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Abstract

Resin weighs substantially on the costs associated with the manufacturing
of MDF (medium-density fiberboard). It is thus important to ensure the
efficiency of resin usage in production lines with the purpose of ensuring
a given internal bond strength (IB) for specific products. Sonae has two
MDF production lines using similar technologies and materials but which
need different resin percentages to reach the same IB. It was asked of the
study group to find out what were the determining factors responsible for
this difference and, if possible, suggest alternatives which will improve resin
efficiency.
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1.1 Introduction

2.1 Basic estimates

In this section we will collect some basic data about the system and estimate
some of the important parameters. We start with some intrinsic properties
of the fiber.

Length of fiber l = 2.5× 10−3 m

Diameter of fiber d = 3× 10−5 m

Volume of fiber v = π
4
d2l = 1.8 × 10−12 m3

Density of dry fiber ρ = 430 kg/m3

Mass of dry fiber m = ρv = 7.6 × 10−10 kg

The factory under study works in several regimes with rather different
mass flux in the blowline. For the purpose of these estimates we will consider
a flux of 20 ton/hour of dry fiber.

Mass flux of dry fibers F = 20 ton/h = 5.6 kg/s

Flux of fibers f = F
m = 7.2× 109 fibers/s

Diameter of blowline D = 0.1m

Cross section (area) of blow line A = π
4
D2 = 7.9× 10−3 m2

Flow velocity u = 30m/s

Kinetic energy of dry fiber E = 1

2
mu2 = 3.4 × 10−7 J

Momentum of dry fiber p = mu = 2.3× 10−8 kgm/s

Number of fibers per unit volume n = f
uA = 3× 109 m−3

Fraction of volume occupied by the fibers nv = 0.054 = 5.4%

Average distance between centers of fibers n−1/3 = 0.3mm

From this table we can start to form a picture of the structure of the
fluid flowing in the blowline. The ratio between the length of the fiber and
the average distance between centers of fibers is rather large,

ln1/3 = 10 , (2.1)

which shows that the fibers are entangled. On the other hand, the ratio of
the fiber diameter to the average distance between centers of fibers is rather
small,

dn1/3 =
1

10
, (2.2)

which shows that the fibers are rather spread out.
Imagine cutting the blowline by a plane orthogonal to the pipe. How

many fibers intercept this plane? The answer is given by the number of
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fibers with center inside the volume equal to the area A of the pipe times
the lenght l of the fiber,

N = nAl = 6× 105 (2.3)

This can be shown exactly if we assume an uniform random distribution for
the centers of the fibers and for their angular orientation.

It is also useful to compare the size of the resin droplets with the size
of the fibers. The size of the resin droplets depends on the type of injector
used. We shall assume that the average radius of injected resin droplet is
r = 200µm. Moreover, we assume that the final product has a resin content
(in mass) of 15%.

average radius of injected resin droplet r = 200µm

Volume of resin droplet vr =
4

3
πr3 = 3.4× 10−11 m3

Density of resin ρr = 1270 kg/m3

Mass of resin droplet mr = ρrvr = 4.3 × 10−8 kg

Mass ratio between resin droplet and fiber mr/m = 56

Resin content (in mass) in final MDF 0.15 = Fr

Fr+F

Resin mass flow Fr = 0.99 kg/s

Resin droplet flow fr = Fr/mr = 2.3× 107 /s

Number of fibers per resin droplet injected x = f/fr = 310

Finally, let us estimate the distance between the center of the fiber and
the center of the resin droplet for which they are in contact. Consider
a cylindrical fiber oriented at an angle θ relative to the direction of the
incoming spherical resin droplet. The interaction cross section is

σ(θ) = πr2 + dl cos θ + r(2d+ 2l cos θ) (2.4)

= (d+ 2r)l cos θ + πr2 + 2rd (2.5)

This is the area of the region defined by the set of points at a distance
smaller or equal to r from a rectangle of sides d and l cos θ. We now average
over all angles with the uniform distribution on the sphere sin θ dθdφ,

〈σ〉 =
∫ π/2

0

dθ sin(θ)σ(θ) =
1

2
(d+ 2r)l + πr2 + 2rd = 6.8× 10−7 m2 (2.6)

The effective distance of interaction is then given by

〈σ〉 = πℓ2int ⇒ ℓint = 460µm (2.7)

The ratio between the effective distance of interaction and the diameter of
the pipe is

ℓint
D

= 4.6× 10−3 (2.8)

After the resin droplets captures some fibers their effective interaction dis-
tance grows to approximately l. In this case, l

D = 2.5× 10−2.
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3.1 Discrete-time stochastic models

4.1 Injectors’ area of influence

In this section we shall assume that each injector has an area that it will
be able to reach in order to cover the fibers there and which we shall call
it’s area of influence. As we saw above, this assumes that most of the resin
will stick to the fibers before most of the mixing that will take place along
the blow–line. If this hypothesis holds, then the area which is covered by a
single injector becomes of extreme importance.

Furthermore, under these conditions it is also clear that it would be
better to have the injectors in a ring configuration at the same point along
the blow–line, as this would ensure that there would be no resin acting on an
area which had already been touched upon by the resin sent in by a previous
injector.

We shall consider these areas of influence and determine the optimal
number of injectors that should be used to cover the largest possible area
in each case. Clearly this will depend on the shape of the area of influence
which, by its own nature, will be quite complex and depend on many factors.
We shall thus just give an idea of what may be worked out in this context, by
considering two different fairly simple configurations for these sets, namely,
a ball and a circular sector. Although simple, these two examples cover two
different situations. The first when the area of influence is tangent to the
outside circle and the second when it opens up at a point on the circle’s
boundary with some specific angle which we shall assume to be sufficiently
wide.

The problem we shall consider is thus how to cover the largest possible
part of a disk D (the cross–section of the blow-line) with k copies of one
domain A denoted by Ai, i = 1 . . . k (the different areas of influence), while
satisfying the following conditions:

H1: Ai ⊂ D, i = 1 . . . k (all Aj’s are inside D)

H2: Ai ∩Aj = ∅ for all i 6= j (the Aj ’s are mutually disjoint)

H3: ∂Ai ∩ ∂D 6= ∅ for all i = 1, . . . , k (every copy intersects the boundary
of D at least in one point)

4.1.1 Disk-shaped areas of influence

We shall first consider the case where A is also a disk. In order to have the
copies Ai satisfying the above conditions, they must all be tangent to the
boundary of the cross–section ∂D and it thus follows that they will form a
ring around this boundary touching each of the two neighbours at one (and
only one) point. It also follows that all disks Ai have their centres at the
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same distance from the centre of D; we shall denote this distance by R1,
while R2 will denote the radius of the Ai’s.

We thus have that, for k disks, each will be of the form

[

x−R1 cos

(

2πi

k

)]2

+

[

y −R1 sin

(

2πi

k

)]2

= R2
2, i = 0, 1, . . . , k − 1.

In order to determine R1 and R2, it is enough to consider two of these
disks is sucession (consecutive values of i), determine their intersection, and
ensure that this reduces to one and only one point. We thus want to solve
the system (i = 0, 1)







(x−R1)
2 + y2 = R2

2

[

x−R1 cos
(

2π
k

)]2

+
[

y −R1 sin
(

2π
k

)]2

= R2
2

This yields solutions of the form










x = R1 cos
2
(

π
k

)

± cos
(

π
k

)√
∆

y = 1
2R1 sin

(

2π
k

)

± sin
(

π
k

)√
∆

,

where

∆ = R2
2 −R2

1 sin
2

(

π

k

)

.

The two disks will be tangent at one single point if and only if ∆ vanishes
which is equivalent to

R2 = R1 sin

(

π

k

)

.

Since R1 +R2 = R, the radius of the cross–section, we finally obtain







































R1 =
1

1 + sin

(

π

k

)R

R2 =
sin

(

π

k

)

1 + sin

(

π

k

)R

The ratio between the area occupied by the k copies and the area of the disk
is thus given by

ρk = k
πR2

2

πR2
= k

sin2
(

π

k

)

[

1 + sin

(

π

k

)]2
.

The plot of ρk as a function of the number of disks is displayed in Fig-
ure 4.1, from which we see that the maximum is attained for some k between
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Figure 4.1: Ratio between the area occupied by the disks and the total area
of the cross–section.

4 and 5. Table 4.1 presents the values for k = 2, . . . , 5 and it turns out that
the optimal integer value corresponds to k = 4. However, we also see that
the difference between this value and those corresponding to k = 3 and
k = 5 is not very large.

k 2 3

ρk
1
2 = 0.5 63− 36

√
3 ≈ 0.6462

k 4 5

ρk 12− 8
√
2 ≈ 0.6863

10(5 −
√
5)

(

4 +

√

10− 2
√
5

)2 ≈ 0.6852

Table 4.1: Ratio function ρk for disks and low values of k.

The different configurations for these values of k are shown in Figure 4.4.

4.1.2 Sector-shaped areas of influence

In order to have a different shape for the area of influence for comparison,
we shall now consider the case where this is a circular sector with the vertex
on the boundary of the cross–section and the end points of the side segments
also on this boundary. Whether or not this last requirement is realistic is
not possible to ascertain at this point. However, the main issue here is to
see that for two different shapes, disks and sectors, the optimal number of
injectors does not change considerably. A further study of the dependence
on the angle opening can, in any case, be easilly carried out along the same
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Figure 4.2: Optimal coverings with 2, 3, 4 and 5 disks.

lines.
In this case, and in a similar fashion to what was done in the previous

example, we have to solve the following system of equations







(x−R)2 + y2 = R2
2

[

x−R cos
(

2π
k

)]2

+
[

y −R sin
(

2π
k

)]2

= R2
2

yielding solutions of the form











x = R cos2
(

π
k

)

± cos
(

π
k

)√
∆

y = 1
2R sin

(

2π
k

)

± sin
(

π
k

)√
∆

,

where

∆ = R2
2 −R2 sin2

(

π

k

)

.

As before, this will have one and only one solution if ∆ vanishes and we
obtain

R2 = R sin

(

π

k

)

.

The intersection points of this particular sector with the boundary of the
cross–section is at points (x0, y0) with

x0 =
1

4
R

(

3 + cos

(

π

k

))

and two possible values for y, namely,

y±0 = ± 1

2
√
2

√

7 + cos

(

2π

k

)

R sin

(

π

k

)

.

From this we may determine the sector opening α and the ratio between the
occupied area and the total area which are given by

αn = 2arctan

[

1√
2

√

7 + cos

(

2π

k

)

csc

(

π

k

)

]
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and

ρn =
n

π
arctan

[

1√
2

√

7 + cos

(

2π

k

)

csc

(

π

k

)

]

sin

(

π

k

)

,

respectively. These functions are shown in Figure 4.3, from which we see
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Figure 4.3: Ratio between the area occupied by the sectors and the total
area of the cross–section (left) and angle opening for each sector (right).

that now the maximum ratio is achieved very close to k = 3. The actual
values for k = 2, 3, 4 and 5 are shown in Table 4.2 and the maximum over
the integers is indeed achieved at k = 3 with a corresponding angle of

α3 = 2arctan

√

11

3
≈ 129o.

k 2 3

ρk
2
3 ≈ 0.6667 9

4π arctan
√

11
3 ≈ 0.8043

k 4 5

ρk
2
π arctan

√
7 ≈ 0.7699

5(5−
√
5)

8π arctan
√

7 + 8√
5
≈ 0.6997

Table 4.2: Ratio function ρk for sectors and low values of k.

Figure 4.4: Optimal coverings with 2, 3, 4 and 5 circular sectors.
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5.1 Equivalent blow lines

6.1 Conclusions and recommendations


