)

∂x2

∂x2

∂K
=−2 p(x2;a,b2)

(φ +ψ)

B(T,s)K
. (5.44)

Finally, substituting equations (5.43) and (5.44) in equation (5.42) yields equation (5.39).

The put eta for a zero-coupon bond option is treated similarly or obtained via put-call

parity.�

4 Numerical Experiments

To access the robustness of our formulae we have performed some numerical experi-

ments to compare the results of our closed-form solutions with other results available in

the literature, but obtained through finite difference schemes or numerical integration.

Tables 5.1 and 5.2 show the values of 5-year call and put option prices and the corre-

sponding deltas on a 15-year 8% (in Table 5.1) and 14% (in Table 5.2) coupon bond—

with the 10 coupons being paid annually—with par value 1,000 for different levels of the

riskless interest rate (r) and strike price (K) assuming a CIR framework, with parame-

ter values borrowed from Longstaff (1993, Tables 1 and 2), and using the Benton and

Krishnamoorthy (2003) algorithm for computing the noncentral chi-square distribution

function.
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Table 5.1: Call and put coupon bond option prices and deltas under the CIR model.

Call prices Put prices
r K = 960 K = 980 K = 1,000 K = 960 K = 980 K = 1,000

0.01 22.9307 12.3091 4.9562 3.0980 7.1924 14.5555
0.02 22.4987 12.0551 4.8427 3.1123 7.1962 14.5115
0.03 22.0746 11.8061 4.7318 3.1262 7.1994 14.4667
0.04 21.6583 11.5622 4.6234 3.1398 7.2018 14.4210
0.05 21.2495 11.3231 4.5174 3.1531 7.2034 14.3745
0.06 20.8481 11.0888 4.4138 3.1659 7.2044 14.3272
0.07 20.4541 10.8593 4.3125 3.1784 7.2047 14.2791
0.08 20.0673 10.6343 4.2135 3.1905 7.2044 14.2302
0.09 19.6875 10.4139 4.1167 3.2023 7.2033 14.1807
0.10 19.3147 10.1980 4.0221 3.2137 7.2016 14.1304
0.11 18.9487 9.9863 3.9296 3.2247 7.1992 14.0794
0.12 18.5894 9.7790 3.8392 3.2354 7.1962 14.0277
0.13 18.2367 9.5758 3.7508 3.2458 7.1926 13.9753
0.14 17.8905 9.3768 3.6645 3.2557 7.1883 13.9223
0.15 17.5507 9.1817 3.5801 3.2654 7.1834 13.8687

Call deltas Put deltas
r K = 960 K = 980 K = 1000 K = 960 K = 980 K = 1,000

0.01 0.0456 0.0269 0.0120 −0.0015 −0.0004 0.0046
0.02 0.0454 0.0267 0.0119 −0.0015 −0.0004 0.0047
0.03 0.0452 0.0265 0.0118 −0.0015 −0.0003 0.0049
0.04 0.0449 0.0263 0.0117 −0.0015 −0.0002 0.0050
0.05 0.0447 0.0261 0.0116 −0.0014 −0.0001 0.0052
0.06 0.0445 0.0259 0.0115 −0.0014 −0.0001 0.0053
0.07 0.0442 0.0257 0.0113 −0.0014 0.0000 0.0055
0.08 0.0440 0.0256 0.0112 −0.0014 0.0001 0.0056
0.09 0.0438 0.0254 0.0111 −0.0013 0.0002 0.0058
0.10 0.0435 0.0252 0.0110 −0.0013 0.0002 0.0060
0.11 0.0433 0.0250 0.0109 −0.0013 0.0003 0.0061
0.12 0.0431 0.0248 0.0108 −0.0013 0.0004 0.0063
0.13 0.0428 0.0247 0.0107 −0.0012 0.0004 0.0065
0.14 0.0426 0.0245 0.0106 −0.0012 0.0006 0.0066
0.15 0.0424 0.0243 0.0105 −0.0012 0.0007 0.0068

This table values 5-year call and put option prices and the corresponding deltas on a 15-year 8% coupon
bond—with the ten coupons being paid annually—with par value 1,000 for different levels of the riskless
interest rate (r) and strike price (K) assuming a CIR framework, and using the Benton and Krishnamoor-
thy (2003) algorithm for computing the non-central chi-square distribution function. Parameter values
borrowed from Longstaff (1993, Table 1): κ = 0.75, θ = 0.08, σ2 = 0.014, and λ = 0.
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Table 5.2: Call and put coupon bond option prices and deltas under the CIR model.

Call prices Put prices
r K = 1,340 K = 1,360 K = 1,380 K = 1,340 K = 1,360 K = 1,380

0.01 37.1791 25.3832 15.4984 3.1703 6.0904 10.9216
0.02 36.4970 24.8882 15.1747 3.1895 6.1083 10.9224
0.03 35.8269 24.4025 14.8575 3.2083 6.1255 10.9221
0.04 35.1687 23.9260 14.5467 3.2267 6.1420 10.9207
0.05 34.5222 23.4585 14.2423 3.2447 6.1578 10.9183
0.06 33.8871 22.9998 13.9441 3.2624 6.1729 10.9149
0.07 33.2633 22.5498 13.6519 3.2797 6.1873 10.9105
0.08 32.6506 22.1083 13.3657 3.2966 6.2010 10.9052
0.09 32.0488 21.6752 13.0853 3.3131 6.2141 10.8988
0.10 31.4578 21.2503 12.8107 3.3293 6.2265 10.8915
0.11 30.8772 20.8335 12.5416 3.3451 6.2383 10.8833
0.12 30.3070 20.4246 12.2781 3.3605 6.2494 10.8741
0.13 29.7470 20.0235 12.0199 3.3756 6.2598 10.8640
0.14 29.1969 19.6300 11.7670 3.3902 6.2696 10.8530
0.15 28.6567 19.2440 11.5193 3.4045 6.2788 10.8411

Call deltas Put deltas
r K = 1,340 K = 1,360 K = 1,380 K = 1,340 K = 1,360 K = 1,380

0.01 0.0513 0.0373 0.0244 −0.0014 −0.0014 −0.0001
0.02 0.0511 0.0370 0.0242 −0.0014 −0.0013 0.0000
0.03 0.0508 0.0368 0.0240 −0.0014 −0.0013 0.0001
0.04 0.0506 0.0366 0.0239 −0.0014 −0.0013 0.0001
0.05 0.0504 0.0364 0.0237 −0.0014 −0.0012 0.0002
0.06 0.0501 0.0362 0.0235 −0.0014 −0.0012 0.0003
0.07 0.0499 0.0360 0.0233 −0.0014 −0.0011 0.0004
0.08 0.0496 0.0357 0.0232 −0.0014 −0.0011 0.0005
0.09 0.0494 0.0355 0.0230 −0.0014 −0.0011 0.0006
0.10 0.0492 0.0353 0.0228 −0.0013 −0.0010 0.0007
0.11 0.0489 0.0351 0.0226 −0.0013 −0.0010 0.0007
0.12 0.0487 0.0349 0.0225 −0.0013 −0.0009 0.0008
0.13 0.0485 0.0347 0.0223 −0.0013 −0.0009 0.0009
0.14 0.0482 0.0345 0.0221 −0.0013 −0.0008 0.0010
0.15 0.0480 0.0343 0.0220 −0.0013 −0.0008 0.0011

This table values 5-year call and put option prices and the corresponding deltas on a 15-year 14%
coupon bond—with the ten coupons being paid annually—with par value 1,000 for different levels of
the riskless interest rate (r) and strike price (K) assuming a CIR framework, and using the Benton
and Krishnamoorthy (2003) algorithm for computing the non-central chi-square distribution function.
Parameter values borrowed from Longstaff (1993, Table 2): κ = 0.75, θ = 0.08, σ2 = 0.014, and λ = 0.

Both tables report call and put bond option prices that are very close to the results
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shown in Longstaff (1993, Tables 1 and 2). While Longstaff (1993) uses the approx-

imation method offered by Sankaran (1963) for computing the noncentral chi-square

distribution function, we have used the Benton and Krishnamoorthy (2003) algorithm

which is clearly much more accurate, thus explaining the small differences found when

rounding our option prices to two decimal places. The tables also highlight that we can

efficiently (and more accurately) value call and put deltas of bond options using our

new proposed closed-form solutions (5.25) and (5.26). Even though the results shown

in Longstaff (1993, Tables 1 and 2) are similar, they have been obtained through finite

difference schemes, which are clearly, by its nature, less accurate and computationally

more demanding than our analytical formulae.

Table 5.3 shows the values of 5-year call and put option prices, rhos (i.e. interest rate

deltas), deltas, and thetas on a 15-year 10% coupon bond—with the 10 coupons being

paid annually—with par value 100 for different levels of the riskless interest rate (r)

and strike price (K = 100) assuming a CIR framework, with parameter values borrowed

from Wei (1997, Table II), and using the Benton and Krishnamoorthy (2003) algorithm

for computing the non-central chi-square distribution function.

One of the salient features of this table is that while our call option prices are similar (as

expected) to the ones presented in the third and fourth columns of Wei (1997, Table

II, Panel A), who also uses the Sankaran (1963) approximation for computing the non-

central chi-square distribution function, our interest rate deltas, obtained via equation

(5.21), do not completely agree with the ones presented in the third and fourth columns

of Wei (1997, Table II, Panel B), especially when r ≥ 24%.
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Table 5.3: Coupon bond option prices, rhos, deltas, and thetas under the CIR model.

Call options Put options
r Price Rho Delta Theta Price Rho Delta Theta

0.04 9.1833 −92.5420 0.3029 1.3791 0.0382 1.7847 −0.0058 1.7847
0.06 7.4484 −81.0065 0.2853 0.9106 0.0885 3.3390 −0.0118 3.3390
0.08 5.9407 −69.8268 0.2647 0.5076 0.1754 5.4324 −0.0206 5.4324
0.10 4.6525 −59.0753 0.2410 0.1782 0.3084 7.9183 −0.0323 7.9183
0.12 3.5737 −48.9233 0.2148 −0.0726 0.4932 10.5569 −0.0463 10.5569
0.14 2.6902 −39.5845 0.1870 −0.2452 0.7299 13.0718 −0.0618 13.0718
0.16 1.9836 −31.2550 0.1589 −0.3464 1.0135 15.2090 −0.0773 15.2090
0.18 1.4323 −24.0685 0.1317 −0.3880 1.3345 16.7814 −0.0918 16.7814
0.20 1.0129 −18.0749 0.1064 −0.3846 1.6803 17.6903 −0.1041 17.6903
0.22 0.7016 −13.2408 0.0839 −0.3514 2.0375 17.9239 −0.1135 17.9239
0.24 0.4762 −9.4665 0.0645 −0.3019 2.3931 17.5407 −0.1195 17.5407
0.26 0.3168 −6.6099 0.0485 −0.2466 2.7357 16.6445 −0.1220 16.6445
0.28 0.2067 −4.5109 0.0356 −0.1931 3.0563 15.3605 −0.1212 15.3605
0.30 0.1324 −3.0114 0.0256 −0.1456 3.3484 13.8147 −0.1173 13.8147

This table values 5-year call option and put prices, and the corresponding rhos, deltas, and thetas on a
15-year 10% coupon bond—with the ten coupons being paid annually—with par value 100 for different
levels of the riskless interest rate (r) and strike price K = 100 assuming a CIR framework, and using
the Benton and Krishnamoorthy (2003) algorithm for computing the non-central chi-square distribution
function. Parameter values borrowed from Wei (1997, Table II): κ = 0.25, θ = 0.085, σ = 0.05, and λ = 0.

Apparently, there are some typos in Wei (1997, Table II) for these cases—the same

line of reasoning is observed in Wei (1997, Tables I and IV), but for interest rate deltas

under the Vasicek (1977) model—because the corresponding absolute values are ap-

proximately equal. Cox et al. (1985) and Longstaff (1993) show that zero-coupon and

coupon-paying bond call options are strictly decreasing functions of the riskless inter-

est rate. Thus, the first derivative of bond call options with respect to interest rates (i.e.

interest rate deltas) illustrated in the third and fourth columns of Wei (1997, Table II,

Panel B) should always be negative, as shown in the third column of our Table 5.3. An

increase in the riskless interest rate, however, has an indeterminate effect on the value

of a bond put as highlighted in Tables 5.1 and 5.2. The implications of this issue for the

hedging behavior of interest rate puts has been discussed in Longstaff (1993).
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5 Valuation and Comparative Statics of Sinking-Fund Bonds

in the CIR Framework

Bonds are said to have embedded sinking-fund provisions when the issuer is required

to retire portions of the bond issue before maturity, according to a pre-specified amorti-

zation schedule. The delivery option associated to this clause allows the issuer to retire

the portions of the issue either by (i) calling the bonds by lottery at a pre-determinate

value, usually at par, or (ii) buying back the bonds at the prevailing market value.

Bacinello et al. (1996) provide an elegant framework for analyzing the delivery option

embedded in the sinking-fund bond provision (with only one sinking-fund date before

maturity) under the one-dimensional stochastic term structure interest rate models of

Vasicek (1977) and Cox et al. (1985). Bacinello et al. (1996) were able to analyze the

comparative statics properties of the sinking-fund bond in the Vasicek (1977) frame-

work analytically, but they use a numerical approach for the Cox et al. (1985) model.

Thus, the main purpose of this section is to extend the Bacinello et al. (1996) ap-

proach by analyzing, in closed-form, the comparative statics properties of a default-free

sinking-fund bond in the CIR framework.

Following Bacinello et al. (1996), a sinking-fund bond is characterized by a coupon rate

ic and an amortization schedule {(t j,C j)}, where C j > 0 is the principal that the issuer is

required to retire at time t j. We also assume that j = 1,2 and, without loss of generality,

C1 +C2 = 1, i.e. the sinking-fund bond is issued with a normalized principal, retired in

two dates only. Letting t0 denote the time of issuance of the bond, its coupon payments,

I j, are then assumed to be given by I1 = (1+ ic)(t1−t0)−1, and I2 =C2
[
(1+ ic)(t2−t1)−1

]
.

At time t1 the issuer has the (delivery) option to retire the fraction C1 of the principal

either by calling it by lottery at par value, or by buying it back at the market value.
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Bacinello et al. (1996, Proposition 2.1) show that the time-t price of the sinking-fund

bond, Bs f (r, t), can be expressed either in terms of the corresponding serial bond and a

bond put option, or in terms of the corresponding coupon bond and a bond call option,

that is

Bs f (r, t) = Bs(r, t)−C1(1+ ic)(t2−t1)pzc
(

r, t, t1, t2,(1+ ic)−(t2−t1)
)
, (5.45)

Bs f (r, t) = Bcb(r, t)−C1(1+ ic)(t2−t1)czc
(

r, t, t1, t2,(1+ ic)−(t2−t1)
)
, (5.46)

where Bs(r, t) and Bcb(r, t) represent, respectively, the time-t price of the corresponding

serial and coupon bonds as given by Bacinello et al. (1996, Equations 2.2 and 2.3).

Let us now assume that t2−t1 = t1−t0 = 1. Following the same line of reasoning applied

by Bacinello et al. (1996) for the Vasicek (1977) framework, we substitute the relations

given by Bacinello et al. (1996, Equations 2.1 and 2.3) and the bond call option pricing

formula (5.6) in equation (5.46). We then obtain, for t < t1,

Bs f (r, t) = Z(r, t, t1)
[
ic +C1F(x2;a,b2)

]
+(1+ ic)Z(r, t, t2)

[
1−C1F(x1;a,b1)

]
, (5.47)

with x1 and x2 defined as in equations (5.7a) and (5.7b), but with K = (1+ ic)−1 in equa-

tion (5.8c). Thus, the sinking-fund bond is shown to depend explicitly on the fraction C1

of outstanding capital to be retired at t1, the coupon rate ic, the spot rate r prevailing on

the market, and the CIR parameters κ, θ , σ , and λ . We are now able to extend the an-

alytical results provided by Bacinello et al. (1996) under the Vasicek (1977) framework

for the CIR model case.

98



The sinking-fund bond under the CIR model is an increasing function of the coupon

rate. To establish this fact, take the derivative of (5.47) with respect to ic, and observe

that the relation

Z(r, t, t2)p(x1;a,b1)(φ +ψ +B(t1, t2)) = Z(r, t, t1)p(x2;a,b2)(φ +ψ)(1+ ic)−1 (5.48)

holds as an identity, so that, after some algebraic manipulations, we have

∂Bs f (.)

∂ ic
= Z(r, t, t1)+Z(r, t, t2)

(
1−C1F(x1;a,b1)

)
> 0, (5.49)

where the strict positivity follows from the fact that, by assumption, 0 <C1 < 1. Consid-

ering now the premiums Bcb(.)−Bs f (.) and Bs(.)−Bs f (.) of the corresponding coupon

and serial bonds over the sinking-fund bond, and using respectively equations (5.46)

and (5.45), coupled with t2− t1 = t1− t0 = 1, we obtain

∂ (Bcb(.)−Bs f (.))

∂ ic
=−

(
K

czc(.)

∂czc(.)

∂K
−1

)
C1czc(.) =C1Z(r, t, t2)F(x1;a,b1)> 0, (5.50)

∂ (Bs(.)−Bs f (.))

∂ ic
=−

(
K

p zc(.)

∂ pzc(.)

∂K
−1

)
C1 pzc(.) =−C1Z(r, t, t2)Q(x1;a,b1)< 0,(5.51)

so that the higher the coupon rate, the larger is the premium demanded by the cor-

responding coupon bond over the sinking-fund bond, and the smaller is the premium

commanded by the corresponding serial bond over the sinking-fund bond. Note that

the sign of the above derivatives depends entirely on the elasticity of the option prices
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to the strike price, in particular on the fact that such elasticity is negative for the call

and exceeds 1 for the put.

We can analyze also explicitly the comparative statics properties of the sinking-fund

bond with respect to the spot rate r (rho) and time t (theta). The first sensitivity measure

is given by

ρ
s f
B :=

∂Bs f (.)

∂ r
=

∂Z(r, t, t1)
∂ r

(
ic +C1F(x2;a,b2)

)
+

∂Z(r, t, t2)
∂ r

(1+ ic)
(

1−C1F(x1;a,b1)
)

+C1(1+ ic)Z(r, t, t2)p(x1;a+2,b1)
2φ 2eγ(t−t1)

φ +ψ +B(t1, t2)

−C1Z(r, t, t1)p(x2;a+2,b2)
2φ 2eγ(t−t1)

φ +ψ
, (5.52)

with ∂Z(r, t, ti)/∂ r, for i = t1, t2, given by equation (5.17a). The effect on the premiums

Bcb(.)−Bs f (.) and Bs(.)−Bs f (.) of an infinitesimal change in the spot interest rate r can

be stated as

∂ (Bcb(.)−Bs f (.))

∂ r
= C1(1+ ic)

∂c zc(r, t, t1, t2,(1+ ic)−1)

∂ r
, (5.53)

∂ (Bs(.)−Bs f (.))

∂ r
= C1(1+ ic)

∂ p zc(r, t, t1, t2,(1+ ic)−1)

∂ r
, (5.54)

where ∂czc(r, t, t1, t2,(1+ ic)−1)/∂ r and ∂ pzc(r, t, t1, t2,(1+ ic)−1)/∂ r are given, respec-

tively, by equations (5.15) and (5.16), but with K = (1+ ic)−1.

The effect on Bs f (.) of an infinitesimal change in t can be computed explicitly as
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θ
s f
B :=

∂Bs f (.)

∂ t
=

∂Z(r, t, t1)
∂ t

(
ic +C1F(x2;a,b2)

)
+

∂Z(r, t, t2)
∂ t

(1+ ic)
(

1−C1F(x1;a,b1)
)

−C1(1+ ic)Z(r, t, t2)
(

p(x1;a,b1)ξ − p(x1;a+2,b1)ρ1

)
+C1Z(r, t, t1)

(
p(x2;a,b2)ξ − p(x2;a+2,b2)ρ2

)
, (5.55)

where ∂Z(r, t, ti)/∂ t, with i = t1, t2, is given by equation (5.33c). As for the influence of

the parameter t on the premiums Bcb(.)−Bs f (.) and Bs(.)−Bs f (.), we have

∂ (Bcb(.)−Bs f (.))

∂ t
= C1(1+ ic)

∂c zc(r, t, t1, t2,(1+ ic)−1)

∂ t
, (5.56)

∂ (Bs(.)−Bs f (.))

∂ t
= C1(1+ ic)

∂ p zc(r, t, t1, t2,(1+ ic)−1)

∂ t
, (5.57)

where ∂czc(r, t, t1, t2,(1+ ic)−1)/∂ t and ∂ pzc(r, t, t1, t2,(1+ ic)−1)/∂ t are given, respectively,

by equations (5.31) and (5.32), but with K = (1+ ic)−1.

Now we want to prove a result that compares the stochastic durations of the sinking-

fund bond with those of the corresponding serial and coupon bonds in the CIR model.

Following Cox et al. (1979), the relative basis risk of a zero-coupon bond (under the CIR

model), with maturity τ := s− t, is given by g(τ) = 2(eγτ−1)/
(
(κ +λ +γ)(eγτ−1)+2γ

)
=

B(t,s) = B(τ), a function that is strictly increasing (∂B(τ)/∂τ > 0) and continuous on all

positive reals, with the inverse function given by g−1(τ)= (1/γ) ln(1−2γτ/((κ+λ +γ)τ−

2)), and defined on the interval ]0,2/(κ +λ + τ)[. Moreover, the stochastic duration of

any interest rate sensitive instrument with price f (r, t) is given by

D f = g−1(x), (5.58)
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where x =−(∂ f (r, t)/∂ r)/ f (r, t) is the basis risk of f . Next proposition explicitly relates

the stochastic durations of the sinking-fund, corresponding coupon and corresponding

serial bonds under the CIR framework, thus extending the analytical results provided

by Bacinello et al. (1996, Proposition 4.1), but for the Vasicek (1977) model.

Proposition 5.5 For any set of parameters, the stochastic durations Ds f (r, t), Dcb(r, t),

and Ds(r, t) of the sinking-fund, corresponding coupon and corresponding serial bonds

under the CIR model satisfy the relation

Ds(r, t)< Ds f (r, t)< Dcb(r, t). (5.59)

Proof. To verify the first inequality, use equations (5.45) and (5.52), along with the fact

that g−1(x) is (positive and) increasing, to observe that this inequality becomes

1
γ

ln
(

1− 2γρs
B

(κ +λ + γ)ρs
B +2Bs(.)

)
<

1
γ

ln
(

1−
2γρ

s f
B

(κ +λ + γ)ρ
s f
B +2Bs f (.)

)
,

which is equivalent to pzc(r, t, t1, t2,(1+ ic)−1)ρ
s f
B −Bs(r, t)ρzc

p < 0. To check the second

inequality, use equation (5.46) and follow the same reasoning to obtain Bcb(r, t)ρzc
c −

czc(r, t, t1, t2,(1+ ic)−1)ρ
s f
B < 0, which concludes the proof.�

Using the same set of parameters as in Bacinello et al. (1996), Figure 5.1 highlights that

the stochastic duration of the sinking-fund bond is between the stochastic duration of

the corresponding serial and coupon bonds. While this issue has been shown already

by Bacinello et al. (1996, Figure 13) through numerical differentiation, we have now

established this property analytically via Proposition 5.5 and using our closed-form

solutions.
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Figure 5.1: Stochastic duration of a sinking-fund bond under the CIR framework.

6 Conclusions

In this paper, we have derived closed-form solutions for determining sensitivity mea-

sures of both pure discount and coupon-paying bond options under the CIR framework,

which are shown to be accurate, easy to implement, and computationally very efficient.

Finally, we offer analytically tractable formulae to analyze the comparative-statics prop-

erties of a sinking-fund bond under the same one-dimensional interest rate dynamics

setting.
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Chapter 6

A Note on (Dis)Investment Options and

Perpetuities under CIR Interest Rates*

Abstract: In this chapter, we discuss alternative ways of computing the options to

invest in and divest from an investment project in a CIR economy Cox et al. (1985).

Moreover, different methods of determining CIR perpetuities will also be analyzed.
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1 Introduction

The most realistic case of the capital theory of investment is characterized by invest-

ments with costly reversibility in which a firm can purchase capital at a given price (by

paying an investment cost I) and sell capital at a lower price (by receiving the divest-

ment proceeds I), i.e. there is a fraction α of the invested capital, α := I/I (0 < α < 1),

that a firm can recoup when divesting.

Decisions made under an uncertain environment where it is costly to reverse economic

actions lead to an intermediate range, called the hysteretic band, where the continua-

tion is the optimal policy until some threshold is reached.

In this chapter, such as in Dias (2006), we consider the situation of a firm that can

invest I at any time and receive a perpetuity (a project) with constant cash flow rate.

Even though the project’s cash flows are fixed, its perpetuity value (negatively related

to rates) is stochastic because the interest rate r used to discount the perpetual flows

is assumed to follow a CIR (Cox et al. (1985)) diffusion process and thus r can change.

Investment in this perpetual project will be triggered when interest rates are low (high

perpetuity value) and in particular at a critical level r.

Let us denote by F1(r)+P(r) and F0(r) the value functions for the active project (with

perpetuity) which has the option to shut, and for the inactive project (without flow) but

with the option to open, respectively. Investment will be triggered as the interest rate

r falls to the lower threshold r whilst divestment will be triggered as rates rise to the

upper trigger r (r > r). Thus, the decision to switch from the idle state to the operating

state, and vice-versa, can be described by the following value matching conditions
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idle state → operating state, that is F0(r)+ I → F1(r)+P(r)

idle state ← operating state, that is F0(r)+ I ← F1(r)+P(r).

Thus, an idle firm invests when rates fall to r and an operating firm will disinvest once

the interest rate rise to r. Denote by V the value premium of active to idle firms, this

depend on current rates r:

V (r) = F1(r)+P(r)−F0(r), (6.1)

and the value matching conditions can be coupled with two smooth pasting (first order)

conditions

V (r) = I, V ′(r) = 0, V (r) = I, V ′(r) = 0. (6.2)

The range (r,r) is the hysteretic band of the problem since idle firms do not invest and

operating firms do not suspend within this intermediate level of interest rate.

To find the entry and exit interest rate thresholds, and thus the optimal policy of the

firm, we need to numerically evaluate a system of four highly non-linear equations (i.e.,

with two value matching and two smooth pasting conditions).

In this chapter, we discuss alternative ways of computing the options to invest in and

divest from a project in a CIR economy. Furthermore, different methods of determining

CIR perpetuities will also be analyzed.
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The remainder of this chapter is as follows. Section 2 discusses in detail the necessary

components for analyzing the optimal entry and exit decision of a firm with CIR interest

rates. Section 3 presents computational results comparing the alternative methods of

computing the options components and perpetuities under CIR diffusions. Section 4

presents the concluding remarks.

2 Optimal entry and exit decisions under CIR interest rates

Under the risk-neutral measure Q, Cox et al. (1985) modeled the evolution of the inter-

est rate, rt , by the stochastic differential equation (sde):

drt =
[
κθ − (λ +κ)rt

]
dt +σ

√
rtdWQ

t , (6.3)

where WQ
t is a standard Brownian motion under Q, κ, θ and σ are positive constants

representing reversion rate, asymptotic rate and volatility parameters, respectively, and

λ is the market risk. The condition 2κθ > σ2 has to be imposed to ensure that the

interest rate remains positive.6.1

2.1 CIR General Claims

Following Cox et al. (1985), the price of a general interest rate claim F(r, t) with cash

flow rate C(r, t) satisfies the following partial differential equation

1
2

σ
2r

∂ 2F(r, t)
∂ r2 +κ(θ − r)

∂F(r, t)
∂ r

+
∂F(r, t)

∂ t
−λ r

∂F(r, t)
∂ r

− rF(r, t)+C(r, t) = 0. (6.4)

6.1See Feller (1951) for a complete description of the boundary conditions.
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The price of a zero coupon bond with maturity at T , Z(r, t,T ), satisfies the equation (6.4)

with C(r, t) = 0 subject to the boundary condition Z(r,T,T ) = 1 and is given by

Z(r, t,T ) = A(t,T )e−B(t,T )r (6.5)

where A(t,T )=
(

2γ e

(
(κ+λ+γ)(T−t)

)
/2

(κ+λ+γ)
(

eγ(T−t)−1
)
+2γ

) 2κθ

σ2

, B(t,T )=
2
(

eγ(T−t)−1
)

(κ+λ+γ)
(

eγ(T−t)−1
)
+2γ

, and γ =

(
(κ+

λ )2 +2σ2
)1/2

.

2.2 CIR Perpetuity

In a CIR diffusion, the value of a perpetuity, denoted by P(r), that pays coupons at a

constant unit rate C(r, t) = 1, should satisfy the following ordinary differential equation

(ode):6.2

1
2

σ
2r

d2P(r)
dr2 +κ(θ − r)

dP(r)
dr
−λ r

dP(r)
dr
− rP(r)+1 = 0. (6.6)

The solution of ode (6.6) is the value of a perpetuity given by

P(r) = EQ
t0

[∫
∞

t0
e−

∫ t
t0

rsdsdt
]
=
∫

∞

t0
Z(r, t0, t)dt, (6.7)

where Z(r, t,T ) is the price of a zero coupon bond. There are several ways to evaluate

the value of this perpetuity. In this chapter, we analyze two methods proposed by

Delbaen (1993) and one method proposed by Geman and Yor (1993). In the first

6.2We must note that since limt→∞
∂P(r,t)

∂ t = 0, the value of a perpetuity is not time dependent.
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method of Delbaen (1993) (method D1), the value of a perpetuity is computed in the

following manner:

P(r) =
∫ 1

0

2
η

e−z(2r/η)(1+β z)(η/2γ)(2κθ/σ2)−1(1− z)[(γ−κ−λ )/2γ](2κθ/σ2)−1dz, (6.8)

where η = κ +λ + γ and β = (γ −κ −λ )/η . In the second method of Delbaen (1993)

(method D2), the value of a perpetuity is given by

P(r) =
γ

κθ
Φ1(a,b,c,x,y), (6.9)

where Φ1 is the degenerate hypergeometric function defined as

Φ1(a,b,c,x,y) =
∞

∑
m=0

∞

∑
n=0

1
n!

1
m!

(a)m+n

(c)m+n
(b)mxmyn, (6.10)

where (α) j is the Pochhammer symbol, and where a = 1, b = 1− κ+λ+γ

2γ

2κθ

σ2 , c = 1+

γ−κ−λ

2γ

2κθ

σ2 , x =− γ−κ−λ

κ+λ+γ
, and y =− 2r

κ+λ+γ
.

The alternative formulation proposed by Geman and Yor (1993) (method GY ) is given

by

P(r) =
ψ

ω
eφψr/2

∫ 1

0

(1+ z)p(1− z)qe
rω(z+ϕ)
2(1+ϕz)

(1+ϕz)δψ/2 dz, (6.11)

where δ = κθ , φ = κ+λ

2 , ψ = 4
σ2 , ω = (2ψ +φ 2ψ2)1/2, ϕ = φψ

ω
, p = φδψ2

4ω
+ δψ

4 − 1, and

q = δψ

4 −
φδψ2

4ω
−1.
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2.3 Complementary Functions

Particularizing the time homogeneous situation gives a simple ode that determines

the perpetual option to invest in or divest from a project. Furthermore for the options

themselves no cash flows are present, so C(r) = 0

1
2

σ
2r

d2F(r)
dr2 +κ(θ − r)

dF(r)
dr
−λ r

dF(r)
dr
− rF(r) = 0. (6.12)

Dias and Shackleton (2011) have shown that the ode (6.12) can be transformed into

Kummer’s equation given by:

z0g′′(z0)+(b− z0)g′(z0)−a0g(z0) = 0, (6.13)

z1g′′(z1)+(b− z1)g′(z1)−a1g(z1) = 0, (6.14)

with a0,1 = κθ

σ2

(
1∓ κ+λ

γ

)
, b = 2κθ

σ2 , and z0,1 = ±2γr
σ2 . The solutions to (6.13) and (6.14)

corresponds to the complementary functions to be used for an idle firm and an operat-

ing firm, respectively. Since there are many alternative solutions to Kummer’s equation

(see, Abramowitz and Stegun (1972, Equations 13.1.12-19) care must be taken to

choose the ones that give simpler solutions and are easier to apply boundary condi-

tions. In Dias and Shackleton (2011), the complete solutions of equations (6.13) and

(6.14) are given by (see, Abramowitz and Stegun (1972, Equation 13.1.11))

y = A0M(a0,b,z0)+B0U(a0,b,z0), (6.15)

y = A1M(a1,b,z1)+B1U(a1,b,z1), (6.16)
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where A0,1 and B0,1 are arbitrary constants, M(a,b,z) is the Kummer’s confluent hyper-

geometric function (e.g., Abramowitz and Stegun (1972, Equation 13.1.2)), and finally

U(a,b,z) is the Tricomi confluent hypergeometric function (e.g., Abramowitz and Stegun

(1972, Equation 13.1.3)).

If we multiply the complete solutions (6.15) and (6.16) by ev0r and ev1r, respectively, with

v0,1 =
κ+λ∓γ

σ2 , and reverse the change of variables, we obtain

F0(r) =C1ev0rM(a0,b,z0)+C2ev0rU(a0,b,z0), (6.17)

F1(r) =C3ev1rM(a1,b,z1)+C4ev1rU(a1,b,z1), (6.18)

which are also solutions of the ode (6.12), and where C1−4 are constants to be deter-

mined from boundary conditions.

The solution to (6.12) can also be obtained via Mathematica or Maple. For instance, Dias

(2006) provides the following solutions for an idle firm and an operating firm obtained

through Mathematica:

F0(r) =C1Mev0r+µ log(r)U(a,1+µ,z0)+C2Mev0r+µ log(r)Lβ
n (z0), (6.19)

F1(r) =C3Mev0r+µ log(r)U(a,1+µ,z0)+C4Mev0r+µ log(r)Lβ
n (z0), (6.20)

with µ = 1− 2κθ

σ2 , a =−κθ(κ+λ+γ)−σ2γ

σ2γ
, β = µ, n =−a, and where Lβ

n (z) is the Laguerre

polynomial as defined in Abramowitz and Stegun (1972, Equation 22.5.54).

Carmona and León (2007) provide also an alternative solution of equation (6.12) for the
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valuation of an investment project with the option to wait, F0(r), given by6.3

F0(r) =Cev0r
(

M(a0,b,z0)−
Γ(b)
Γ(a0)

Γ(1+a0 +b)
Γ(2−b)

z1−b
0 M(a0−b+1,2−b,z0)

)
. (6.21)

Even though equations (6.17)-(6.21) are all solutions to equation (6.12) we should choose

the ones that are easier to use. For instance, to solve the entry and exit problems we

need to numerically evaluate a system of four highly non-linear equations. Thus, the

appropriate choice of the options components solutions is relevant for simplifying nu-

merical computations. The analytical study of the Kummer’s confluent hypergeometric

functions M(a,b,z) and U(a,b,z) allow us to conclude that the solution of Dias and

Shackleton (2011) is the easiest to apply and turns the economic hysteresis problem

much more simple to analyze and understand. Based on these observations, we de-

scribe below the necessary boundary conditions that should be applied to equations

(6.17) and (6.18).

2.4 Boundary and First Order Conditions

Given the near-zero and asymptotic behavior of the functions M(a,b,z) and U(a,b,z)

and the necessary boundary conditions, Dias and Shackleton (2011) found that the

expected net present value in the idle state with the option to open and the option to

switch out of the perpetuity are respectively given by:

F0(r) =C2ev0rU(a0,b,z0), (6.22)

6.3Even though Carmona and León (2007) does not present solutions for the option to divest, F1(r) could also
be easily obtained.
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F1(r) =C3ev1rM(a1,b,z1), (6.23)

which, using (6.1) and (6.2), lead to two value matching conditions

F1(r)+P(r)−F0(r) = I and F1(r)+P(r)−F0(r) = I. (6.24)

The first order (smooth pasting) conditions are given by

dF0(r)
dr

=
dF1(r)

dr
+

dP(r)
dr

and
dF0(r)

dr
=

dF1(r)
dr

+
dP(r)

dr
. (6.25)

Thus, the solution of the two sided control problem rests on the determination of the

two embedded constants C2, C3, and two thresholds r, r.

3 Numerical Analysis

This section aims to present computational comparisons of the alternative methods

of computing the value of a perpetuity, and then using these results to analyze the

investment hysteresis problem.

3.1 Perpetuities

To compare, in terms of speed and accuracy, the computation of a perpetuity under

the CIR diffusion we need to choose a benchmark. An obvious candidate for a bench-

mark is to use numerical integration using, for instance, Gauss-Kronrod’s method. In

order to simplify the numerical computations, we start to analyze if the use of a fixed
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number Tmax in the upper limit of the integral of the price of a CIR zero coupon bond∫
∞

t0 Z(r, t0, t)dt, instead of using infinity, will not generate any problem.6.4 The results are

shown in Table 6.1. Considering Tmax = 5,000 seems to be quite reasonable for the

analysis and it will simplify the numerical computations if we use this approach.

Table 6.1: Benchmark selection.

κ θ

Tmax θ 0.15 0.50 0.90 Tmax κ 0.03 0.09 0.15
100 0.09 15.983797 12.295701 11.795340 100 0.50 31.816054 12.295701 8.052518
500 0.09 15.986306 12.296527 11.706291 500 0.50 33.154585 12.296527 8.052518

5,000 0.09 15.986306 12.296527 11.706291 5,000 0.50 33.154593 12.296527 8.052518
∞ 0.09 15.986306 12.296527 11.706291 ∞ 0.50 33.154593 12.296527 8.052518

Parameters used in calculations: σ = 0.125,λ =−0.05, and r = 0.

Now we want to evaluate the differences in methods proposed by Delbaen (1993) and

Geman and Yor (1993) compared against the selected benchmark. Table 6.2 reports

such comparison results using the following set of parameters: σ ∈ {0.05,0.07, · · · ,0.17,

0.19}, r ∈ {0,0.01, · · · ,0.14,0.15}, λ ∈ {−0.10,−0.05,0}, κ ∈ {0.15,0.20, · · · ,0.85,0.90},

and θ ∈ {0.030,0.045, · · · ,0.885,0.900}. This combination of parameters produce 55,296

perpetuity values.

Table 6.2: Differences in perpetuity values for each method compared against the benchmark.

Methods MaxAE MaxRE RMSE MeanAE n CPU time
D1 2.97E−01 8.45E−03 3.43E−04 2.97E−03 2,263 275s
D2 4.93E−03 1.52E−04 4.44E−10 9.41E−08 0 9,147s
GY 2.90E−01 8.27E−03 3.27E−04 2.89E−03 2,238 377s

The MaxAE, MaxRE, RMSE, MeanAE, and n denote, respectively, the maximum abso-

lute error, the maximum relative error, the root mean squared error, the mean absolute

6.4We have tried other combinations and we have reached the same conclusions.
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error, and the number of times the absolute difference between the two methods ex-

ceeds one penny. The last column of the Table 2 reports the CPU time, in seconds,

for computing 55,296 values of perpetuities, using the function Timing[.] available in

Mathematica 7.0, running on a Pentium IV (2.53GhZ) personal computer. The results

from Table 2 indicate that the Method D2 proposed by Delbaen (1993) performs best in

terms of accuracy, and the method D1 proposed by Delbaen (1993) is the most efficient

in terms of computation time.

3.2 Entry and Exit Problem

Table 6.3 presents the results for investment options on a CIR economy using the three

alternative formulations described above (and after applying the appropriate boundary

conditions) and under the same set of parameters as in Carmona and León (2007),

i.e., κ = 0.45, θ = 0.03, σ = 0.15, and λ = 0. In addition, we use an investment cost

of I = 5. The perpetuity value is computed using the method D2 proposed by Delbaen

(1993). As expected, the option value is the same under the three alternative solu-

tions. However, given that the solution proposed by Dias and Shackleton (2011) is

much more simple the preference is to use this one. Table 4 illustrates the upper and

lower interest rate thresholds for the entry and exit problem in a CIR economy for the

same parameters set defined in Table 3. When α = 0, an operating firm never shuts its

project. Therefore, the corresponding threshold represents the interest rate level that

will induce an idle firm to enter in a project and continue its operations forever since the

option to shut down is worthless. Table 4 reveals also that the increasing levels of flex-

ibility reduce, as expected, the hysteric band. These results provide useful insights for

practitioners since they clearly highlight that managerial consideration of abandonment

options at the time of project initiation can add value.
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Table 6.3: Option to invest in a CIR economy.

Equation Constant r F0(r)
(6.17) 34.4582 0.1759 21.1574
(6.19) 16.1497 0.1759 21.1574
(6.21) 25.8925 0.1759 21.1574

CIR parameters used in calculations: κ = 0.45, θ = 0.03, σ = 0.15, and λ = 0. The investment cost is set at I = 5.

Table 6.4: Upper and lower interest rate thresholds for the entry and exit problem in a CIR
economy.

α r r
0.00 0.1759 +∞

0.25 0.1759 0.9439
0.50 0.1759 0.8897
0.75 0.1759 0.5496
1.00 0.2000 0.2000

CIR parameters used in calculations: κ = 0.45, θ = 0.03, σ = 0.15, and λ = 0. The investment cost and the
disinvestment proceeds are set at I = 5 and I := α I, respectively.

4 Conclusion

In this paper, we analyzed the alternative methods to calculate the value of a perpetuity

under a CIR diffusion, and we conclude that the method D2 proposed by Delbaen

(1993) performs best in terms of accuracy. We also discussed the alternative ways to

calculate the options to invest in or disinvest from a project under a CIR economy, and

we conclude that the solution given in Dias and Shackleton (2011) is more simple for

applying the smooth pasting conditions, particularly for entry and exit problems.
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Chapter 7

Entry and Exit Decisions under

Uncertainty for a Generalized Class of

One-Dimensional Diffusions*

Abstract: We consider the optimal entry and exit policy of a firm in the presence of

output price uncertainty and costly reversibility of investment under a generalized class

of one-dimensional diffusions, namely, the CEV process and the mean-reverting CEV

process. For these processes, we analyze how output price uncertainty and costly

reversibility affects the optimal entry and exit policy of a competitive price-taking firm,

and how the hysteretic band is affected by the choice of the stochastic process.

JEL Classification: G1, G13.

Keywords: Real options; Price uncertainty; Investment opportunity; Divestment oppor-

tunity; Costly reversibility; Hysteresis

*This paper is a joint work with José Carlos Dias and Carlos A. Braumann.
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1 Introduction

It is broadly accepted by academics and corporate managers that traditional valua-

tion techniques based on discounted cash flows (e.g. the standard net present value

method) are not the most appropriate tool in decision making, especially in the pres-

ence of uncertainty, complete irreversibility or costly reversibility of investment, and

when there is some leeway for conducting a flexible management. The main reason

for this observation is that, in the presence of irreversibility, the firm is unable to instan-

taneously adjust its operations to a desired optimal level if market conditions unexpect-

edly deteriorate and change in an unfavorable direction after an investment decision

has been made. As expected, the presence of uncertainty augments this effect and

raises the required investment premium associated with the irreversible decision by

increasing the option value of waiting.

Given its analytical attractiveness, the process most used in the literature of real options

is the geometric Brownian motion (GBM henceforth). However, it is well documented in

the literature that the GBM assumption embodies some unrealistic implications for the

dynamic behavior of real asset prices. Namely, there is empirical evidence indicating

that this assumption is not rich enough to capture the volatility smiles or skews found

in the equity options market - see, for example Jackwerth and Rubinstein (2001). To

overcome this issue, alternative stochastic processes have been considered in the real

options literature. Such alternatives beyond the classic GBM assumption and the vast

range of possible applications for a practitioner, bring up a number of important issues

deserving a detailed examination.

One of the first attempts to investigate the biases in value provoked by the use of tra-

ditional methods of valuation was done using a mean-reverting process, which can be
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more suitable under equilibrium conditions. Bhattacharya (1978) studies the accuracy

of traditional valuation methods when cash flows follow a mean-reverting process, as

opposed to the standard GBM, and the ensuing biases in value. There are several

works in the real options literature where the stochastic processes used are the mean-

reverting type. For example, Sarkar (2003) assumes that the stochastic costs (not

stochastic revenues) follow a mean-reverting process, concluding that the mean rever-

sion, in general, have a significant impact on investment. Thus, it is generally inappro-

priate to use a GBM process to approximate a mean-reverting process. This work does

not consider reversibility nor disinvestment and is only concentrated on irreversible en-

try. To overcome this situation, an extension has been proposed by Tsekrekos (2010).

Dias and Shackleton (2011) also examine the investment and divestment decisions

problem assuming that the stochastic interest rate follows a mean-reverting process.

The constant elasticity of variance (CEV hereafter) model of Cox (1975) is another

stochastic process used to overcome the drawbacks pointed out to the GBM process.

This model is consistent with two well known facts that have found empirical support

in the literature: the existence of a negative correlation between stock returns and

realized volatility (leverage effect), as observed, for instance, in Bekaert and Wu (2000);

and the inverse relation between the implied volatility and the strike price of an option

contract (implied volatility skew)—see, for example, Dennis and Mayhew (2002).

To our knowledge, there are only a few empirical studies on real options where the

CEV model has been used. Nevertheless, there is evidence supporting the use of this

stochastic process. Choi and Longstaff (1985) have examined the stochastic behavior

of soybean future quasi-returns. Their empirical study suggests that the CEV process

is theoretical superior to the GBM process for pricing options on soybean futures. The

dynamic of crude oil prices by region, time period, and observation frequency using the

Chan et al. (1992) general diffusion formulation has been examined by Lee and Heo

125



(2008), where they have conclude that the CEV model is the most suitable process

to explain the dynamics of crude oil prices. An interesting study was performed by

Geman and Shih (2009), where they analyze the performance of the CEV process (the

mean-reverting CEV process is also considered) to model the crude oil, coal, copper,

and gold prices. They conclude that the CEV exponent plays an important role in metal

and energy commodities after the year 2000. Recently, Dias and Nunes (2011) derive

analytical solutions for perpetual American-style call and put options under the CEV

model. Their results strongly highlight the case for moving beyond the simplistic real

models based on the GBM assumption to more realistic models incorporating volatility

smile effects.

In this paper, we reconsider the problem originally addressed by Dixit (1989a) and

Tsekrekos (2010), and analyze how output price uncertainty and costly reversibility

affects the optimal entry and exit policy of a competitive price-taking firm. We extend

these previous studies in two ways. First, we assume that the underlying output price

dynamics follows a generalized one-dimensional diffusion which takes the modeling

assumptions of Dixit (1989a) and Tsekrekos (2010) as two special cases. Second,

we analyze the impact of costly reversibility on the dynamic entry and exit problem.

This latter issue as also been considered by Dias and Shackleton (2011), but in a real

options model where uncertainty stems from the interest rate uncertainty.

Hence, our analysis covers a broad class of descriptions both for the reversibility de-

gree and for the underlying stochastic price dynamics which, within our generalized

class of one-dimensional diffusions, includes most typically applied mean-reverting

models as well as different volatility specifications. These issues should be important

for academics and practitioners, since our modeling framework admits the analysis of

the general properties of entry and exit decisions under alternative underlying driving

stochastic factor dynamics and characterizes the circumstances under which the ob-
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tained results are significantly different or remain qualitatively valid, depending on the

assumption made for the underlying output price dynamics.

The structure of the paper is organized as follows. Section 2 presents the firm’s policy,

the general output price dynamics, the value-matching condition, the smooth-pasting

condition, and define the hysteretic band. Section 3 specializes the architecture mod-

eling framework for the GBM, CEV, and the mean-reverting CEV processes. Section 4

compares the optimal entry-exit policy under the several processes. In Section 5, we

compute the ex ante probabilities of entry and exit and compare the results, and finally

Section 6 concludes. The Monte Carlo methods used to compute the probabilities are

shown in Appendix.

2 Modeling architecture

For the analysis to remain self-contained, the next four subsections provide the nec-

essary building blocks for modeling entry and exit decisions under alternative output

price dynamics.

2.1 The firm’s policy

Following Dixit (1989a) and Tsekrekos (2010), we shall consider a price-taking firm that

has the possibility to invest (at any time) a lump-sum entry cost K to enter in a market

(i.e. it needs to pay K to switch from the idle or inactive state to the operating state).

As usual, the entry mode is in the form of a discrete unit of investment, namely a single

project of a given size. While active in the market, the firm can produce a unit flow of

output at a variable cost C. Moreover, the firm can decide to suspend operations (at

any time) if market conditions deteriorate.
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Similarly to Abel et al. (1996), Abel and Eberly (1996), Alvarez (2011), and Dias

and Shackleton (2011), and to accommodate the generalization for different costly

reversibility levels, we assume that by divesting the firm receives the disinvestment

proceeds K, i.e. there is a fraction α of the invested capital, with α := K/K (the ratio of

the direct switching costs), that a firm can recoup when divesting.7.1 Such prescription

for the α parameter encompasses different reversibility degrees contemplated in the

literature, namely:

• α = 1 represents the traditional costlessly reversible investment case in which the

wedge between the investment cost and the divestment proceeds is zero, and

the optimal investment policy of a firm maintains the marginal revenue product of

capital equal to the Jorgenson (1963) marginal user cost of capital. As expected,

such standard myopic investment rule is unrealistic since, in the presence of irre-

versibility and uncertainty, it is not expected that a firm can divest at no cost due

to the so-called lemons problem of Akerlof (1970).

• α = 0 stands for the completely irreversible investment case in which the sale

price of capital is zero (so that the wedge is 100% of the purchase price of capital)

initiated by Arrow (1968), and then employed in much of the subsequent work on

optimal investment under uncertainty.

• There are also more realistic investment cases characterized by costly reversibil-

ity in which a firm can purchase capital at a given price and sell capital at a lower

price, i.e. with α ∈ (0,1). In other words, even though capital has resale value, it

is below its acquisition cost, thus making part of the initial entry costs sunk. For

example, this modeling specification has been considered by Abel et al. (1996),

7.1As in Dixit (1989a), Tsekrekos (2010), or Dias and Shackleton (2011), we assume that entry and exit takes
place immediately after the decision to invest or divest has been made, thus ignoring the so-called time to build
(or investment lags) effects discussed in Majd and Pindyck (1987), Bar-Ilan and Strange (1996), and Milne and
Whalley (2000).
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Abel and Eberly (1996), Alvarez (2011), and Dias and Shackleton (2011). Such

partial reversibility case is of paramount importance because, as it was shown

by Keswani and Shackleton (2006), a project’s option value increases with incre-

mental levels of investment and disinvestment flexibility.

• In the previous case capital can be abandoned at a cost since only a fraction of

the entry cost can be recovered on exit. There may be, however, situations where

it is necessary to pay a lump-sum cost to close a project, such as the cases of

a copper mine or a nuclear power station where environmental clean costs may

have to be supported. In our modeling framework, this is equivalent to assume

α < 0. For instance, such assumption was taken by Dixit (1989a) and Tsekrekos

(2010).

In order to simplify the exposition and keep our generalized modeling framework similar

(and thus comparable) to the work of Dixit (1989a) and Tsekrekos (2010), we assume

that the parameter values K, α, and C are constant and non-stochastic. Moreover, un-

certainty stems from the output equilibrium price P which is assumed to be exogenous

to the firm (i.e. the firm is a price-taker as already stated).

Let V0(P) be the expected net present value of the firm (with an initial output price P

in the idle state) and following dynamic optimal entry-exit policies. The optimal entry

and exit policy is determined through two time independent values of the state variable

P, one upper threshold price P (reached from below) and one lower trigger P (reached

from above), with P > P, at which a firm optimally switches from the idle to the oper-

ating state and vice versa. At the optimal entry threshold P, the idle firm exercises

its entry option by paying K in order to receive an “underlying asset” of value V1(P),

which includes both an option to exit and a flow reward component. Similarly, at the

optimal exit threshold P, the active firm exercises its exit option in favour of regaining
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an “underlying asset” worth V0(P) (i.e. an option to enter the market again) and a cash

amount K := αK (positive, if α ∈ (0,1), or negative, if α < 0).7.2

2.2 Output price dynamics

Hereafter, we assume the equilibrium output time-t price Pt , evolving on the com-

plete filtered probability space (Ω,F ,{Ft}t≥0,P), is characterized by the following one-

dimensional Itô diffusion:

dPt = µ(Pt)dt +σ(Pt)dWP
t , P0 = P ∈ R+, (7.1)

where WP
t is a standard Brownian motion under the physical probability measure P.7.3

Furthermore, we assume that the drift coefficient µ : R+ → R and the volatility coef-

ficient σ : R+ → R+ are continuous and satisfy the conditions σ(P) > 0, ∀P ∈ (0,∞),

and

∫ P+ε

P−ε

1+ |µ(y)|
σ2(y)

dy < ∞,

for some ε > 0, ∀P ∈ (0,∞). As shown by Karatzas and Shreve (1991, pp. 342-351),

these conditions guarantee the existence of a weak solution for the stochastic differen-

tial equation (7.1).

Using Itô’s lemma for our infinite-horizon stochastic problem, it follows that

7.2In other words, we are assuming a two-sided discrete regulator problem with lump-sum costs (or discrete
adjustments) K and K, in which controls are applied only when the state variable P hits the threshold levels P
and P, thus making our economic application resembling a stochastic optimal impulse control problem in the
Constantinides and Richard (1978), Harrison et al. (1983), Dixit (1991), and Dumas (1991) sense.

7.3To lighten notation, the subscript ‘t’ is dropped in the remainder of the paper.
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dV0(P) = V
′
0(P)dP+

1
2

V
′′
0 (P)(dP)2

=

[
1
2

σ
2(P)V

′′
0 (P)+µ(P)V

′
0(P)

]
dt +σ(P)V

′
0(P)dWP. (7.2)

Note that the time partial derivative usually appearing in (7.2) is zero due to the per-

petual nature of the problem. The expected return and the standard deviation of the

return of the firm are respectively given by:

E [R] =
1
2σ2(P)V

′′
0 (P)+µ(P)V

′
0(P)

V0(P)
, (7.3)

and

D [R] =
σ(P)V

′
0(P)

V0(P)
. (7.4)

As usual, the firm value must satisfy the following risk-return relationship

E [R] = r+λ
∗(P)D [R] = r+λ

∗(P)
σ(P)V

′
0(P)

V0(P)
, (7.5)

where λ ∗(P) is the compensation per unit risk above the (constant) riskless rate r. Note

that the functional form of the market price of risk λ ∗(P) will depend on the respective

stochastic process that is chosen for modeling the output price dynamics.

Substituting equation (7.3) into equation (7.5), multiplying both sides by V0(P), and then

rearranging terms yields the following ordinary differential equation (ode):

1
2

σ
2(P)V

′′
0 (P)+

[
µ(P)−λ

∗(P)σ(P)
]
V
′
0(P)− rV0(P) = 0. (7.6)

131



This is the ordinary differential equation that the value of the firm must satisfy over the

range of output prices that is optimal for an idle firm to remain in the inactive state, i.e.

for P ∈ (0,P).

Similarly, over the range of prices where it is optimal for an active firm to continue in

the operating state, i.e. for P ∈ (P,∞), the total return of the expected net present value

of the firm, V1(P), comprises the expected capital gain E [dV1(P)]/dt, plus a cash inflow

(P−C) per unit of time. Following the same line of reasoning, the value V1(P) must

satisfy the following ordinary differential equation (ode):

1
2

σ
2(P)V

′′
1 (P)+

[
µ(P)−λ

∗(P)σ(P)
]
V
′
1(P)− rV1(P)+P−C = 0. (7.7)

Solving equations (7.6) and (7.7) subject to appropriate boundary conditions yields the

value functions for an idle and an active firm.

2.3 Solutions of the value functions V0(P) and V1(P)

Omitting the term f (P) := P−C in the ode (7.7), one notes that both (7.6) and (7.7)

are linear differential equations possessing the same general solution for the homoge-

neous equation, which can be expressed as a linear combination of any two indepen-

dent solutions. In other words, the corresponding linearly independent complementary

functions are similar, and can thus be solved together. What determines the difference

between the two contingent solutions and the options they represent is their boundary

conditions.

As usual, the firm’s option value to enter the market should be nearly worthless as the

output price P becomes very small. To ensure such economic rationale, the ode (7.6)
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must be solved subject to the following boundary condition:

lim
P→0+

V0(P) = 0. (7.8)

However, the general solution of the non-homogeneous ode (7.7) should be expressed

as the sum of two parts: The general solution of the homogeneous equation neglecting

the flow reward function f (P) and an arbitrarily chosen particular solution of the full

equation (7.7). As shown by Dixit (1991), a very convenient particular solution of (7.7)

is the expected discounted flow payoff

F(P) := E
[∫ +∞

0
e−rs f (Ps)ds|P0 = P

]
, (7.9)

that is calculated ignoring both (upper and lower) barriers on the one-dimensional dif-

fusion process P.7.4

As expected, the firm’s option value to exit the market (while in the active state) should

be nearly worthless as the output price P becomes very high. Thus, to rule out any

explosive growth of firm value with high output price, we must impose the so-called no-

bubbles condition which implies that, for high equilibrium output prices, the exit option

becomes worthless and the value function V1(P) converges to the expected present

value of operating in the market perpetually given in equation (7.9), that is

lim
P→+∞

V1(P) = E
[∫ +∞

0
(Ps−C)e−rsds|P0 = P

]
. (7.10)

7.4The particular solution F(P) can be interpreted as the expected present value payoff when the (uncontrolled)
state variable P is allowed to fluctuate without regulation, while the corresponding full solutions are interpreted
similarly, but when the stochastic process is assumed to be regulated using the impulse form of control.
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2.4 Boundary and first order conditions

The optimal switching policy (i.e. the displacement strategies idle state→ active state

and active state→ idle state) is determined through two time independent trigger prices

P and P. Each threshold level is similar in spirit to the critical asset price (or early

exercise boundary) that separates the continuation and stopping (or exercise) regions

of an American-style option contract, thus turning the dynamic entry and exit decision

of a firm an optimal stopping problem with two barriers.

Such entry and exit thresholds are determined numerically through a set of value-

matching and smooth-pasting conditions. The former are stated as

V0(P)+K = V1(P) (7.11)

V0(P)+K = V1(P), (7.12)

which ensure that the gain in value from exercising the option is exactly equal to the

cost of doing so. These value-matching conditions reflect an intuitive requirement for

continuity at the optimal thresholds.

The optimality condition of such (optimal impulse control) two-sided discrete regula-

tor problems arise, however, from the so-called smooth-pasting (also known as high-

contact or first-order) conditions7.5

7.5Samuelson (1965), McKean (1965), and Merton (1973) established conditions of optimality for such optimal
stopping problems. A rigorous exposition of these conditions is provided by Dixit (1991) and Dumas (1991).

134



V
′
0(P) = V

′
1(P) (7.13)

V
′
0(P) = V

′
1(P), (7.14)

requiring that the first derivative of the firm value function must take the same value

before and after the option (to enter or exit) has been exercised. In other words, these

conditions require that marginal utility should take the same value before and after the

action has been taken. This is equivalent to say that, at the optimum thresholds P and

P, the marginal cost of discounting the payoff function that is obtained by exercising

the switching option equals the marginal net benefit from further waiting. As shown by

Shackleton and Sødal (2005), such conditions guarantee the equalization of the rate

of return of the firm both prior and after the decision to invest or divest has been taken.

To sum up, equations (7.11)-(7.14) constitute a set of four highly non-linear equations

with four unknowns, represented in matrix form and denoted by F(X), whose opti-

mal solution X = [P,P,A,B]′ is uniquely determined by (numerically) solving the system

F(X) = 0. Such solution highlights the optimal entry and exit policy of a firm acting

dynamically in the aforementioned generalized stochastic environment by simultane-

ously determining both the thresholds P and P and the pair of constants A and B (to

be determined from the boundary conditions) associated, respectively, to the idle and

operating states of the firm.

2.5 Hysteresis

Whenever the underlying output price is between the two critical boundaries P and P,

the firm remains in its current state (idle or active). Thus, the firm takes no action at all
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over the region of the state space (P,P). In other words, the firm’s actions (to enter or

exit) are only triggered when the state variable P reaches the boundary of the region

of no action (or zone of no intervention). This range of inaction results in hysteresis

(i.e. permanent effects of temporary shifts). The duration of these hysteretic periods

depends on the expected growth rate of the underlying price and on its volatility. As

shown by Dixit (1989a), the presence of fixed entry and exit costs under uncertainty

widens the hysteretic band, since

W :=C+ rK < P (7.15)

W :=C+ rK > P, (7.16)

with W and W being, respectively, the Marshallian investment and divestment trigger

prices based on the standard myopic investment rule. One of the purposes of this

article is to show if this zone of no intervention changes substantially under alternative

assumption for modeling the output price dynamics.

3 Applications

In this section we specialize the architecture modeling framework for some special

cases, namely: The classic GBM process, the CEV process, and the mean-reverting

CEV process.
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3.1 The classic geometric Brownian motion process

Definition 7.1 The classic GBM process underlying most of the real options literature

can be nested into the general framework described by equations (7.1) to (7.7) through

the following restrictions: µ(P) = µP, σ(P) = σP, and λ ∗(P) = λρ, where µ and σ de-

note, respectively, the (constant) growth rate and the (constant) volatility of the market

price P, and λ = (E [Rm]− r)/D [Rm] is the market price of risk (with E [Rm] and D [Rm]

being, respectively, the expected return and standard deviation of the market portfo-

lio), and ρ is the correlation between the output price P and the market portfolio, i.e.

dWPdWP
m = ρdt. Both λ and ρ are assumed constant.

Proposition 7.1 Under the restrictions stated in Definition 7.1, the optimal solution

X = [P,P,A0,B1]
′ is uniquely determined by solving the system F(X) = 0, where

F(X) =



−A0Pξ1 +B1Pξ2 +ϕP−X

−A0Pξ1 +B1Pξ2 +ϕP−X

−A0ξ1Pξ1 +B1ξ2Pξ2 +ϕP

−A0ξ1Pξ1 +B1ξ2Pξ2 +ϕP


, (7.17)

with

ξ1 =
1
2
− (µ−λρσ)

σ2 +

√(
(µ−λρσ)

σ2 − 1
2

)2

+
2r
σ2 > 1, (7.18)

ξ2 =
1
2
− (µ−λρσ)

σ2 −

√(
(µ−λρσ)

σ2 − 1
2

)2

+
2r
σ2 < 0, (7.19)

ϕ = (r+λρσ −µ)−1, (7.20)

X =
C
r
+K, (7.21)
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and

X =
C
r
+K. (7.22)

Proof. The proof of this proposition is standard in the literature and can be found, for

example, in Dixit (1989a) and Tsekrekos (2010, Appendix A). For completeness and

easier comparison with our new results, we derive the optimal entry and exit policy that

will determine the entry and exit trigger prices.

Under the restrictions stated in Definition 7.1, equations (7.6) and (7.7) become, re-

spectively, equal to:

1
2

σ
2P2V

′′
0 (P)+

(
µ−λρσ

)
PV

′
0(P)− rV0(P) = 0, (7.23)

and
1
2

σ
2P2V

′′
1 (P)+

(
µ−λρσ

)
PV

′
1(P)− rV1(P)+P−C = 0. (7.24)

Note that the use of contingent claims analysis requires the critical assumption that

stochastic changes in P must be spanned by an asset (or a dynamic portfolio of as-

sets) available in the underlying economy. In other words, it is assumed that spanning

holds so that the uncertainty over future values of P can be replicated by existing as-

sets.7.6 Under the assumptions of the intertemporal capital asset pricing model of

Merton (1973b), the expected rate of return from holding this asset or portfolio of as-

sets, µ∗, should reflect only the asset’s systematic (or nondiversifiable) risk, that is

µ∗ = r+λρσ . This implies that λρσ = µ∗− r. As usual, it is necessary to assume that

the expected percentage rate of change of P, µ, is less that the risk-adjusted return µ∗.

This requirement is accomplished by introducing the so-called rate of return shortfall

q := µ∗−µ considered in McDonald and Siegel (1984).
7.6Nevertheless, if spanning does not hold, dynamic programming can still be used to solve the entry and exit

problem, though subject to an arbitrary discount rate.
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Since both equations are linear and have the same homogeneous part, we can find

the complementary functions together. Trying a solution of the form Vφ (P) = Pξ (with

φ ∈ {0,1}), it follows that V ′
φ
(P) = ξ Pξ−1 and V ′′

φ
(P) = ξ (ξ −1)pξ−2. Substituting these

functions into the above homogeneous equations and rearranging terms yields the

following quadratic equation:

1
2

σ
2
ξ (ξ −1)+(µ−λρσ)ξ − r = 0, (7.25)

whose corresponding solutions are real and equal to equations (7.18) and (7.19). There-

fore, the general solution of the ode (7.23) and of the homogeneous part of the ode

(7.24) can be expressed as a linear combination of two independent solutions as

Vφ (P) = Aφ Pξ1 +Bφ Pξ2, (7.26)

where Aφ and Bφ are two constants to be determined from boundary conditions.

The solution of ode (7.23) subject to the boundary condition (7.8) is given by

V0(P) = A0Pξ1, (7.27)

which corresponds to the value function of an idle firm over the range of prices (0,P).

In other words, it is the option value to become active in the market at the trigger price

P. Similarly, the solution of the ode (7.24) subject to the boundary condition (7.10) is

given by

V1(P) = B1Pξ2 +
P

r+λρσ −µ
−C

r
, (7.28)
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which corresponds to the value function of an active firm over the range of prices

(P,+∞). Note that the first component on the right-hand side of equation (7.28) is the

value of the option to exit at the trigger price P while the corresponding second and third

components represent the expected value of operating in the market forever given by

the particular solution (7.9).

To apply the smooth-pasting conditions (7.13) and (7.14), one needs to compute the

first derivatives of the value functions Vφ (P). Using straightforward calculus, it follows

that:

V ′0(P) = A0ξ1Pξ1−1, (7.29)

and

V
′′
1 (P) = B1ξ2Pξ2−1 +

1
r+λρσ −µ

. (7.30)

Finally, substituting (7.27)-(7.30) into the value-matching and smooth-pasting conditions

(7.11)-(7.14) and rearranging terms we obtain the non-linear system in matrix form given

in (7.17).�

3.2 The constant elasticity of variance process

The CEV model of Cox (1975) was originally studied to the case where the elasticity

parameter, β , is less than two (β < 2), and then extended to the case where β > 2 by

Emanuel and MacBeth (1982). While Cox (1975) has restricted the β parameter to the

range 0 ≤ β ≤ 2, Jackwerth and Rubinstein (2001) document that typical values of β

implicit in the S&P 500 stock index option prices are as low as β =−6 in the post-crash

of 1987. Elasticity values of β < 2 (i.e. with a direct leverage effect) are expected for
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stock index options and crude oil prices, whereas values of β > 2 (i.e. with an inverse

leverage effect) are characteristic of some commodity spot prices and futures options

with upward sloping implied volatility smiles (see, for instance, Davydov and Linetsky

(2001), Geman and Shih (2009), and Dias and Nunes (2011)).

The CEV process assumption has been used in many different contexts, e.g. by Dias

and Nunes (2011) to compute the analytical solutions for perpetual American-style call

and put options, and Lee and Heo (2008) where these authors have concluded that the

CEV process is the most suitable to explain the dynamics of crude oil prices.

Definition 7.2 The class of CEV processes can be nested into the general frame-

work described by equations (7.1) to (7.7) through the following restrictions: µ(P) = µP,

σ(P) = δPβ/2, and λ ∗(P) = λρP1−β/2, where β represents the elasticity parameter, µ

and δ denote, respectively, the (constant) growth rate and the (constant) scale pa-

rameter fixing the initial instantaneous volatility at time t = 0, σ0 = σ(P0) = δPβ/2
0 , and

λ = (E [Rm]− r)/D [Rm] is the market price of risk (with E [Rm] and D [Rm] being, respec-

tively, the expected return and standard deviation of the market portfolio), and ρ is the

correlation between the output price P and the market portfolio, i.e. dWPdWP
m = ρdt.

Both λ and ρ are assumed constant.

To obtain the optimal solution for the CEV process, we need to distinguish six situations:

for the cases β < 2 and β > 2, we have to consider three situations: (µ − λρδ ) > 0,

(µ−λρδ )< 0 and (µ−λρδ ) = 0. The next proposition gives the optimal solution when

β < 2 for the cases: A) (µ−λρδ )> 0 and B) (µ−λρδ )< 0.

Proposition 7.2 Under the restrictions stated in Definition 7.2, and for β < 2, the opti-

mal solution X = [P,P,A0,B1]
′ is uniquely determined by solving the system F(X) = 0:
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A) In case (µ−λρδ )> 0,

F(X) =



−A0M1(P)+B1U1(P)+ϕP−X

−A0M1(P)+B1U1(P)+ϕP−X

−A0W1(P)+B1V1(P)+ϕP

−A0W1(P)+B1V1(P)+ϕP


, (7.31)

with

M1(y) = ζ1 ye−x(y)M(a1,b1,x(y)), (7.32)

U1(y) = ζ1 ye−x(y)U(a1,b1,x(y)), (7.33)

W1(y) = M1(y)−ϑy2−β

(
M1(y)−ζ1 ye−x(y)a1

b1
M(a1 +1,b1 +1,x(y))

)
, (7.34)

V1(y) =U1(y)−ϑy2−β

(
U1(y)+ζ1 ye−x(y)a1U(a1 +1,b1 +1,x(y))

)
, (7.35)

x(y) =
2|µ−λρδ |
δ 2|β −2|

y2−β , (7.36)

a1 = 1− r
(µ−λρδ )(β −2)

, (7.37)

b1 = 1− 1
β −2

, (7.38)

ϑ =
2(µ−λρδ )

δ 2 , (7.39)

ζ1 =

[
− ϑ

(β −2)

] 1
2−

1
2(β−2)

, (7.40)

and ϕ, X , and X as defined as in (7.20), (7.21), and (7.22), respectively, and where

M(a,b,x) and U(a,b,x) are the Kummer functions, as defined by Abramowitz and Ste-

gun (1972, expressions 13.1.2 and 13.1.3).
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B) In case (µ−λρδ )< 0,

F(X) =



−A0M2(P)+B1U2(P)+ϕP−X

−A0M2(P)+B1U2(P)+ϕP−X

−A0W2(P)+B1V2(P)+ϕP

−A0W2(P)+B1V2(P)+ϕP


, (7.41)

with

M2(y) = ζ2 yM(a2,b2,x(y)), (7.42)

U2(y) = ζ2 yU(a2,b2,x(y)), (7.43)

W2(y) = M2(y)−ζ2 ϑy3−β a2

b2
M
(
a2 +1,b2 +1,x(y)

)
, (7.44)

V2(y) =U2(y)+ζ2 ϑy3−β a2U
(
a2 +1,b2 +1,x(y)

)
, (7.45)

a2 =
r

(µ−λρδ )(β −2)
− 1

β −2
, (7.46)

b2 = 1− 1
β −2

, (7.47)

ζ2 =

[
ϑ

(β −2)

] 1
2−

1
2(β−2)

, (7.48)

and ϕ, X , X , x(y), and, ϑ as defined as in (7.20), (7.21), (7.22), (7.36), and, (7.39),

respectively.

Proof. To prove this proposition we will apply the results of Davydov and Linetsky

(2001) and the same methodology as used in the GBM process.

Under the restrictions stated in Definition 7.2, equations (7.6) and (7.7) become, re-

spectively:
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1
2

δ
2PβV

′′
0 (P)+

(
µ−λρδ

)
PV

′
0(P)− rV0(P) = 0 (7.49)

and
1
2

δ
2PβV

′′
1 (P)+

(
µ−λρδ

)
PV

′
1(P)− rV1(P)+P−C = 0. (7.50)

Since both equations have the same homogeneous part, we start by solving the ho-

mogeneous ode to find the complementary functions together. Trying a solution of the

form Vφ (P) =P
β−1

2 eε
x(P)

2 w(x(P)) (with φ ∈ {0,1}), with x(P) as defined in expression (7.36)

and

ε =

 +1 i f (µ−λρδ )(β −2)> 0

−1 i f (µ−λρδ )(β −2)< 0.
(7.51)

It follows that

V ′φ (P) = eε
x(P)

2

([(
β −1

2

)
P

β−3
2 − (µ−λρσ)

δ 2

]
w(x(P))− ε

2(µ−λρσ)

δ 2 P
1−β

2 w′(x(P))

)

and

V ′′φ (P) = eε
x(P)

2

([(
β −1

2

)(
β −3

2

)
P

β−5
2 +

((µ−λρσ)

δ 2

)2
P

3−3β

2

]
w(x(P))

+ ε

(2(µ−λρσ)

δ 2

)2
P

3−3β

2 w′(x(P))+
(2(µ−λρσ)

δ 2

)2
P

3−3β

2 w
′′
(x(P))

)
.

Substituting these functions into the homogeneous equation and rearranging terms

yields the following equation:
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w′′(x(P))+
[
− 1

4
+

k
x(P)

+
(1

4 −m)2

x2(P)

]
w(x(P)) = 0, (7.52)

with

k = ε

(
1
2
+

1
2(β −2)

)
− r
|(µ−λρδ )(β −2)|

, (7.53)

m =
1

2|β −2|
. (7.54)

The equation (7.52) is the Whittaker’s form of the confluent hypergeometric equation

(see, for instance, Abramowitz and Stegun (1972, expression 13.1.31)), which has the

general solution given by

w(x(P)) = Aφ Mk,m(x(P))+Bφ Wk,m(x(P)), (7.55)

where Mk,m(x) and Wk,m(x) are the Whittaker functions, as defined by Abramowitz and

Stegun (1972, expressions 13.1.32 and 13.1.33) and, Aφ and Bφ are constants to be

determined from boundary conditions. Multiplying this general solution by P
β−1

2 eε
x(P)

2 we

obtain the general solution of the ode (7.49) and of the homogeneous part of the ode

(7.50), and is given by:

Vφ (P) = Aφ P
β−1

2 eε
x(P)

2 Mk,m(x(P))+Bφ P
β−1

2 eε
x(P)

2 Wk,m(x(P)). (7.56)

The solution of ode (7.49), for β < 2, subject to the boundary condition (7.8) is given by

V0(P) = A0P
β−1

2 eε
x(P)

2 Mk,m(x(P)), (7.57)

which corresponds to the value function of an idle firm over the range of prices (0,P).
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In other words, it is the option value to become active in the market at the trigger price

P. Similarly, the solution of the ode (7.50) subject to the boundary condition (7.10) is

given by

V1(P) = B1P
β−1

2 eε
x(P)

2 Wk,m(x(P))+
P

r+λρσ −µ
−C

r
, (7.58)

which corresponds to the value function of an active firm over the range of prices

(P,+∞). Note that the first component on the right-hand side of equation (7.58) is the

value of the option to exit at the trigger price P while the corresponding second and third

components represent the expected value of operating in the market forever given by

the particular solution (7.9). Using the following relations between Whittaker’s function

with the Kummer’s function

Mk,m(x) = e−
x
2 x

1
2+m M

(
1
2
+m− k,1+2m,x

)
(7.59)

and

Wk,m(x) = e−
x
2 x

1
2+mU

(
1
2
+m− k,1+2m,x

)
, (7.60)

we can express (7.57) and (7.58) in terms of the Kummer’s functions. Now, we must

distinguish between the cases A) and B).

A) In terms of the Kummer’s functions the solutions to V0(P) and V1(P) are given by:

V0(P) = A0

[
−2(µ−λρδ )

δ 2(β −2)

] 1
2−

1
2(β−2)

e−x(P)PM (a1,b1,x(P)) , (7.61)

V1(P) = B1

[
−2(µ−λρδ )

δ 2(β −2)

] 1
2−

1
2(β−2)

e−x(P)PU (a1,b1,x(P))+
P

r+λρδ −µ
−C

r
. (7.62)
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To apply the smooth-pasting conditions (7.13) and (7.14), one needs to compute the first

derivatives of the value functions Vφ (P). Using straightforward calculus, the relations for

derivatives of the Kummer’s functions as in Abramowitz and Stegun (1972, expressions

13.4.8 and 13.4.21), it follows that:

V ′0(P) = A0

[
−2(µ−λρδ )

δ 2(β −2)

] 1
2−

1
2(β−2)

e−x(P) (7.63)

×
(

M (a1,b1,x(P))−
2(µ−λρδ )

δ 2 P2−β

(
M(a1,b1,x(P))−

a1

b1
M(a1 +1,b1 +1,x(P))

))

and

V ′1(P) = B1

[
−2(µ−λρδ )

δ 2(β −2)

] 1
2−

1
2(β−2)

e−x(P) (7.64)

×
(

U (a1,b1,x(P))−
2(µ−λρδ )

δ 2 P2−β

(
U(a1,b1,x(P))+a1U(a1 +1,b1 +1,x(P))

))
+

1
r+λρδ −µ

.

Finally, substituting (7.61)-(7.64) into the value-matching and smooth-pasting conditions

(7.11)-(7.14) and rearranging terms we obtain the non-linear system in matrix form given

in (7.31) for β < 2 and (µ−λρδ )> 0.

B) In terms of the Kummer’s functions the solutions to the V0(P) and V1(P) are given by:

V0(P) = A0

[
2(µ−λρδ )

δ 2(β −2)

] 1
2−

1
2(β−2)

PM (a1,b1,x(P)) , (7.65)

V1(P) = B1

[
2(µ−λρδ )

δ 2(β −2)

] 1
2−

1
2(β−2)

PU (a1,b1,x(P))+
P

r+λρδ −µ
−C

r
. (7.66)

Using straightforward calculus and the derivatives relations to the Kummer functions,
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the first derivatives of the value functions Vφ (P) are given by:

V ′0(P) = A0

[
2(µ−λρδ )

δ 2(β −2)

] 1
2−

1
2(β−2)

(7.67)

×
(

M (a2,b2,x(P))−
2(µ−λρδ )

δ 2 P2−β a2

b2
M(a2 +1,b2 +1,x(P))

)
,

and

V ′1(P) = B1

[
2(µ−λρδ )

δ 2(β −2)

] 1
2−

1
2(β−2)

(7.68)

×
(

U (a2,b2,x(P))+
2(µ−λρδ )

δ 2 P2−β a2U(a2 +1,b2 +1,x(P))
)

+
1

r+λρδ −µ
.

Finally, substituting (7.65)-(7.68) into the value-matching and smooth-pasting conditions

(7.11)-(7.14) and rearranging terms we obtain the non-linear system in matrix form given

in (7.41) for β < 2 and (µ−λρδ )< 0. �

The next proposition gives the optimal solution to the β > 2 for the cases: A) (µ −

λρδ )> 0 and B) (µ−λρδ )< 0.

Proposition 7.3 Under the restrictions stated in Definition 7.2, and for β > 2, the opti-

mal solution X = [P,P,A1,B0]
′ is uniquely determined by solving the system F(X) = 0:
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A) In case (µ−λρδ )> 0,

F(X) =



−B0U3(P)+A1M3(P)+ϕP−X

−B0U3(P)+A1M3(P)+ϕP−X

−B0V3(P)+A1W3(P)+ϕP

−B0V3(P)+A1W3(P)+ϕP


, (7.69)

with

M3(y) = ζ3 M(a3,b3,x(y)), (7.70)

U3(y) = ζ3U(a3,b3,x(y)), (7.71)

W3(y) =−ζ3 ϑy2−β a3

b3
M
(
a3 +1,b3 +1,x(y)

)
, (7.72)

V3(y) = ζ3 ϑy2−β a3U
(
a3 +1,b3 +1,x(y)

)
, (7.73)

a3 =
r

(µ−λρδ )(β −2)
, (7.74)

b3 = 1+
1

β −2
, (7.75)

ζ3 =

[
ϑ

(β −2)

] 1
2+

1
2(β−2)

, (7.76)

and ϕ, X , X , x(y), and, ϑ as defined as in (7.20), (7.21), (7.22), (7.36), and, (7.39),

respectively.

B) In case (µ−λρδ )< 0,

F(X) =



−B0U4(P)+A1M4(P)+ϕP−X

−B0U4(P)+A1M4(P)+ϕP−X

−B0V4(P)+A1W4(P)+ϕP

−B0V4(P)+A1W4(P)+ϕP


, (7.77)
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with

M4(y) = ζ4e−x(y)M(a4,b4,x(y)), (7.78)

U4(y) = ζ4e−x(y)U(a4,b4,x(y)), (7.79)

W4(y) =−ϑy2−β

(
M4(y)−ζ4e−x(y)a4

b4
M(a4 +1,b4 +1,x(y))

)
, (7.80)

V4(y) =−ϑy2−β

(
U4(y)+ζ4e−x(y)a4U(a4 +1,b4 +1,x(y))

)
, (7.81)

a4 = 1+
1

β −2
− r

(µ−λρδ )(β −2)
, (7.82)

b4 = 1+
1

β −2
, (7.83)

ζ4 =

[
− ϑ

(β −2)

] 1
2−

1
2(β−2)

, (7.84)

and ϕ, X , X , x(y), and, ϑ as defined as in (7.20), (7.21), (7.22), (7.36), and (7.39),

respectively.

Proof. The proof of this proposition is similar to the proof of the Proposition 7.2, but

here the solution of ode (7.49), for β > 2, subject to the boundary condition (7.8) is given

by

V0(P) = B0P
β−1

2 eε
x(P)

2 Wk,m(x(P)), (7.85)

which corresponds to the value function of an idle firm over the range of prices (0,P).

Similarly, the solution of the ode (7.50) subject to the boundary condition (7.10) is given

by

V1(P) = A1P
β−1

2 eε
x(P)

2 Wk,m(x(P))+
P

r+λρδ −µ
−C

r
, (7.86)
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which corresponds to the value function of an active firm over the range of prices

(P,+∞). Again, we must distinguish between the two cases: A) (µ−λρδ ) > 0 and B)

(µ−λρδ )< 0, and we will give the solutions in terms of the Kummer functions.

A) The value functions Vφ (P) and the respective derivatives are given by:

V0(P) = B0

[
2(µ−λρδ )

δ 2(β −2)

] 1
2+

1
2(β−2)

U (a3,b3,x(P)) , (7.87)

V1(P) = A1

[
2(µ−λρδ )

δ 2(β −2)

] 1
2+

1
2(β−2)

M (a3,b3,x(P))+
P

r+λρδ −µ
−C

r
, (7.88)

V ′0(P) = B0

[
2(µ−λρδ )

δ 2(β −2)

] 1
2+

1
2(β−2) 2(µ−λρδ )

δ 2 P1−β a3U(a3 +1,b3 +1,x(P)), (7.89)

and,

V ′1(P) = −A1

[
2(µ−λρδ )

δ 2(β −2)

] 1
2+

1
2(β−2) 2(µ−λρδ )

δ 2 P1−β a3

b3
M(a3 +1,b3 +1,x(P))

+
1

r+λρδ −µ
. (7.90)

Finally, substituting (7.87)-(7.90) into the value-matching and smooth-pasting conditions

(7.11)-(7.14) and rearranging terms we obtain the non-linear system in matrix form given

in (7.69) for β > 2 and (µ−λρδ )> 0.

B) The value functions Vφ (P) and the respective derivatives are given by:

V0(P) = B0

[
−2(µ−λρδ )

δ 2(β −2)

] 1
2+

1
2(β−2)

e−x(P)U (a4,b4,x(P)) , (7.91)

V1(P) = A1

[
−2(µ−λρδ )

δ 2(β −2)

] 1
2+

1
2(β−2)

e−x(P)M (a4,b4,x(P))+
P

r+λρδ −µ
−C

r
, (7.92)
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V ′0(P) = −B0

[
−2(µ−λρδ )

δ 2(β −2)

] 1
2+

1
2(β−2) 2(µ−λρδ )

δ 2 e−x(P)P1−β (7.93)

×
(

U(a4,b4,x(P))+a4U(a4 +1,b4 +1,x(P))
)
,

V ′1(P) = −A1

[
−2(µ−λρδ )

δ 2(β −2)

] 1
2+

1
2(β−2) 2(µ−λρδ )

δ 2 e−x(P)P1−β (7.94)

×
(

M(a4,b4,x(P))−
a4

b4
M(a4 +1,b4 +1,x(P))

)
+

1
r+λρδ −µ

.

Finally, substituting (7.91)-(7.94) into the value-matching and smooth-pasting conditions

(7.11)-(7.14) and rearranging terms we obtain the non-linear system in matrix form given

in (7.77) for β > 2 and (µ−λρδ )< 0. �

We analyze now the particular case of the CEV model where (µ−λρδ ) = 0. In the next

proposition we will give the optimal solution X= [P,P,Aφ ,Bφ ]
′ to the cases: A) β < 2 and

B) β )> 2.

Proposition 7.4 Under the restrictions stated in Definition 7.2, and for (µ−λρδ ) = 0,

the optimal solution X = [P,P,Aφ ,Bφ ]
′ is uniquely determined by solving the system

F(X) = 0:

A) In case β < 2,

F(X) =



−A0I(P)+B1K(P)+ r−1P−X

−A0I(P)+B1K(P)+ r−1P−X

−A0S1(P)+B1T1(P)+ r−1P

−A0S1(P)+B1T1(P)+ r−1P


, (7.95)
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with

I(y) = y
1
2 Iv(z(y)), (7.96)

K(y) = y
1
2 Kv(z(y)), (7.97)

S1(y) = y
1
2 Iv(z(y))+

√
2r

δ
y

3
2−

β

2 Iv+1(z(y)), (7.98)

T1(y) = y
1
2 Kv(z(y))−

√
2r

δ
y

3
2−

β

2 Kv+1(z(y)), (7.99)

z(y) =
2
√

2r
δ |β −2|

y1−β/2. (7.100)

X =
C
r
+K, (7.101)

X =
C
r
+K, (7.102)

and, where Iv(z) and Kv(z) are the modified Bessel functions of the first and second

kind of order v as defined by Abramowitz and Stegun (1972, expressions 9.6.3 and

9.6.4).

B) In case β > 2, where

F(X) =



−B0K(P)+A1I(P)+ r−1P−X

−B0K(P)+A1I(P)+ r−1P−X

−B0T2(P)+A1S2(P)+ r−1P

−B0T2(P)+A1S2(P)+ r−1P


, (7.103)

with

S2(y) =−
√

2r
δ

y
3
2−

β

2 Iv+1(z(y)), (7.104)

T2(y) =

√
2r

δ
y

3
2−

β

2 Kv+1(z(y)), (7.105)

and I(y), K(y), z(y), X , and X as defined as in (7.96), (7.97), (7.100), (7.101), and (7.102),
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respectively.

Proof. The proof of this proposition is similar to the above proofs.

Under the restrictions stated in Definition 7.2 and (µ −λρδ ) = 0, equations (7.6) and

(7.7) become, respectively:

1
2

δ
2PβV

′′
0 (P)− rV0(P) = 0, (7.106)

and
1
2

δ
2PβV

′′
1 (P)− rV1(P)+P−C = 0. (7.107)

Since both equations have the same homogeneous part, we start by solving the ho-

mogeneous ode to find the complementary functions together. Following Davydov and

Linetsky (2001) we will try a solution of the form Vφ (P) = P
1
2 h(z(P)) (with φ ∈ {0,1}),

where z(P) as defined as in equation (7.100). It follows that

V ′φ (P) =
1
2

P
β−3

2 h(z(P))+P
1−β

2

√
2r(2−β )

δ |β −2|
h′(z(P))

and

V ′′φ (P) =−
1
4

P−
3
2 h(z(P))+(1− β

2
)P
−1−β

2

√
2r(2−β )

δ |β −2|
h′(z(P))+

2r
δ 2 P

1
2−β h

′′
(z(P)).

Substituting Vφ (P) and V
′′
φ
(P) functions into the above homogeneous equations and

rearranging terms yields the following equation:

z2(P)h′′(z(P))+ z(P)h′(z(P))−
(

1
(2−β )2 + z2(P)

)
h(z(P)) = 0 (7.108)
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The equation (7.108) is the Bessel’s modified equation (see, for instance, Abramowitz

and Stegun (1972, expression 9.6.1)), which, for all values of v(v≥ 0), has the general

solution given by

h(z) = Aφ Iv(z)+Bφ Kv(z), (7.109)

with v = 1
|2−β | , and Aφ and Bφ are constants to be determined. Multiplying this general

solution by P
1
2 we obtain the general solution of the ode (7.106) and of the homoge-

neous part of the ode (7.107), and is given by

V (P) = Aφ P
1
2 Iv(z(P))+Bφ P

1
2 Kv(z(P)). (7.110)

A) The solution of ode (7.106), for β < 2, subject to the boundary condition (7.8) is given

by

V0(P) = A0P
1
2 Iv(z(P)), (7.111)

which corresponds to the value function of an idle firm over the range of prices (0,P).

Similarly, the solution of the ode (7.107) subject to the boundary condition (7.10) is given

by

V1(P) = B1P
1
2 Kv(z(P))+

P
r
−C

r
, (7.112)

which corresponds to the value function of an active firm over the range of prices

(P,+∞).
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To apply the smooth-pasting conditions (7.13) and (7.14), one needs to compute the first

derivatives of the value functions Vφ (P). Using straightforward calculus, the relations

for derivatives of the Bessel modified functions as in Abramowitz and Stegun (1972,

expression 9.6.26), it follows that:

V ′0(P) = A0

[
P−

1
2 Iv(z(P))+

√
2r

δ
P

1
2−

β

2 Iv+1(z(P))

]
(7.113)

and

V ′1(P) = B1

[
P−

1
2 Kv(z(P))−

√
2r

δ
P

1
2−

β

2 Kv+1(z(P))

]
+

1
r

(7.114)

Finally, substituting (7.111)-(7.114) into the value-matching and smooth-pasting condi-

tions (7.11)-(7.14) and rearranging terms we obtain the non-linear system in matrix form

given in (7.95) for β < 2 and (µ−λρδ ) = 0.

B) The solution of ode (7.106), for β > 2, subject to the boundary condition (7.8) is given

by

V0(P) = B0P
1
2 Kv(z(P)), (7.115)

which corresponds to the value function of an idle firm over the range of prices (0,P).

Similarly, the solution of the ode (7.107) subject to the boundary condition (7.10) is given

by

V1(P) = A1P
1
2 Iv(z(P))+

P
r
−C

r
, (7.116)

which corresponds to the value function of an active firm over the range of prices

(P,+∞).
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To apply the smooth-pasting conditions (7.13) and (7.14), one needs to compute the

first derivatives of the value functions Vφ (P), which are given by:

V ′0(P) = B0

√
2r

δ
P

1
2−

β

2 Kv+1(z(P)) (7.117)

and

V ′1(P) = A1

√
2r

δ
P

1
2−

β

2 Iv+1(z(P))+
1
r

(7.118)

Finally, substituting (7.115)-(7.118) into the value-matching and smooth-pasting condi-

tions (7.11)-(7.14) and rearranging terms we obtain the non-linear system in matrix form

given in (7.103) for β > 2 and (µ−λρδ ) = 0.�

3.3 The mean-reverting CEV process

By a class of mean-reverting CEV processes we mean the volatility modeling speci-

fication considered in much of the literature on stochastic volatility models, e.g. Kahl

and Jäckel (2006), Andersen and Piterbarg (2007), and Lord et al. (2010), that is:

Definition 7.3 The generalized class of mean-reverting CEV processes can be nested

into the general framework described by equations (7.1) to (7.7) through the following

restrictions: µ(P) = κ(θ −P), σ(P) = δPγ , and λ ∗(P) = λρP1−γ , where γ represents the

elasticity parameter, κ, θ , and δ denote, respectively, the (constant) speed of reversion,

the (constant) long-run mean price level, and the (constant) scale parameter fixing the

initial instantaneous volatility at time t = 0, σ0 = σ(P0) = δPγ

0 , and λ = (E [Rm]− r)/D [Rm]

is the market price of risk (with E [Rm] and D [Rm] being, respectively, the expected return

and standard deviation of the market portfolio), and ρ is the correlation between the
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output price P and the market portfolio, i.e. dWPdWP
m = ρdt. Both λ and ρ are assumed

constant.

The inhomogeneous geometric Brownian motion process

The inhomogeneous geometric Brownian motion process (hereafter IGBM) (also known

as the geometric mean reversion process or the geometric Ornstein-Uhlenbeck pro-

cess)7.7 is obtained with γ = 1.

This modeling assumption has been been used in many different contexts, e.g. by

Brennan and Schwartz (1980) for analyzing convertible bonds, Insley (2002) to model

the optimal tree harvesting decision, Sarkar (2003) to study the effect of mean rever-

sion on investment under cost uncertainty, Abadie and Chamorro (2008) to analyze

the choice between an inflexible and a flexible technology for producing electricity, and

Tsekrekos (2010) to study the effect of mean reversion on entry and exit decisions

under output price uncertainty.

Proposition 7.5 Under the restrictions stated in Definition 7.3, with γ = 1, the optimal

solution X = [P,P,A1,B0]
′ is uniquely determined by solving the system F(X) = 0, where

F(X) =



−B0U(P)+A1M(P)+ϕP−X

−B0U(P)+A1M(P)+ϕP−X

−B0V (P)+A1W (P)+ϕP

−B0V (P)+A1W (P)+ϕP


, (7.119)

7.7Note that, with γ = 1, the variance rate grows with P, so that the variance is zero if P is zero. This is clearly
a more appealing feature than the one associated to the simple Ornstein-Uhlenbeck process in which the variance
rate is σdz. In this latter case, as the output price becomes small, the constant volatility could cause prices to
became negative, which is not economically reasonable for a practitioner.
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with

M(y) = y−a1M(a1,b1,z(y)), (7.120)

U(y) = y−a2U(a2,b2,z(y)), (7.121)

W (y) = a1

[
M(y)+

z(y)
b1

y−a1M(a1 +1,b1 +1,z(y))
]
, (7.122)

V (y) = a2
[
U(y)− z(y)y−a2U(a2 +1,b2 +1,z(y))

]
, (7.123)

z(y) =
2kθ

δ 2y
, (7.124)

a1 =−
2(k+λρδ )+δ 2−

√
8rδ 2 +(−2k−2λρδ −δ 2)2

2δ 2 , (7.125)

a2 =−
2(k+λρδ )+δ 2 +

√
8rδ 2 +(−2k−2λρδ −δ 2)2

2δ 2 , (7.126)

b1 = 2+2a1 +
2(k+λρδ )

δ 2 , (7.127)

b2 = 2+2a2 +
2(k+λρδ )

δ 2 , (7.128)

ϕ = (r+ k+λρδ )−1, (7.129)

X =− kθ

r(k+λρδ )
+

kθ

(r+ k+λρδ )(k+λρδ )
+

C
r
+K, (7.130)

X =− kθ

r(k+λρδ )
+

kθ

(r+ k+λρδ )(k+λρδ )
+

C
r
+K. (7.131)

Proof. To proof of this proposition is similar to the proof of the above propositions.

Under the restrictions stated in Definition 7.3 and with γ = 1, equations (7.6) and (7.7)

become, respectively:

1
2

σ
2P2V ′′0 (P)+

(
kθ − (k+λρδ )P

)
V ′0(P)− rV0(P) = 0, (7.132)
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and
1
2

σ
2P2V ′′1 (P)+

(
kθ − (k+λρδ )P

)
V ′1(P)− rV1(P)+P−C = 0. (7.133)

Since both equations have the same homogeneous part, we start by solving the ho-

mogeneous ode to find the complementary functions together. Trying a solution of

the form Vφ (P) = Pξ h(P) (with φ ∈ {0,1}), where ξ is a constant that will be chosen

in order to make h(P) satisfy a differential equation with a known solution. It follows

that V ′
φ
(P) = γPγ−1h(P)+Pγh′(P) and V

′′
φ
(P) = γ(γ−1)Pγ−2h(P)+2γPγ−1h(P)+Pγh

′′
(P).

Substituting Vφ (P), V ′
φ
(P), and V

′′
φ
(P) into the homogeneous equations and rearranging

terms yields gives the following equation:

Pξ−1h(P)
[
ξ (ξ −1)− 2(k+λρδ )ξ

δ 2 − 2r
δ 2

]
+

+Pξ

[
Ph′′(P)+

[(
2ξ − 2(k+λρδ )

δ 2

)
+ 2kθ

δ 2P

]
h′(P)+ 2kθξ

δ 2P2 h(P)
]
= 0.

(7.134)

The equation (7.134) must hold for any value of P, so the bracketed terms in the both

the first and second lines of equation must equal zero. Let us first choose ξ to set the

bracketed terms of the first line of equation (7.134) equal to zero:

ξ (ξ −1)− 2(k+λρδ )ξ

δ 2 − 2r
δ 2 = 0. (7.135)

This quadratic equation has two solutions for ξ , which are equal to −a1 and −a2, where

a1 and a2 are defined by equations (7.125) and (7.126), respectively.

To find a general solution to bracketed terms in the second line of (7.134) we make the

change of variable z(P) = 2kθ/(δ 2P) and we consider a new function h(P) = g(z(P)), so

that h′(P) =− z2δ 2g′(z(P))
2kθ

and h′′(P) = 2δ 4z3g′(z(P))
(2kθ)2 + δ 4z4g′′(z(P))

(2kθ)2 . By making this substitution

we transform this equation into
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zg′′(z(P))+(b− z(P))g′(z)−ag(z(P)) = 0, (7.136)

with a = −ξ and b = 2− 2ξ + 2(k + λρδ )/δ 2. The equation (7.136) is the Kummer’s

equation, as defined in Abramowitz and Stegun (1972, expression 13.1.1), which have

a general solution given by

g(z(P)) = A1M(a,b,z(P))+A2U(a,b,z(P)). (7.137)

Multiplying this general solution by Pξ we will get the general solution of the ode (7.132)

and of the homogeneous part of the equation (7.133), which can be expressed as a

linear solution of two independent solutions as

Vφ (P) = Aφ Pξ M (a,b,z(P))+Bφ PξU (a,b,z(P)) . (7.138)

The solution of the ode (7.132), subject to the boundary condition (7.8) is given by

V0(P) = B0P−a2U (a2,b2,z(P)) , (7.139)

which is valid over the range os prices (0,P). Analogously, the solution of the ode

(7.133) subject to the boundary condition (7.10) is given by

V1(P) = A1P−a1M(a1,b1,z(P)) (7.140)

+
P

r+ k+λρδ
+

kθ

r(k+λρδ )
− kθ

(r+ k+λρδ )(k+λρδ )
−C

r
,

161



which is valid for P over the range of prices (P,∞).

To apply the smooth-pasting conditions (7.13) and (7.14), one needs to compute the

first derivatives of the value functions Vφ (P). Using the results for the derivatives of the

Kummer functions and straightforward calculus, we obtain

V ′0(P) = B0a2P−a2−1 [U(a2,b2,z(P))− z(P)U(a2 +1,b2 +1,z(P))] (7.141)

and

V ′1(P) = A1a1P−a1−1

[
M(a1,b1,z(P))+

z(P)
b1

M(a1+1,b1+1,z(P))

]
+

1
r+ k+λρδ

. (7.142)

Finally, substituting (7.139)-(7.142) into the value-matching and smooth-pasting condi-

tions (7.11)-(7.14) and rearranging terms we obtain the non-linear system in matrix form

given in (7.119). �

The mean-reverting square-root process

The mean-reverting square-root process, also known as the Cox-Ingersoll-Ross pro-

cess (hereafter CIR process), due to Cox et al. (1985) is obtained with γ = 1/2. This

process has been widely used to model volatility, interest rates, and other financial

instruments.

In the context of real options, this model assumption has been used by Dias and Shack-

leton (2011) to study the investment hysteresis problem under stochastic interest rates,

while Alvarez (2011) use it to model optimal capital accumulation under price uncer-

tainty and cost reversibility of investment.
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Proposition 7.6 Under the restrictions stated in Definition 7.3, with γ = 1/2, the optimal

solution X = [P,P,A0,B1]
′ is uniquely determined by solving the system F(X) = 0, where

F(X) =



−A0M(P)+B1U(P)+ϕP−X

−A0M(P)+B1U(P)+ϕP−X

−A0W (P)+B1V (P)+ϕP

−A0W (P)+B1V (P)+ϕP


, (7.143)

with

M(y) = M(a1,b1,z(y)), (7.144)

U(y) = yξ2U(a2,b2,z(y)), (7.145)

W (y) = y
r

kθ
M(a1 +1,b1 +1,z(y)), (7.146)

V (y) =
(

ξ2U(y)−a2z(y)yξ2U(a2 +1,b2 +1,z(y))
)
, (7.147)

z(y) =
2(k+λρδ )

δ 2 y, (7.148)

a1 =
r

k+λρδ
, (7.149)

a2 = ξ2 +
r

k+λρδ
, (7.150)

b1 =
2kθ

δ 2 , (7.151)

b2 = 2ξ2 +
2kθ

δ 2 , (7.152)

ξ2 = 1− 2kθ

δ 2 , (7.153)

and ϕ, X , and X as defined as in (7.129), (7.130), and (7.131), respectively.

Proof. To proof of this proposition is similar to the proof of the above propositions.
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Under the restrictions stated in Definition 7.3 and with γ = 1/2, equations (7.6) and (7.7)

become, respectively:

1
2

σ
2PV ′′0 (P)+

(
kθ − (k+λρδ )P

)
V ′0(P)− rV0(P) = 0 (7.154)

and
1
2

σ
2PV ′′1 (P)+

(
kθ − (k+λρδ )P

)
V ′1(P)− rV1(P)+P−C = 0. (7.155)

Since both equations have the same homogeneous part, we start by solving the ho-

mogeneous ode to find the complementary functions together. Trying again a solution

of the form Vφ (P) = Pξ h(P) (with φ ∈ {0,1}), where ξ is a constant that will be chosen

in order to make h(P) satisfy a differential equation with a known solution. It follows

that V ′
φ
(P) = γPγ−1h(P)+Pγh′(P) and V

′′
φ
(P) = γ(γ−1)Pγ−2h(P)+2γPγ−1h(P)+Pγh

′′
(P).

Substituting these functions into homogeneous equations and rearranging terms yields

gives the following equation:

Pξ−1h(P)
[
ξ (ξ −1)+ 2kθ

δ 2 ξ

]
+

+Pξ

[
Ph′′(P)+

(
2ξ + 2kθ

δ 2 −
2(k+λρδ )P

δ 2

)
h′(P)−

(
2(k+λρδ )ξ

δ 2 + 2r
δ 2

)
h(P)

]
= 0.

(7.156)

The equation (7.156) must hold for any value of P, so the bracketed terms in the both

the first and second lines of equation must equal zero. Let us first choose ξ to set the

bracketed terms of the first line of equation (7.156) equal to zero:

ξ (ξ −1)+
2kθ

δ 2 ξ = 0. (7.157)

This quadratic equation has two solutions for ξ , which are equal to ξ = ξ1 = 0 and
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ξ = ξ2, as defined by equation (7.153).

To find a general solution of the function in the bracketed terms in the second line of

(7.156) we make the change of variable z(P) = 2(k+λρδ )P/δ 2 and we consider a new

function h(P) = g(z(P)), so that h′(P) = 2(k+λρδ )
δ 2 g′(z(P)) and h′′(P) = (2(k+λρδ )

δ 2 )2g′′(z). By

making this substitution we transform this equation, again, into the Kummer’s equation

(7.136), but now with a = ξ + r/(k+λρδ ) and b = 2ξ +2kθ/δ 2. The general solution of

this equation is given by equation (7.137).

Multiplying this general solution by Pξ we will get the general solution of the ode (7.154)

and of the homogeneous part of the equation (7.155), which can be expressed as a

linear solution of two independent solutions as

Vφ (P) = Aφ Pξ M (a,b,z(P))+Bφ PξU (a,b,z(P)) . (7.158)

The solution of the ode (7.154), subject to the boundary condition (7.8) is given by

V0(P) = A0M (a1,b1,z(P)) , (7.159)

which is valid over the range os prices (0,P). Analogously, the solution of the ode

(7.155) subject to the boundary condition (7.10) is given by

V1(P) = B1Pξ2U(a2,b2,z(P)) (7.160)

+
P

r+ k+λρδ
+

kθ

r(k+λρδ )
− kθ

(r+ k+λρδ )(k+λρδ )
−C

r
,
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which is valid for P over the range of prices (P,∞).

To apply the smooth-pasting conditions (7.13) and (7.14), one needs to compute the

first derivatives of the value functions Vφ (P). Using the results for the derivatives of the

Kummer functions, we obtain after straightforward calculus

V ′0(P) = A0
r

kθ
M (a1 +1,b1 +1,z(P)) (7.161)

and

V ′1(P) = B1Pξ2−1

[
ξ2U (a2,b2,z(P))−a2z(P)U (a2 +1,b2 +1,z(P))

]
+

1
r+ k+λρδ

.

(7.162)

Finally, substituting (7.159)-(7.162) into the value-matching and smooth-pasting condi-

tions (7.11)-(7.14) and rearranging terms we obtain the non-linear system in matrix form

given in (7.143). �

The Ornstein-Uhlenbeck process

The Ornstein-Uhlenbeck process (hereafter OU process) is obtained with γ = 0.

Despite its apparently less desirable feature of allowing paths with negative prices,

the OU process is often used in many capital budgeting decisions given its analytic

tractability and its ability to fit historical and futures price data (see, for instance, Smith

and McCardle (1999) for a specific application in evaluating investments in the oil and

gas industry).

Proposition 7.7 Under the restrictions stated in Definition 7.3, with γ = 0, the optimal
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solution X = [P,P,A0,B1]
′ is uniquely determined by solving the system F(X) = 0, where

F(X) =



−A0M(P)+B1U(P)+ϕP−X

−A0M(P)+B1U(P)+ϕP−X

−A0W (P)+B1V (P)+ϕP

−A0W (P)+B1V (P)+ϕP


, (7.163)

with

M(y) = M(a,b,z(y)), (7.164)

U(y) =U(a,b,z(y)), (7.165)

W (y) =−2r(kθ − (k+λρδ )y)
δ 2(k+λρδ )

yM(a+1,b+1,z(y)), (7.166)

V (y) =
r(kθ − (k+λρδ )y)

δ 2(k+λρδ )
yU(a+1,b+1,z(y)), (7.167)

z(y) =

(
kθ − (k+λρδ )y

)2

δ 2(κ +λρδ )
, (7.168)

a =
r

2(k+λρδ )
, (7.169)

b =
1
2
, (7.170)

and ϕ, X , and Xas defined as in (7.129), (7.130), and (7.131), respectively.

Proof. To proof of this proposition is similar to the proof of the above propositions.

Under the restrictions stated in Definition 7.3 and with γ = 0, equations (7.6) and (7.7)

become, respectively:

1
2

σ
2V ′′0 (P)+

(
kθ − (k+λρδ )P

)
V ′0(P)− rV0(P) = 0, (7.171)
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and
1
2

σ
2V ′′1 (P)+

(
kθ − (k+λρδ )P

)
V ′1(P)− rV1(P)+P−C = 0. (7.172)

Since both equations have the same homogeneous part, we start by solving the ho-

mogeneous ode to find the complementary functions together. We make the change

of variable z(P) =
(

kθ−(k+λρδ )y
)2

δ 2(κ+λρδ )
, which converts the homogeneous equation in the so-

called Kummer equation (7.136), but now with a and b as defined as in (7.169) and

(7.170), respectively. The general solution of this equation is given by (7.137). So,

we will get the general solution of the ode (7.171) and of the homogeneous part of

the equation (7.172), which can be expressed as a linear solution of two independent

solutions as

Vφ (P) = Aφ M (a,b,z(P))+BφU (a,b,z(P)) . (7.173)

The solution of the ode (7.154), subject to the boundary condition (7.8) is given by

V0(P) = A0M (a,b,z(P)) , (7.174)

which is valid over the range of prices (0,P). Analogously, the solution of the ode (7.172)

subject to the boundary condition (7.10) is given by

V1(P) = B1U
(

a,b,z(P)
)

(7.175)

+
P

r+ k+λρδ
+

kθ

r(k+λρδ )
− kθ

(r+ k+λρδ )(k+λρδ )
−C

r
,
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which is valid for P over the range of prices (P,∞).

To apply the smooth-pasting conditions (7.13) and (7.14), one needs to compute the

first derivatives of the value functions Vφ (P). Using the results for the derivatives of the

Kummer functions, it is straightforward to obtain

V ′0(P) =−A0
2r(kθ − (k+λρδ )P)

δ 2(k+λρδ )
M(a+1,b+1,z(P)) (7.176)

and

V ′1(P) = B1
r(kθ − (k+λρδ )P)

δ 2(k+λρδ )
U(a+1,b+1,z(P))+

1
r+ k+λρδ

. (7.177)

Finally, substituting (7.174)-(7.177) into the value-matching and smooth-pasting condi-

tions (7.11)-(7.14) and rearranging terms we obtain the non-linear system in matrix form

given in (7.163). �

4 Analysis of optimal entry-exit policy

In this section we analyze the optimal entry-exit policy assuming that the underlying

output price dynamics follows the aforementioned generalized one-dimensional diffu-

sion subject to the restrictions stated in definitions 7.1 to 7.3. Panels (a) and (b) of

Figure 7.1 plot entry and exit thresholds prices, P and P, respectively, as a function of

lump-sum entry and exit costs K = −K for different parameter values. In our model-

ing framework, this means that α = −1. The range (P,P) is the hysteretic band of the

problem since idle firms do not invest and operating firms do not abandon the activity

within this intermediate level of output prices. Panel (a) is for different β values of the

CEV process, namely, β ∈ {−4,−2,0,1,2,3} (β = 2 corresponds to the GBM assump-

tion), where we have used the following parameter values: C = 2, r = 0.04, σ0 = 0.15,
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µ = 0.08, λ = 0.4, ρ = 1, and P0 = 1, and panel (b) is for different γ values of the mean-

reverting CEV processes, namely, γ = 0 (OU process), γ = 1/2 (CIR process) and γ = 1

(IGBM process), where we have used the following parameter values: C = 2, r = 0.04,

σ0 = 0.15, k = 0.05, θ = 1, λ = 0.4, ρ = 1, and P0 = 1. As we can see from this figure,

the hysteresis emerges only when entry and exit costs are present, otherwise the en-

try and exit thresholds P,P drop to the level of the variable cost C. From panels (a)

and (b) of Figure 7.1, we also can see that the hysteresis increases with the diffusion

coefficient (i.e, with the parameter β in the CEV and with the parameter γ in the mean-

reverting CEV processes). This results are consistent with the findings of Dias and

Nunes (2011).

Panels (c) and (d) of the Figure 7.1 plot the optimal decisions thresholds scaled by the

corresponding Marshallian triggers as functions of volatility. Panel (c) is for different β

values of the CEV process, namely, β ∈ {−4,−2,0,1,2,3} (β = 2 corresponds to the

GBM assumption), where we have used the following parameter values:K = 3, K =−2,

C = 2, r = 0.04, µ = 0.08, λ = 0.4, ρ = 1 and P0 = 1, and panel (b) is for different γ

values of the mean-reverting CEV processes, namely, γ ∈ {0,1/2,1} (as well as the

case of GBM with no drift), where we have used the following parameter values: K = 3,

K =−2, C = 2, r = 0.04, k = 0.05, θ = 1, λ = 0.4, ρ = 1, and P0 = 1. Both panels show that

the entry and exit thresholds under the CEV and the mean-reverting CEV processes

converge to the Marshallian triggers, W and W , respectively, when δ → 0, so P/W → 1

and P/W → 1. From these panels, we can say that there is a clear trend for a wider

range of inaction as the volatility coefficient rises.

An idle firm will enter in the market if the output price rises to high values, but it owns

an option to exit later if the output prices fall to a sufficient low level and return to the

idle state. Once the project is abandoned, the firms owns an option to reinvest again

if the output prices reverse to high levels again. Thus, it is important to evaluate the
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Figure 7.1: Panels (a) and (b): the optimal entry and exit triggers, P and P, under the CEV and the mean
reverting CEV processes, as function of entry and exit cost, in the particular case K =−K. Panels (c) and
(d): the ratios of the optimal entry and exit triggers P, P under the CEV and the mean-reverting processes,
respectively, over the corresponding thresholds, W , W , as function of volatility, σ0. The rest parameters
used are C = 2, r = 0.04, λ = 0.4, ρ = 1, P0 = 1, and in panel (a) β ∈ {−4,−2,0,1,2,3}, σ0 = 0.15,
µ = 0.08; panel (b) γ ∈ {0,1/2,1}, σ0 = 0.15, k = 0.05, θ = 1, and the GBM with no drift; panel (c)
K = 3, K = −2, β ∈ {−4,−2,0,1,2,3}, µ = 0.08; and in panel (d) K = 3, K = −2, γ ∈ {0,1/2,1},
k = 0.15, θ = 1, and the GBM with no drift.

no-action region, this is, the hysteretic band. Figures 7.2 and 7.3 highlight the value

of an idle firm, V0(P), and the value of an active firm, V1(P), both as functions of the

output price P, for the CEV process and mean-reverting CEV process, respectively.

Also shown are the entry and exit thresholds prices, P and P. Since the option to

invest is exercised as soon as P reaches P, the option value does not exist for values

of P above P. Similarly, since the abandonment is exercised as soon as P falls to P,

the option value does not exist for values of P below P. Note that, for all β values, at

P = P, V0(P) exceeds V1(P) by the abandonment cost −K, since at that price is optimal
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to exercise the abandonment option, giving up −K +V1 and receiving V0. Likewise, at

P = P it is optimal to invest, so V1 =V0 +K.

In Figure 7.2 we have used the following parameter values: K = 3, K = −2, C = 2,

r = 0.04, σ0 = 0.15, µ = 0.08, λ = 0.4, ρ = 1, and P0 = 1 for β ∈ {−4,−2,0,1,2,3}.

Considering these parameter values, and for β = −4, the entry and exit thresholds

prices are, respectively, P = 2.133 and P = 1.422, which originates a range of inaction

with width 0.711. Under the GBM process, i.e. β = 2, the entry and exit trigger points

are respectively P= 2.782 and P= 1.319, which gives a larger range of inaction of 1.463.

With β = 3, the range of inaction increases to 2.023, where entry and exit thresholds

are given by P = 3.34 and P = 1.312, respectively. It is clear that the hysteretic band

increases with the parameter β in the CEV process, keeping all else equal.

In Figure 7.3 we have used the following parameter values borrowed from Tsekrekos

(2010): K = 3, K = −2, C = 2, k = 0.05, θ = 1, λ = 0.4, σ0 = 0.15, ρ = 1, P0 = 1, and

r = 0.04 for γ = 0,1/2,1. We also plot the GBM process with no drift for reference. We

conclude that hysteresis increases with the volatility parameter of the mean-reverting

processes, from de 1.809 in the OU process, to 1.892 in the CIR process, and to 2.136

in the IGBM process.

Figures 7.2 and 7.3 allow us to conclude that the value of an idle firm and the value of

an active firm increase when the β and γ parameters rise.

In summary, we can draw the following conclusions from our analysis, for both CEV

and mean-reverting CEV processes:

i) The entry threshold price rise and the exit threshold price falls as the parameters

β and γ rises, keeping all remainder parameters equal. Thus, the hysteretic band

will be wider;
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Figure 7.2: The value of the firm when idle, V0(P), and active, V1(P), as a function of the output
price P, when the output price follows a CEV process. At the entry and exit thresholds, P, P, the firm
optimally switches between the idle and active states by sinking the entry and exit costs, K, K. The rest
of parameters used are: K = 3, K = −2, C = 2, r = 0.04, σ0 = 0.15, µ = 0.08, λ = 0.4, ρ = 1, and
P0 = 1.
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Figure 7.3: The value of the firm when idle, V0(P), and active, V1(P), as a function of the output price P,
when the output price follows a CEV mean-reverting process. At the entry and exit thresholds, P, P, the
firm optimally switches between the idle and active states by sinking the entry and exit costs, K, K. The
rest of parameters used are: K = 3, K =−2, C = 2, r = 0.04, k = 0.05, θ = 1, λ = 0.4, ρ =, σ0 = 0.15,
and P0 = 1.
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ii) When equal entry and abandonment cost, K = −K, increase, the entry trigger

increases while the exit trigger decreases, leading to a higher inactive region.

This holds for all β and γ values.

iii) Keeping all remainder parameter values constants, the hysteric band increases

with the volatility parameter.

5 First passage time distributions for entry and exit thresh-

olds

In this section we will compute and analyze the ex ante probability of entry for an

inactive firm, and the ex ante probability of exit for an active firm within an specified

horizon. Following Tsekrekos (2010), we will consider that the ex ante probability that

a single idle firm will enter in an industry/market during the time horizon T will be a

measure of the fraction of idle firms, under competitive equilibrium, that will enter the

market during this time horizon. The same line of reasoning applies for the ex ante

probability that a single active firm will exit during time T .

For any optimal policy pair (P,P), the ex ante probability that an inactive firm will enter

during time T is equal to P(τU ≤ T ), where τU := in f{t ≥ t0 : Pt = P} is the first hitting

time of the underlying process to the investment threshold P. Conversely, the ex ante

probability that an active firm will exit the market during the time horizon T is equal to

P(τL ≤ T ), with τL := in f{t ≥ t0 : Pt = P} is the first hitting time of the underlying process

to the divestment threshold P.

Considering the particular case of the CEV model, β = 2 (GBM model), the ex ante

probabilities of entry and exit can be computed in closed-form, using the following
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expressions as given by Jeanblanc et al. (2009, expressions 3.3.2 and 3.3.3), respec-

tively,

P(τU ≤ T ) = N

(
ln(P∗0

P )+(µ− σ2

2 )T

σ
√

T

)
+

(
P
P∗0

) 2µ

σ2−1

N

(
ln(P∗0

P )− (µ− σ2

2 )T

σ
√

T

)
, (7.178)

P(τL ≤ T ) = N

(
ln( P

P∗0
)− (µ− σ2

2 )T

σ
√

T

)
+

(
P
P∗0

) 2µ

σ2−1

N

(
ln( P

P∗0
)+(µ− σ2

2 )T

σ
√

T

)
, (7.179)

where N(.) is the normal standard cumulative distribution function, and P∗0 = P+P
2 is the

current level of the price process. Expression (7.179) corrects the typo in Tsekrekos

(2010, expression 27).

For the CEV process, with β 6= 2, and for the mean-reverting CEV process there are no

simple closed-form solutions as for the GBM process. Thus, in order to simulate these

probabilities, it will be necessary to compute first an approximate solution of the CEV

and mean-reverting CEV processes prices.

Table 7.1 shows the ex ante entry and ex ante exit probabilities for the CEV diffusion

model using the parameter values β ∈{−4,−2,0,1,2,3}, σ0 ∈{0.10,0.15,0.20}, r = 0.04,

and T = 10 years. The parameter µ will be adjusted so that the difference (µ −λρδ )

remains constant and equal to 2 (so, for σ0 = 0.10,0.15, and 0.20 we will have µ =

0.06,0.08, and 0.10, respectively). To compute these probabilities we have used the

Euler scheme, described in Glasserman (2004). Details on how these probabilities

were computed are provided in the Appendix.

Table 7.1 show that, for β < 2, there is a direct relation between the volatility parameter

and the ex ante probability of entry, while for β > 2, there is an inverse relation. For the

case of the exit probability, and for all β values, the probability increases with volatility.
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We can also conclude that there appears to be evidence that the value of entry and exit

probabilities decreases when β increases, keeping the remainder parameter values

constants.

Table 7.1: Probability of entry for an idle firm and the probability of exit for an active firm within
a specified horizon, T , for the CEV process, computed via Monte Carlo simulation.

Volatility β = 3 β = 2 β = 1 β = 0 β =−2 β =−4
Panel A: Probability of entry
σ0 = 0.10 0.5025 0.5888 0.6340 0.6816 0.7446 0.7976
σ0 = 0.15 0.4896 0.5818 0.6354 0.6918 0.8063 0.8862
σ0 = 0.20 0.4880 0.5820 0.6372 0.7056 0.8505 0.9147
Panel B: Probability of exit
σ0 = 0.10 0.0597 0.1602 0.2300 0.2760 0.3134 0.3174
σ0 = 0.15 0.1263 0.2942 0.3758 0.4298 0.4626 0.4637
σ0 = 0.20 0.1765 0.3945 0.4720 0.5082 0.5407 0.5343

This table values the probabilities of entry and exit in the market during the time horizon T under the
CEV diffusion model. In each simulation, 70,000 paths and 1,000 time steps are used. σ0 is the volatility
of the market price, and µ is the growth rate of the market price, which is adjusted for each σ0 value
(µ ∈ {0.06,0.08,0.10}, respectively). In all cases P∗0 = (P+P)/2, the time horizon is T = 10 years, the
variable flow cost is C = 2, r = 0.04 is the riskless interest rate, λ = 0.4 is the market price of the risk,
ρ = 1 is the correlation between output price and the market portfolio, and the entry and exit sunk costs
are K = 3 and K =−2, respectively.

To compute an approximate solution to the IGBM and CIR processes we will use the

Pathwise Adapted Linearization and the Pathwise Adapted Linearization Quadratic

schemes, both proposed by Kahl and Jäckel (2006), and explained in the Appendix. To

compute an approximate solution to the OU process, we will simulate the output prices

using the following exact discretization:

Pt+1 = e−k∆t Pti +θ(1− e−k∆t )+δ

√
(1− e−2k∆t )

2k
Zt−i+1, (7.180)

where Zi are independent N(0,1) variables, and ∆t = ti+1− ti.
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Tables 7.2 and 7.3 give us the ex ante probabilities of entry and exit, respectively, for

the mean-reverting CEV processes, namely, for the OU, CIR, and IGBM processes.

Our first remark is concerned with the effect of the volatility parameter, σ0, on the ex

ante probabilities. As reported in Table 7.2, the probability of entry increases with σ0

in all cases. Similarly, we reach the same conclusion for the exit probability, except

when the price process reverts to low levels (θ = 0.4) with higher speed (k = 0.10).

These conclusions are similar to the ones reaches by Tsekrekos (2010) for the IGMB

process, and by Sarkar (2000) for the GBM process. So, we can also conclude that the

non-monotonic relationship, as reported by the authors referenced above, is present in

the all mean-reverting CEV processes analyzed.

We analyze also the effect of the log-run output price level, θ . By the results reported,

we can argue that the increase of the θ parameter has a positive effect on the entry

decisions and a negative effect on the exit decisions.

Now, we analyze the effect of the mean reverting speed parameter, k, on the investment

and disinvestment decisions. There is some evidence of a negative effect on the entry

probability, except when the price of the output process revert to hight level (when

ρ = 0, and for ρ = 1 with low volatility).

Finally, we report our conclusions of the effect of the γ parameter. From Table 7.2 we

can conclude that when γ increases, the probability of entry also increases, except

when the correlation between the equilibrium output price and the market portfolio is

null, ρ = 0, the mean reversion speed is hight, k = 0.10, and the volatility is hight,

σ0 = 0.15,0.25. From Table 7.3, we may conclude that the probability of exit, for ρ = 1,

increases when γ increases, except when volatility is low, σ0 = 0.10, and the price

process reverts to hight level, θ = 1.4. However, there is some evidence of decrease of

the exit probability, except when the price process reverts to low levels, θ = 0.4.
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6 Conclusions

In this article, we consider the optimal entry and exit policy of a firm in the presence

of output price uncertainty and subject to costly reversibility of investment under a

generalized class of one-dimensional diffusions. We derive explicit solutions for the

value functions for options of reversible investments under CEV and mean-reverting

CEV processes.

We compare the different stochastic processes studied by doing an analysis of opti-

mal entry-exit policy. This analysis includes both numerical and graphical illustrations,

where we have concluded that the hysteretic band increases when: i) β and γ param-

eters increase; ii) when both investment and divestment equal costs increase, and iii)

the volatility parameter increases.

We have also computed the ex ante probabilities of entry and exit and try to show that

the choice of the stochastic process for the output price has a significant impact on

investment and divestment decisions.
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Appendix A: Monte Carlo Methods

This appendix shows in detail the Monte Carlo simulation methods used for computing

the ex ante probabilities of entry and exit. First, we compute the upper and lower

thresholds for each considered stochastic process. Then, a large number M of possible

future output prices P at dates 0 < t1 < t2 < ... < tN = T are generated via the following

methods:

A) The simple Euler discretisation method was the scheme used to compute the CEV

output prices. This method discretises the continuous time stochastic differential (7.1)

to:

Pi+1 = Pi +µ(Pi)(ti+1− ti)+σ(Pi)
√

ti+1− tiZi+1, (A.1)

where i = 0,1, ...,N−1 and Zi+1 ∼ i.i.d.N (0,1) random variables.

A detailed explanation of the methods set out below, B) and C), can be found in Kahl

and Jäckel (2006).

B) The Pathwise Adapted Linearization method was the scheme used to compute the

IGBM output prices. With this method the IGBM output prices are calculated as

Pi+1 = Pie−δi(ti+1−ti)+ kθ

(
1− e−δi(ti+1−ti)

δi

)
, (A.2)

where i = 0,1, ...,N−1 and Zi+1 ∼ i.i.d.N (0,1) random variables, and with

δi = k+
1
2

δ
2−δβi, (A.3)
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and

βi =
Zi+1−Zi

ti+1− ti
. (A.4)

C) The Pathwise Adapted Linearization Quadratic method was the scheme used to

compute the CIR output prices. With this method the CIR output prices are calculated

as

Pi+1 ≈ Pi +
(
k(θ̃ −Pi)+δβi

√
Pi
)
(ti+1− ti)

[
1+

δβi−2k
√

Pi

4
√

Pi
(ti+1− ti)

]
, (A.5)

where i = 0,1, ...,N−1 and Zi+1 ∼ i.i.d.N (0,1) random variables, and with

θ̃ = θ − δ 2

4k
. (A.6)

Estimates of the probabilities of entry and exit are calculated via

Pr(τ ≤ T ) =
M
M

(A.7)

and

Pr(τ ≤ T ) =
M
M

(A.8)

where M = {Pi+1 ∈M : Pi+1 ≥ P} and M = {Pi+1 ∈M : Pi+1 ≤ P}, i = 0,1, ...,N−1 are the

number of simulated paths with at least one price Pi+1 exceeding or falling below the

entry and exit price thresholds, respectively.

In all results reported, M is set to 100,000 (an exception is made for the CEV process,

due to lack of PC memory, where we have used 70,000) and N = 1,000. All compu-

tations were made in Matlab R2008b, whose default random number generator was

used for the random variables Zi+1.
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Chapter 8

Conclusion

This thesis provides important results concerning the valuation of standard European-

style options (in four separate articles), and concerning the valuation of real options (in

two other articles).

The most important theoretical contribution of the first part of this thesis, chapters 2

and 3, is the derivation of closed-form solutions for computing sensitivity measures of

European-style options under the unrestricted CEV model for both β < 2 and β > 2,

and for the particular case of the absolute diffusion, where the elasticity parameter β of

the local volatility is zero. The knowledge of these analytical expressions for determin-

ing Greeks allows us to better understand the role, genesis, and relationships between

the various Greeks. As we have demonstrated, the computation time needed for com-

puting Greeks with the novel analytical solutions will diminish substantially, which is

extremely relevant when one needs to design hedging strategies through time. Fi-

nally, the existence of analytical solutions allows that they can be coded in any desired

computer language. Another aim of the paper in Chapter 3 is to provide comparative

results in terms of speed and accuracy of existing alternative algorithms for computing
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the noncentral chi-square distribution function to be used for option pricing and hedg-

ing under the CEV model. We have concluded that the considered iterative procedures

are accurate, but the computational results show that the algorithm proposed by Ben-

ton and Krishnamoorthy (2003) is the best choice, since it is the most accurate one

and the fastest. We have also concluded that the analytic approximations run quickly

but have an accuracy that varies significantly over the considered parameter space.

The second part of the thesis, chapters 4 and 5, is concerned with the CIR model dif-

fusion. The principal theoretical contribution of this part is the derivation of closed-form

solutions for determining sensitivity measures of both pure discount and coupon-paying

bond options under the CIR model. We have shown that these measures are accurate,

easy to implement and computationally very efficient. Furthermore, armed with these

formulae, we are able to extend the Bacinello et al. (1996) approach by analyzing, in

closed-form, the comparative statics properties of a default-free sinking-fund bond in

the CIR model. We have also analyzed the performance in terms of accuracy and

computational time of alternative iterative procedures for computing the noncentral chi-

square distribution function associate with the calculation of the bond options under

the CIR framework. We have concluded, again, that the method proposed by Benton

and Krishnamoorthy (2003) is the most efficient.

Finally, in the third part, chapters 6 and 7, which is concerned with the real options liter-

ature, we have analyzed the decision of a firm to switch from the idle state to the operat-

ing state, and vice-versa, under uncertainty, for a generalized class of one-dimensional

diffusions. We start by considering the situation of a firm that can invest a lump-sum

cost at any time and receive a perpetuity (a project) with constant cash flow rate, where

the perpetuity value is stochastic because the interest rate used to discount the perpet-

ual flows is assumed to follow a CIR diffusion process. We have analyzed alternative

methods proposed to compute the options to invest and divest from a project in a CIR
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economy, as well as different methods of determining CIR perpetuities. We have con-

cluded that the solution proposed by Dias and Shackleton (2011) is the easiest to apply

and turns the economic hysteresis problem simpler to analyze and understand. From

the examination of the alternative methods to compute the perpetuities, we have con-

cluded that the Method D2 performs better in terms of accuracy, and the Method D1

is the most efficient in terms of computation time, both methods proposed by Delbaen

(1993). Next, we analyzed how output price uncertainty and costly reversibility affect

the optimal entry and exit policy of a competitive price-taking firm, and how the hys-

teretic band is affected by the choice of the stochastic process, namely, by the CEV

and mean-reverting CEV processes. We have concluded that the scalar parameter (β

in CEV model and γ in mean-reverting CEV model) and the hysteretic band have a

direct relation. The range of inaction also has a direct relation with the initial instan-

taneous volatility. We have also analyzed the ex ante probabilities of entry and exit

for an idle and an active firm, respectively. Here, and for the CEV process, we have

concluded that there is an inverse relation between ex ante probabilities of entry and

exit and the scale parameter, while for the mean-reverting CEV, there is no monotonic

relation between the ex ante probabilities and the scale parameter.
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Ağca, Senay and Don M. Chance, 2003, Speed and Accuracy Comparison of Bivari-

ate Normal Distribution Approximations for Option Pricing, Journal of Computational

Finance 6, 61–96.

Bacinello, Anna Rita and Fulvio Ortu, 1999, Arbitrage Valuation and Bounds for

Sinking-Fund Bonds with Multiple Sinking-Fund Dates, Applied Mathematical Finance

6, 293–312.

Bacinello, Anna Rita, Fulvio Ortu, and Patrizia Stucchi, 1996, Valuation of Sinking-

Fund Bonds in the Vasicek and CIR Frameworks, Applied Mathematical Finance 3,

269–294.

Bajo, Emanuele and Massimiliano Barbi, 2010, The Risk-Shifting Effect and the Value

of a Warrant, Quantitative Finance 10, 1203–1213.

Bakshi, Gurdip, Charles Cao, and Zhiwu Chen, 1997, Empirical Performance of Alter-

native Option Pricing Models, Journal of Finance 52, 2003–2049.

Bar-Ilan, Avner and William C. Strange, 1996, Investment Lags, American Economic

Review 86, 610–622.

Beaglehole, David R. and Mark S. Tenney, 1991, General Solutions of Some Interest

Rate-Contingent Claim Pricing Equations, Journal of Fixed Income 1, 69–83.

Bekaert, Geert and Guojun Wu, 2000, Asymetric Volatility and Risk in Equity Markets,

Review of Financial Studies 13, 1–42.

194
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