
 
       
 

UNIVERSIDADE DE ÉVORA 
ESCOLA DE CIÊNCIA E TECNOLOGIA 

 
 
 

Mestrado em Biologia da Conservação 
 
 
 

Dissertação 
 

 
 

“Multi-species occupancy modeling of natural and 
anthropogenic habitats by Mediterranean amphibians: grim 

prospects for conservation in irrigated farmland” 

 
 

Mário Rui Mota Ferreira 
 
 
 

Orientador: 
Dr. Pedro Beja 
Co-Orientador: 

Dr. Paulo Sá-Sousa 
 

 
 
 

Esta Dissertação não inclui as críticas e sugestões 
feitas pelo Júri” 

 
 
 
 

 
 

Maio de 2012 
 



Amphibian occupancy modeling in irrigated farmland 

1 

 
 
 
 
 
 

Mestrado em Biologia da Conservação 
 
 
 
 
 

Dissertação 
 

 

“Multi-species occupancy modeling of natural and 
anthropogenic habitats by Mediterranean amphibians: grim 

prospects for conservation in irrigated farmland” 
 
 
 

Mário Rui Mota Ferreira 
 
 
 

Orientador: 
Dr. Pedro Beja 
Co-Orientador: 

Dr. Paulo Sá-Sousa 
 

 
 
 
 
 
 
 
 
 

“Esta Dissertação não inclui as críticas e sugestões 
feitas pelo Júri” 

 
 

 
 
 
 
 

  



Amphibian occupancy modeling in irrigated farmland 

2 

Index 
 

Foreword ............................................................................................................ 4 

Abstract .............................................................................................................. 5 

Resumo .............................................................................................................. 6 

1. Introduction ................................................................................................. 7 

2. Methods ...................................................................................................... 9 

2.1. Study area ............................................................................................. 9 

2.2. Sampling design .................................................................................. 12 

2.2.1. Pond survey .................................................................................. 12 

2.2.2. Amphibian sampling ..................................................................... 12 

2.3. Data analysis ....................................................................................... 13 

2.3.1. Pond persistence .......................................................................... 13 

2.3.2. Multispecies-multiseason model of occupancy ............................. 14 

3. Results ...................................................................................................... 19 

3.1. Pond persistence ................................................................................ 19 

3.1. Habitat occupancy ............................................................................... 20 

4. Discussion ................................................................................................. 24 

4.1. Pond loss due to agriculture pressure ................................................. 24 

4.2. Dynamic occupation of aquatic habitats .............................................. 25 

4.3. Implication for conservation ................................................................. 29 

Acknowledgments: ........................................................................................... 31 

References: ...................................................................................................... 31 

Supplementary material ................................................................................... 38 

Appendix 1 – WinBUGS code ....................................................................... 39 

Appendix 2 – Mean detection probability graphics ........................................ 42 

Appendix 3 – Mean occupation probability graphics ..................................... 44 

 

  



Amphibian occupancy modeling in irrigated farmland 

3 

List of figures 

 

Figure 1: Study area. ........................................................................................ 11 

Figure 2: Causes for the destruction of the temporary ponds. .......................... 21 

Figure 3: Survival function of the ponds of southwest Portugal. ....................... 23 

Figure 4: Mean amphibian richness per habitat. ............................................... 27 

Figure 5: Mean occurrence of a) Pelobates cultripes; b) Epidalea calamita and 

c) Pelophylax perezi and the d) mean richness per habitat. .............. 28 

 

List of tables 

 

Table 1: Number of temporary lagoons present in study area. ......................... 20 

Table 2: The log likelihood, number of parameters and the akaike information 

criterion score (AIC) of the Cox partial hazards regression models 

(PHR). ............................................................................................... 22 

Table 3: Number of sites where species were observed. ................................. 24 

Table 4: Community parameters. ..................................................................... 25 

Table 5: Median of dynamic occupation model (hyper) parameters for mean 

effects of the habitats. ....................................................................... 26 

 

List of equations 

 

Equation 1: Initial occupancy modeling. ........................................................... 14 

Equation 2: Subsequent occupancy modeling.................................................. 15 

Equation 3: Partition of initial occupancy probability. ........................................ 16 

Equation 4: Partition of colonization probability. ............................................... 16 

Equation 5: Partition of persistence probability................................................. 16 

Equation 6: Detection probability modeling. ..................................................... 17 

Equation 7: Partition of detection probability. ................................................... 17 

Equation 8: Initial occupancy baseline modeling. ............................................. 17 

Equation 9: Habitat effecs in the intial occupancy modeling. ............................ 17 

Equation 10: Specific richness per site. ............................................................ 18 

Equation 11: Mean specific richness per habitat. ............................................. 18 

Equation 12: Mean specifc richness per habitat and period. ............................ 18 

Equation 13: Mean occupancy probability per habitat. ..................................... 19 

Equation 14: Mean detection probability per habitat. ........................................ 19 

  

file:///E:/Mario/Dropbox/FCT%20-%20Anfibios/Mestrado/Tese-120521.docx%23_Toc325470645
file:///E:/Mario/Dropbox/FCT%20-%20Anfibios/Mestrado/Tese-120521.docx%23_Toc325470646
file:///E:/Mario/Dropbox/FCT%20-%20Anfibios/Mestrado/Tese-120521.docx%23_Toc325470647
file:///E:/Mario/Dropbox/FCT%20-%20Anfibios/Mestrado/Tese-120521.docx%23_Toc325470648
file:///E:/Mario/Dropbox/FCT%20-%20Anfibios/Mestrado/Tese-120521.docx%23_Toc325470649
file:///E:/Mario/Dropbox/FCT%20-%20Anfibios/Mestrado/Tese-120521.docx%23_Toc325470649


Amphibian occupancy modeling in irrigated farmland 

4 

Foreword 

This thesis results from the author’s participation in the FCT research project 

entitled: “Spatial structure of amphibian (meta)populations in Mediterranean 

farmland: implications for conservation management” 

(PTDC/BIABDE/68730/2006 - Ciências Biológicas - Biodiversidade e Ecologia). 

To participate in this work, the author received a research grant and his tasks 

consisted in the survey of temporary ponds in aerial photos and in the field; 

crosschecking with similar surveys in the past; the sampling of a subset of the 

temporary ponds over three reproductive seasons; the sampling of alternative 

aquatic habitats; the collection of tissues samples for a PhD study by Mirjam 

van de Vliet in the population genetics of three amphibian species, also 

associated with the same project; the development of occupancy models to 
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"Multi-species occupancy modeling of natural 
and anthropogenic habitats by Mediterranean 

amphibians: grim prospects for conservation in 
irrigated farmland" 

Mário Ferreira (mferreira@cibio.up.pt) 
 

Abstract 

This study approaches the destruction of temporary ponds in an intensified 

agricultural landscape and the alternative breeding habitats for the amphibian 

community. We used several surveys to model the ponds survival since 1991 

until 2009. Ponds inside the irrigation perimeter have a significant lower survival 

probability then those outside. Ponds, agricultural reservoirs, streams, irrigation 

channels and ditches were sampled for amphibian larvae in four different 

periods of a breeding season. We used a hierarchical dynamic occupation 

model that accounts for different detection probabilities to compare the 

occupation of aquatic habitats during the different periods. Ponds were the 

habitat with higher specific richness per site followed by streams and reservoirs. 

Ditches and irrigation channels, usually, only supports one species per site. All 

habitats, except for ponds, have high incidence of exotic predators (fish and 

crayfish), that explains, in part, the low specific richness of these sites. There’s 

no alternative habitat for the disappearing ponds. The conservation of the 

remaining ponds is essential for conserving the amphibian community. It should 

seriously be taken into consideration the construction of new clusters of ponds 

inside of the irrigation perimeter. 

Keywords: Agricultural landscape; Agricultural reservoirs; Amphibian breeding 

habitat; Ditches; Dynamic occupation models; Irrigation channels; Streams; 

Temporary Ponds. 

mailto:mferreira@cibio.up.pt
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Resumo 

Este estudo aborda a destruição de charcos temporários numa paisagem 

agrícola em crescente intensificação, bem como possíveis alternativas para 

habitats de reprodução da comunidade de anfíbios. Cruzámos a informação de 

vários levantamentos para modelar a sobrevivência dos charcos de 1991 a 

2009. Os charcos dentro do perímetro de rega tem a probabilidade de 

sobrevivência significativamente mais baixa que os charcos fora do perímetro. 

Foram amostrados as larvas de anfíbios em charcos temporários, charcas de 

rega, ribeiras, canais de rega e valas de drenagem em quatro períodos 

distintos de uma época de reprodução. Usámos um modelo hierárquico de 

ocupação dinâmica, com correcção para a detectabilidade para comparar a 

ocupação entre os habitats ao longo dos diferentes períodos. Os charcos 

temporários foram os habitats com maior riqueza específica por local, seguido 

pelas ribeiras e charcas de rega. Os canais e valas são habitats mais pobres, 

raramente suportando mais que espécie por local. A elevada incidência de 

predadores introduzidos (peixe e lagostins) em todos os habitats menos nos 

charcos pode explicar em parte a diferença de riqueza específica. Esta 

comunidade de anfíbios não tem uma alternativa viável para os charcos que 

continuam a desaparecer e a sua conservação passa pela conservação dos 

charcos que restam. Deverá ser considerado a hipótese da construção de 

novos complexos de charcos dentro do perímetro de rega. 

Palavras-chave: Canais de rega; Charca de rega; Charcos temporários; 

Habitat de reprodução de anfíbios; Modelos de ocupação dinâmica; Paisagem 

agrícola; Ribeiras; Valas de drenagem. 
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1. Introduction 

With about half the European Union covered by farmland and half the species 

dependent on agricultural related habitats, the agricultural ecosystems of 

Europe are of critical importance for conservation purposes (Stoate et al. 2009). 

The agricultural intensification process observed since the second half of the 

twenty century, using mechanical power and external agro-chemical inputs, has 

simplified the landscape and it has been associated with a decline in 

biodiversity (Stoate et al. 2001). In an increasingly homogeneous landscape, 

the non-productive interstitial landscape elements such as hedgerows, 

windbreaks, grassy margins or vernal ponds, are of critical importance, as they 

allow species to survive and/or migrate as well as performing several ecological 

services as windbreaks, modifying microclimate, assisting in soil retention and 

water purification (Stoate et al. 2009). These elements are often patches of 

natural or semi-natural habitats, which are correlated with the species richness 

of several groups in agricultural landscapes (Billeter et al. 2008).  

The amphibian population declines are recognized as global phenomenon since 

1991 (Wake 1991) and several factors are advance as causes, though habitat 

loss is generally recognize as the single most important factor (Alford & 

Richards 1999; Collins & Storfer 2003; Stuart et al. 2004; Hayes et al. 2010; 

Blaustein et al. 2011). The agricultural ecosystems  supports a high level of 

amphibian diversity (Beja & Alcazar 2003; Hartel et al. 2010), and although 

amphibians can occupy several habitat of the agricultural matrix like streams 

(Crawford & Semlitsch 2007; Ficetola et al. 2008; Barrett & Guyer 2008), 

agricultural ponds (Knutson et al. 2004), cattle ponds (Ribeiro et al. 2011), 

stormwater ponds (Brand & Snodgrass 2010), ditches (Maes et al. 2008) and 

irrigation channels, at least for dispersing (Ficetola et al. 2004); most 

Palaearctic amphibians are dependent on ponds and other small, stagnant 

water bodies for their reproduction (Curado et al. 2011). 

Temporary ponds are small, shallow water bodies which undergo a periodic 

cycle of flooding and drought especially in the Mediterranean region (Ruiz 

2008). This alternation promotes a very characteristic flora (Pinto-Cruz et al. 
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2009) and fauna (Sala et al. 2008; Gómez-Rodríguez et al. 2009). Ponds are 

habitat for several rare species and contribute to regional diversity (Williams 

2004; Davies et al. 2008), and are of critical importance for the Mediterranean 

amphibian assemblage (Gómez-Rodríguez et al. 2009). These important 

habitats are in clear regression in Europe (Hull 1997; Curado et al. 2011) and 

specially in the Mediterranean region (Dimitriou et al. 2006; Ruiz 2008).  

In spite of successive reforms to CAP (European Common Agriculture Policy); 

the efforts to improve environmental sustainability of agricultural systems are 

compromised by intensification and abandonment. With intensification there is 

an increasing pressure to convert non-productive areas, like ponds to 

productive areas (Stoate et al. 2009).The transformation from traditional, 

extensive, rainfed systems to modern, intense, irrigated systems also creates 

several infrastructures for irrigation water distribution and storage, like irrigation 

channels, ditches and reservoirs. This could be an opportunity for the 

amphibian community to compensate for the loss of ponds that arises from 

intensifying agricultural systems (Hull 1997). 

Although it has been suggested that artificial ponds are important for amphibian 

conservation (Knutson et al. 2004; Maes et al. 2008; Brand & Snodgrass 2010), 

previous studies in the study area showed a clear preference of the amphibian 

community for temporary ponds (Beja & Alcazar 2003). The loss of ponds and 

the rise of artificial habitats should have a severe impact in amphibian 

communities. These habitats also have a high incidence of exotic predators 

(Beja & Alcazar 2003). The negative impact of fish (Ficetola et al. 2004; Welsh 

et al. 2006; Hamer & Mcdonnell 2008) and crayfish (Cruz et al. 2006) in 

amphibian communities are well documented. Species that can’t cope with 

presence of exotic predators and/or with more permanent water habitats will 

have its reproductive habitat severely reduced. 

It is crucial to analyse the use of all the possible breeding habitats and to 

understand what would be the impact of the loss of the ponds and if artificial 

habitats are an alternative to this amphibian community. Two theoretical 

difficulties arise from the direct application of this kind of assessment: 1) 
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Amphibians are often inconspicuous species (Mazerolle et al. 2007) and 

probability of each species being detected in a sampling occasion is less than 

one and may differ between habitat. 2) Amphibians use habitats during different 

periods in the breeding season (Diaz-Paniagua 1992; Jakob et al. 2003; 

Richter-boix et al. 2006a) and may use different habitat at different time periods, 

for example use of permanent habitats after the temporary dry out. 

To address the problem of imperfect detection MacKenzie et al. (2002) 

developed an occupancy model that corrects for the detections probability. This 

model is based on multiple samples to create a detection history in order to 

estimate the detection probabilities. Later the model was extended to include a 

dynamic occupancy of the sites across several seasons (MacKenzie et al. 

2003). Royle & Kéry (2007) took the model from the classical likelihood 

approach and converted it to a hierarchical state model for a Bayesian 

inference. Dorazio et al. (2010) present a statistical modelling framework for 

analysing the dynamics of occurrence in a metacommunity of species. 

Our study documents the destruction of ponds in the southwest of Portugal and 

addresses the occurrence of the amphibian community in a landscape with a 

crescent agricultural intensification. We analysed two natural habitats, ponds 

and streams, and three artificial, reservoirs, ditches and channels, accounting 

for different detectability across species and habitats. We used a hierarchical 

dynamic occupancy state model to address these issues in detail namely: 1) 

how does the specific richness and species occupancy varies between habitats; 

2) how does the species occupancy vary during the breeding season. 

2. Methods 

2.1. Study area 

This study was carried out in coastal plains of the southwest Portugal, a territory 

belt (10 to 15 km wide) that runs from North to South for about 100 km, ranging 

from 50 to 150 m above sea level. This low plateau is carved in Palaeozoic 

schist and covered by sands and podzols (Neto et al. 2007). The regional 

climate is Mediterranean with an oceanic influence in which the aridity increase  
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southwards, with mean annual temperature increasing from 15 to 16ºC, and 

annual precipitation decreasing from 650 to 400 mm, of which >80% falls in 

October– March (Figure 1).  

In this region the landscape is predominantly flat, with tree cover restricted to a 

few small woods, windbreaks and stream valleys. However the land uses are 

largely devoted to agriculture and livestock production, with arable land and 

pastures covering over 65% of the landscape (Pita et al. 2007). The less 

intensive farming system is the extensive cultivation of winter cereals, on a 

cereal–fallow rotation basis. Beef cattle are also important, with large areas 

occupied by pastures, fodder crops, and silage corn or sorghum. Since about 

1990 there has been a strong increase in irrigated crops, particularly vegetables 

for international markets, associated with frequent use of pesticides, chemical 

fertilizers and annual tillage (Beja & Alcazar 2003). 

Nevertheless this study area hosts a large number of seasonal wetlands as a 

consequence of climatic, edaphic and topographic characteristics. The 

approximate pond density in the studied area is 0.28 per km2 (Pinto-Cruz et al. 

2009). These ponds occur in sandy soils across the study area, and they are 

close related to the fluctuation of the water table, filling during winter rains and 

drying of in the end of spring or the beginning of summer. 

Another important feature at the administration level is that region has two 

major stakeholders with contrasting interests. The first one is the Parque 

Natural do Sudoeste Alentejano e Costa Vicentina (PNSACV) created in 1988 

and covering nearly 131,000 ha. The second one within the natural park there is 

an irrigation beneficiation perimeter: Perímetro de Rega do Mira (PRM) created 

in 1970 and occupying a 15,200 ha. Although most of ponds are within the 

natural park, they are privately owned and many are under the influence of 

PRM. These are more likely to be disturbed by Agriculture or its intensification. 

Ponds can be drained and/or plowed for direct agriculture use; can be 

deepened and converted to reservoirs, losing their temporary character; they 

can also be grazed in different intensities. Exotic predators, such as the 

American   crayfish  (Procambarus  clarkii)   and   the   moskitofish   (Gambusia 



Amphibian occupancy modeling in irrigated farmland 

11 

 

 

Figure 1: Study area. In blue are the ponds that still persists in 2009, in red the ponds 
destroyed. The implantation of the irrigation beneficiation perimeter (PRM) is showed in 
orange and the natural park in Green. Main villages in the study area are also represented. 
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holbrooki) are common in the irrigation channels and frequently colonize the 

more permanent ponds and streams.  

2.2. Sampling design 

2.2.1. Pond survey 

We conducted a pond survey during the winter of 2008/2009, using aerial 

photography and 1:25,000 topographic maps, and crosschecked with similar 

surveys made 1991, 1993, 1996 and 2000 (Faria et al. 1993; Silva 1998; Gordo 

& Galera 2000). We visited every site that was identified in the previous surveys 

and recorded it state: present or destroyed, and the apparent reason for it 

(drained, plowed, cultivated, constructed, etc.), or converted to reservoir. We 

defined temporary ponds as bodies of water occupying depressions, which are 

flooded during the rainy season for a sufficiently long period to allow the 

development of aquatic vegetation and hydromorphic soils, but which are not in 

contact with permanently flooded habitats such as rivers. 

2.2.2. Amphibian sampling 

We sampled five habitats to understand how this amphibian community uses 

the availed habitats: temporary ponds, streams, agricultural reservoirs, irrigation 

channels and ditches. The temporary ponds sampled were the ponds selected 

and sampled by Beja & Alcazar (2003) that still subsisted in 2010. We selected 

the remaining sites using the same seven north-south divisions (sectors A’ to 

G’) of the coastal plateau used in the same study. For each sector, four sites of 

each type of habitat were randomly selected from at least eight possible 

alternative sites that we recognized in the spring of 2009, and that were at least 

500 m a part of each other. We only sampled streams that run directly to the 

sea. The irrigation channels were made of concrete. In some divisions there 

were not four sites of each habitat to be sampled. The streams were not evenly 

distributed across the study area, and we only sampled ditches and irrigation 

channels inside of the PRM. A total of 122 sites were sampled: 38 temporary 

ponds, 31 reservoirs, 21 streams, 17 ditches and 15 irrigation channels. 
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We sampled for amphibians in four discrete periods during the wet season of 

2010: 1) 6 to 16 of February and 4 to 6 of March; 2) 13 to 26 of March; 3) 24 of 

April to 5 of May; 4) 8 to 13 of July. These periods match the main reproductive 

activity of the amphibian present in that area (Ferrand et al. 2001). Depending 

on the water available in the site, each sample consisted of three to six 30’s 

blind sweeps (mean=3.1, SD=0.6, n=362) with a 30*20 cm aperture dip-net, 

conducted by one person wading across the site and systematically covering all 

habitats available. Amphibian larvae were identified to species and returned to 

water at the end of each sampling session; tree frog tadpoles (Hyla spp.) could 

not be reliably separated in the field and were thus identified to genus. Adults of 

Caudata found during sweeps were assumed that were reproducing and were 

include as present. 

2.3. Data analysis 

2.3.1. Pond persistence 

We analyzed the pond persistence using a Cox proportional hazards regression 

model (PHR; (Cox 1972), using the statistical software package “Survival” 

(Therneau & Lumley 2012), an add-on to R software (R Development Core 

Team 2011), to determine if there were significant differences on the surviving 

function of the ponds inside and outside of the PRM and of the PNSACV. 

Because data for the ponds persistence was not available for every year, we 

assumed that ponds that were destroyed between two surveys have survived 

half of the period between the two surveys. For example, a pond that was 

present in 1996 and destroyed in 2000, we assumed that it was destroyed in 

1998. We built four models, the Null, one for each variable (PRM and PNSACV, 

dummies variables with 1 = inside and 0 = outside of PRM and PNSACV 

respectively), and a “full model” using both variables (PRM + PNSACV). We 

compared the models using aikaike’s information criteria (Burnham & Anderson 

2002). 
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2.3.2. Multispecies-multiseason model of occupancy 

Occupation of different habitats by the amphibian community of the southwest 

of Portugal was assessed using an extension of the single-species, dynamic 

occupancy model developed by MacKenzie et al. (2003) as proposed by 

(Dorazio et al. 2010): a hierarchical (or state–space) formulation that includes 

distinct models of species occurrence and species detection given occurrence. 

This approach allows the specifying of models for species occurrences and their 

potential ecological determinants (habitat or other site-level covariates) 

independent of the effects of imperfect detection.  The imperfect detection is 

specified in a second component of the model, the observation process, 

wherein detections of species are modeled conditional on latent species 

occurrence (or occupancy state) parameters. 

Let T denote the number of distinct (i.e., non-overlapping) k periods in which the 

metacommunity is sampled. Let S be the number i sites (corresponding to S 

local communities) that were surveyed. Let Zi,1,l denote the true occupancy state 

of species l (in a total of N species in the community) in site i during the first 

period, wherein          indicates presence and          indicates absence. 

We modeled this initial occupancy (occupancy during period 1) as an outcome 

of a Bernoulli trial: 

                          (         ) (Eq. 1) 

Where          (        |       ) denotes the probability that species l is 

present (i.e. occupancy probability) at location i during period 1 given the 

location has water during period k. Here       {   } denotes a latent variable 

that indicates if the ith location has water to support amphibian reproduction 

and/or larvae dwelling in the k period. Note if         (i.e. the location i has no 

water during period k), then          with probability one.  

We assumed that occupancy in the following periods will depend on the 

occupancy state in the previous period, as follows: 



Amphibian occupancy modeling in irrigated farmland 

15 

                                                 (        (                     (        )))  

(Eq. 2) 

(for k = 1, …, T – 1) where            (                             ) denotes 

the conditional probability of the species l will arrive and occupy location i in 

period k + 1 given that it was absent in the previous sampling period and that 

the location has water in period k +1. Dorazio et al. (2010) refer to this event as 

local colonization, although we kept this notation we don’t expect that this event 

will always correspond to the arrival of a species to a new location where it had 

become extinct before. As we sampled in one year during the breeding season 

this event will more likely represent the arrival of a late breeder to the breeding 

site. 

The parameter           (                             ) denotes the 

conditional probability of species l still persist in site i during period k + 1 given 

that it was present in the previous period and that the location i has water in 

period k + 1. We refer to this event as persistence. The complementary event is 

denominated local extinction, it can be expressed as follows:                . 

Although this event could correspond to a proper event of extinction, again, it is 

more likely to correspond to the event of a species leaving the breeding site 

because all individuals had finished their metamorphosis and began to disperse 

to the surroundings. The occupancy probability of species l in the ith site in 

period 2 to T is expressed as follows:                               (        ) (for 

k = 1, …, T – 1). 

We assumed that these probabilities (                    ) are function of the 

habitat. We incorporate these effects in the model using the logit link function 

(Kéry & Royle 2008; Russell et al. 2009; Zipkin et al. 2010).  Let vim be a site-

covariate that identifies if site i belongs to the type of habitat m. The initial 

occupancy probability was calculated as follows: 
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     (      )      ∑           
  
   (Eq. 3) 

(for m =1,…, Hb, where Hb is the total number of habitat types, 5 in our study). 

b0l denotes the baseline, at logit-scale, probability for occupancy in the first 

period for species l, blm the effect of habitat m in initial occupancy probability of 

species l. Likewise, and keeping the same notation, the colonization and 

persistence probability were calculated as: 

     (      )        ∑           
  
   (Eq. 4) 

     (      )        ∑           
  
   (Eq. 5) 

(for k =1, …, T -1). Note that the baseline (c0 and d0) are specie and period 

specific, but we assumed that the habitat effect is constant for each species 

across all periods. 

True occurrence is imperfectly observed, which confounds the estimation 

of        and the others parameters. However, sampling at a point i with J > 1 

replicates over a short period (such that the community remains closed for the 

duration of the survey) allows for a formal distinction between species absence 

and non-detection (MacKenzie et al. 2002). We assumed that the J replicates 

are independent, that the detectability does not change and that the stock of the 

larvae doesn’t exhaust until all J replicates are done. J was not constant across 

sites and periods and that do not interfere with model (Dorazio et al. 2010). 

For each i site, k period and l specie we observe an encounter history        

(                            ), that consist of J binary observations  that indicate 

whether specie l was detected (          ) or not detected (          ) during  

the jth observation in site i, during period k. For example, Y = (0, 1, 1, 0, 1) 

indicates a specie that was detected in three sweeps, the second, the third and 

fifth, in a total of five sweeps. 

The detection of species is dependent on whether a species is present or not. 

The occupancy state is only partially observed due to the ambiguity of an all-

zero encounter history, i.e. y = 0 can happen if a species is really absent or if it 
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is present but remained undetected. We modeled the encounter history as an 

outcome of a Bernoulli trial: 

                                  (             ) (Eq. 6) 

Where          (                   ) denotes the conditional probability of 

detecting the lth species during the jth observation in site i during period k given 

that the species is present. Thus if the specie l is absent of site i in period k then 

           for every j sweep with probability one; otherwise the specie will be 

detected with        probability. 

Similarly with the other probabilities, we assumed that the probability of 

detection,       , is function of the habitat and we modeled likewise with the 

equations 3-5: 

     (      )        ∑           
  
   (Eq. 7) 

 (for k= 1 , …, T), where a0lk denotes the baseline, at the logit scale, for the 

detection of of specie l at period k, and alm the effect of habitat m in the 

detection probability of species l. Similarly with colonization and persistence 

parameters, the baseline       it is specie and period specific and the effect of 

the habitat is constant for each species across all periods. 

Because this model has many parameters and some species are detected 

infrequently, or not all in some habitats, estimating of all the model parameters 

was impossible unless we made further assumptions. We assumed that the 

community of amphibians of the southwest of Portugal responds in similar way, 

not equal, in the choice of breeding habitat. We illustrate this approach using 

the parameters in equation 3, b0l and blm. We assumed that these parameters 

are drawn from higher level parameters: 

                 (  )(Eq. 8) 

                  (   )(Eq. 9) 

(For l=1, …, N and m=1, …, Hb)    is the parameter of an exponential 

distribution that each of the baselines for the initial occupancy is taken. The 
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mean of this distribution,   ⁄    , can be viewed as “mean” initial occupancy 

for every species. Similarly to this,    is the parameter of the exponential 

distribution of witch the effects in the initial occupancy of the habitat m in 

species l is taken. Again the mean,     
⁄    , can be viewed as “mean” effect 

of habitat m in the initial occupancy for all the species. This “hyper-parameters” 

increase the precision of the estimation of the parameters of the rarer species. 

We modelled inter-specific variation in the parameters associated with 

probabilities of colonization, persistence and detectability in the same way. We 

assumed that distribution of the parameters is asymmetric (exponential) instead 

of a symmetric distribution (normal) as used in others studies (e. g. Zipkin et al. 

2010; Dorazio et al. 2010). Assuming a normal distribution of the priors would 

estimate the parameters of the rarer species to be closer to the mean of the 

community, thus overestimating their occupancy and the species richness of the 

sites where more species occur. 

Because true occupancy was calculated by location, period and species (Zikl), 

the estimation of relevant community parameters is easily estimated. For the 

analyses of the occupancy the amphibian community in Southwest Portugal we 

estimated the species richness per site (Rqi), mean richness per habitat across 

all periods (m.Rqm) and mean habitat richness per habitat and per period 

(mk.Rqm,k): 

    ∑    (                      )
 
    (Eq. 10) 

(For i=1, …, S) 

      
∑ (        )
 
   

∑     
 
   

 (Eq. 11) 

         
∑      ∑       

 
   

 
   

∑     
 
   

  (Eq. 12) 

(For k=1, …, T and m=1, …, Hb)  

The habitats mean occupation (Occmkl) and detection probability (p.meanmkl) per 

period and species: 
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∑         
 
   

∑    
 
   

 (Eq. 13) 

         
∑         
 
   

∑    
 
   

 (Eq. 14)

 (For k=1, …, T; l=1, …, N and m=1, …, Hb)  

Because our multispecies, multiseasons model have many latent parameters 

we opted by Bayesian approach using Markov Chain Monte Carlo (MCMC). Our 

inferences are based only in a large sample of the joint posterior distributions of 

the model’s parameters. 

We fit our model using the free software WinBUGS (Lunn et al. 2009). Because 

using BUGS natively can be challenging (Kéry 2010), we implanted the model 

in R (R Development Core Team 2011), call WinBUGS through the package 

R2WinBUGS (Sturtz et al. 2005), and handled the results back in R. We run 

three chains of a length of 200,000 iterations after a burn in of 100,000, we then 

thinned the chains by 10. Convergence was assessed using the R-hat statistic, 

which examines the variance ratio of the MCMC algorithm within and between 

chains across iterations (see Appendix 1 in Supplementary material for 

WinBUGS code). 

3. Results 

3.1. Pond persistence 

From the 296 sites identified in the five surveys that had temporary ponds in 

1991, only 165 were present in 2009, representing a pond loss of over 44%. A 

total of 25 ponds were identified out of PNSACV, of which only three were lost 

between 1991 and 2009. Inside the PNSACV the loss of ponds was 47%. The 

main loss of ponds was observed inside the PRM, where 59% were lost, 

against 21% of loss outside the PRM (Table 1). The main loss was observed in 

the period between 2000 and 2009, corresponding to a 30% loss. 

The main cause for pond destruction was the use for agricultural purposes, 

corresponding to 90 ponds (68.7%). Usually the terrain was drained and the site 

was leveled for agricultural use. Dredging the ponds to make them permanent 
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reservoirs was the second most common cause of destruction, corresponding to 

22 ponds. A total of seven sites were encroached by Acacia sp. There were 

was also five ponds drained, five sites that now have constructions, one under a 

forest plantation, and one that was converted into a dumping site (Figure 2).  

The PHR models constructed were all better than the null model, with the 

Likelihood-ratio test always rejecting the null model in favor of the alternative 

model.  The models that scored least in the Aikaike information criteria (AIC, 

Burnham & Anderson 2002) were those including the variable PRM (Table 2). In 

the “full model” the variable PNSACV was not statistically significant (p = 0.281). 

The ponds inside the PRM have lower survival probability (in 2009, p= 0.414) 

than the ponds outside of the PRM (in 2009, p= 0.775; Figure 3).  

3.1. Habitat occupancy 

During the sampling season, 1357 sweeps were made, in which there were 

detected amphibians in 562, capturing 20864 individuals in 83 locations. The 

most common taxa found was the western spadefoot toad (Pelobates cultripes), 

with 11421 individuals caught in 44 sites. The rarest species was the painted 

Table 1: Number of temporary lagoons present in study area between 1991 and 2009. In 
and out of Parque Natural do Sudoeste Alentejano e Costa Vicentina (PNSACV); and In 
and out of Perímetro de Rega do Mira (PRM). The PRM is mainly within the PNSACV. 

 1991 1993 1996 2000 2009 

PNSACV      

Out  25 24 23 23 22 

In  271 249 221 214 143 

PRM      

Out  84 83 78 77 66 

In  187 166 143 137 77 

Total 296 273 244 237 165 
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frog (Discoglossus galganoi), for which we found only seven individuals in two 

locations. The most ubiquitous species was the green frog (Pelophylax perezi), 

which found in every habitat except the temporary ponds. The habitats where 

more species were observed were the temporary ponds and the reservoirs, with 

seven species each. However, the proportion of temporary ponds occupied by 

amphibians (0.95) was much higher than that of reservoirs (0.61). The irrigation 

channels were the habitat with less species observed (Table 3).  

We used the hyper parameters of the model as a surrogate for the community 

parameters. The mean occupancy probability peaked in March ( ̅). The mean 

colonization probability ( ̅) and the mean persistence probability ( ̅) declined 

across the sampling season (Table 4). The mean detection probability was 

0.32. The mean effects of the habitats in the initial occupancy ( ̅), the 

colonization probability ( ̅), the persistence probability ( ̅) and the detection 

probability ( ̅) are listed in Table 5. 

The mean richness of each habitat calculated by dynamic occupation model 

was always greater than the mean richness observed (Figure 4). The temporary 

ponds were the habitat that was able to sustain more species per site. The 

Farmed

Dredged

Shrub Encroachment 

Construction

Drained

Dumping

Forested

Figure 2: Causes for the destruction of the 131 temporary ponds found destructed in 
southwest of Portugal by 2009. 
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irrigation channels and ditches were the poorest habitats, and usually they did 

not support more than one or two species. Reservoirs were occupied by some 

of the more plastic species. Although streams have a low observed mean 

richness, the model calculated the second highest mean richness.  

The detection probability of the species was difficult to calculate in the habitats 

where the species were never detected. The values calculated for these 

parameters were near zero and showed large credible intervals. In general, the 

detection of the specie was similar across the habitats where the species was 

detected, though ponds tended to be the habitat were species were detected 

more easily (larger detection probability, see Appendix 2 in Supplementary 

material). 

The species occurrence varied between habitats and across the breeding 

season. In general, species had larger occupancy rates in ponds, with the 

highest values in March or April and subsequent declines thereafter. The 

spadefoot toad, the tree frog, the ribbed salamander (Pleurodeles waltl), the 

Bosca’s newt (Lissotriton boiscai) and the small marbled newt (Triturus 

pygmaeus) occupied some reservoirs. Although the occupancy of the reservoirs 

was always low, it did not decline in June (Figure 4a). The natterjack toad 

(Epidalea calamita) and the parsley frog (Pelodytes punctatus) seem not to be 

Table 2: The log likelihood, number of parameters and the akaike information criterion score 
(AIC) of the Cox partial hazards regression models (PHR) constructed to analyze the 
survival of ponds in Southwest of Portugal. 

Models log(Likelihood) Parameters AIC 

PRM -694.34 2 1392.68 

PRM + 

PNSACV 
-693.66 3 1393.32 

PNSACV -709.78 2 1423.56 

NULL -716.26 1 1434.53 

 



Amphibian occupancy modeling in irrigated farmland 

23 

 

able to occupy the reservoirs, but, at least the natter jack toad, can occupy the 

ditches. These species are absent from the later periods (Figure 4b). There are 

also the later breeders, like the green frog, that occupy preferably the more 

persistent habitats like the reservoirs and the irrigation channels. Occupancy by 

these species did not decline at the end of breeding season (Figure 4c). Three 

species consistently occupied streams: the common toad (Bufo spinosus), the 

green frog and the Bosca’s newt (see appendix in the Supplementary material). 

Figure 3: Survival function of the ponds of southwest Portugal, between 1991 and 2009, 
inside and outside the Mira Irrigation Perimeter (PRM). The gray lines represent de 95% 
confidence interval. 
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 Temporary ponds were always the habitat with higher species richness across 

all study period. The others habitats seldom have more than one species per 

site (Figure 4d).  

4. Discussion 

4.1. Pond loss due to agriculture pressure  

There are about 277,400,000 ponds in the world with area equal to one hectare 

or less, covering, about 692,600 km2 (Downing et al. 2006). This and the fact 

that ponds contribute to regional diversity more than other water bodies 

(Williams 2004; Davies et al. 2008), make ponds an important habitat even that 

often    neglected    (Oertli    et    al.    2005,    2009;   Céréghino   et   al.   2007; 

Table 3: Number of sites where species were observed. Between brackets observed occupancy. 

Species 
Ponds 
(n=38) 

Reservoir 
(n=31) 

Streams 
(n=21) 

Ditches 
(n=17) 

Channels 
(n=15) 

Caudata      

Lissotriton boscai 11 (0.29) 1 (0.03) 4 (0.19) 0 (0.00) 0 (0.00) 

Peleurodeles waltl 32 (0.84) 7 (0.23) 0 (0.00) 0 (0.00) 0 (0.00) 

Triturus pygameus 20 (0.53) 7 (0.23) 0 (0.00) 0 (0.00) 0 (0.00) 

Anura      

Bufo spinosus 0 (0.00) 8 (0.26) 7 (0.33) 0 (0.00) 1 (0.07) 

Epidaleia calamita 18 (0.47) 0 (0.00) 0 (0.00) 6 (0.35) 0 (0.00) 

Discoglossus 
galganoi 

0 (0.00) 0 (0.00) 1 (0.05) 1 (0.06) 0 (0.00) 

Hyla spp. 32 (0.84) 7 (0.23) 0 (0.00) 1 (0.06) 0 (0.00) 

Pelobates cultripes 35 (0.92) 8 (0.26) 0 (0.00) 1 (0.06) 0 (0.00) 

Pelodytes 
puntactus 

30 (0.79) 0 (0.00) 0 (0.00) 1 (0.06) 0 (0.00) 

Pelophylax perezi 0 (0.00) 12 (0.39) 6 (0.29) 4 (0.24) 6 (0.40) 

Sites with 
Amphibians 

36 (0.95) 19 (0.61) 12 (0.57) 9 (0.53) 7 (0.47) 
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Miracle et al.  2010). Ponds, natural and manmade, are disappearing from 

several parts of the world (Hull 1997; Beebee 1997; King 1998; Boothby 2003; 

Curado et al. 2011) and Portugal is no exception. What is of major concern is 

the fact is this loss happens inside of a protected area, though this happens, 

mostly, because the Mira beneficiation perimeter is almost all within the natural 

park.  

The intensification of  agriculture that have been witness in this region (Beja & 

Alcazar 2003; Pita et al. 2006) was responsible for the destruction of the great 

majority of the ponds present in Southwest of Portugal (89% = agriculture + 

dredging + draining). Agriculture is the major threat to ponds in the 

Mediterranean region (Dimitriou et al. 2006). The lower survival probability of 

the ponds inside of irrigation perimeter reflects a land use management that is 

more focused in agricultural production than on biodiversity conservation. 

4.2. Dynamic occupation of aquatic habitats 

The highest species richness in Southwest of Portugal was found in temporary 

ponds. Temporary ponds have already been describe as the main breeding 

Table 4: Community parameters:  ̅  was the mean occupation probability for the amphibian 

community in period k.  ̅ and  ̅  are the mean colonization and the mean persistence 

probability between period k and k+1. The values in bold are median estimates taken from 

the dynamic occupation model. The subsequent mean occupancy were calculated as follows: 

 ̅    (   ̅ )  ̅   ̅   ̅ . 

Sampling Period  ̅   ̅   ̅  

February 0.35 0.37 0.67 

March 0.57 0.26 0.54 

April/May 0.38 0.12 0.32 

June 0.24 - - 
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habitat for amphibians in the Mediterranean region (Diaz-Paniagua 1990). The 

alternation between a wet state and dry state promotes the development of high 

diversity communities, due to lack of competitors and/or predators (Beja & 

Alcazar 2003; Pinto-Cruz et al. 2009). Amphibians are able to minimized the 

competition between species by choosing different timings for reproduction 

(Jakob et al. 2003; Richter-boix et al. 2006b).  

Few species were found to occupy the streams, though it is possible that we 

failed to detect some species. The streams in Southwest Portugal have a high 

incidence of fishes and of the exotic predator Procambarus clarkii. This was 

already associated with depletion of species in  amphibian communities in 

Californian streams (Riley et al. 2005). The presence of fishes and crayfishes 

was also high in channels and ditches, present in almost every site observed 

(pers. obs.).  The presence of these predators seems to be enough to keep 

most species from occupying these habitats. The natter jack toad and the green 

frog seem to be only species that effectively are able to occupy ditches. The 

Table 5: Median of dynamic occupation model (hyper) parameters for mean effects of the 

habitats in the initial occupancy  ̅, the colonization probability  ̅, the persistence probability  ̅ 

and the detection probability  ̅. Between brackets the 95% credible interval (CI). 

Habitat  ̅  ̅  ̅  ̅ 

     

Ponds 0.51 

(0.26-0.92) 

0.48 

(0.24-0.91) 

0.56 

(0.29-0.94) 

0.61 

(0.34-0.96) 

Reservoirs 0.22 

(0.08-0.57) 

0.17 

(0.06-0.45) 

0.62 

(0.33-0.96) 

0.55 

(0.29-0.94) 

Streams 0.25 

(0.07-0.67) 

0.19 

(0.06-0.55) 

0.26 

(0.06-0.68) 

0.27 

(0.11-0.65) 

Ditches 0.17 

(0.04-0.52) 

0.14 

(0.04-0.43) 

0.29 

(0.08-0.74) 

0.39 

(0.18-0.83) 

Channels 0.04 

(0-0.29) 

0.14 

(0.04-0.46) 

0.32 

(0.09-0.79) 

0.24 

(0.08-0.65) 
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natter jack toad is an opportunist reproducer with small metamorphic size that 

can use more ephemeral water bodies (reviewed in Jakob et al. 2003) and 

probably occupies the more temporary ditches to reduce intraspecific 

competition. Ditches are made for draining water, often with fertilizers and 

pesticides, from agricultural field and should be of lower water quality.  

The green frog is associated with permanent water bodies (Diaz-Paniagua 

1990) and in this study was the species that was found in all habitats except 

temporary ponds. It was also the species that reproduce in more sites, even 

with the presence of fishes and/or crayfishes (pers. obs.). Its ability to cope with 

Figure 4: Mean amphibian richness per habitat. The first, the median and the third quartile 
define the box. The whiskers represent the 95% credible intervals (CI). The circles are the mean 
of the observed amphibian richness per habitat. 
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these predators could explain why the green frog was the only species to 

occupy the channels. It is a very tolerant species to pesticides, like the copper 

sulfate, and is the most common species in altered wetlands (García-Muñoz et 

al. 2009). The absence from temporary ponds could be explained as part of 

strategy to avoid interspecific competition or as late breeder (Diaz-Paniagua 

1992), the temporary ponds may not have the necessary water to support green 

frog larvae development.  

Figure 5: Mean occurrence of a) Pelobates cultripes; b) Epidalea calamita and c) Pelophylax 
perezi and the d) mean richness per habitat and across the study period. The circles represent 
the ponds; the squares, the reservoirs; the diamonds, the streams; triangles represent ditches 
and inverted triangles, the irrigation channels. The full shapes represent the median of the 
model estimates and the void shapes the observed values. The gray bars represent the 95% 
credible intervals (CI). 
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Agricultural reservoirs are increasing worldwide (Downing et al. 2006) and are 

usually regarded as important alternative habitat for amphibians, at least in 

agricultural regions where wetlands are scarce (Knutson et al. 2004). In the 

Southwest of Portugal, only a sub-set of four pond-dwelling species are able to 

occupy a small number of the reservoirs studied (Hyla spp., Pelobates cultripes, 

Pleurodeles waltl and Triturus pygmaeus). In addition to this sub-set, two more 

species occupied the reservoirs: the common toad and green frog. It is 

surprising that the mean richness per site was low (maximum of 1.4 (CI at 95% 

= 1.1 - 2.3) in March). In previous studies the presence of exotic predators, did 

not fully explained the lower abundance and surviving rate of amphibians in 

permanent versus temporary ponds (Adams 2000). Probably some feature 

(e.g.: water temperature and or quality, food shortage, plant community) related 

to the permanent character of the reservoirs does not allow species of 

amphibians to occupy these habitats as efficiently as temporary ponds. Knutson 

et al. (2004) argues that the best reservoirs for sustaining amphibians should be 

small, with no fish and with small concentrations of nitrogen.  

Species detection probability changed between habitats and across seasons. 

Not explicitly accounting for this source of biases would make impossible for 

formally compare such different habitats. The dynamic formulation of the 

occupation state of the sites allowed for the breeding phenology of this 

amphibian community to be modeled, accounting for earlier and later breeders 

in the site richness. Some species had too little detection in some habitats that 

would be impossible to estimate the occurrence using single-species models. 

Assuming that the species parameters were taken from an asymmetric 

distribution allowed that some parameters could take the values of zero, or 

near, and not being over-estimated when pulled by the mean. 

4.3. Implication for conservation 

This study shows that this community preferably occupies the temporary ponds 

for reproduction. The association described between the Mediterranean 

amphibian community and temporary ponds (Diaz-Paniagua 1990; Beja & 

Alcazar 2003; Richter-boix et al. 2006b; Gómez-Rodríguez et al. 2009) 
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suggests that these species are adapted to reproduce in temporary ponds. It is 

not expectable that as new water habitats appear that amphibians would 

occupy them if they do not meet the conditions for their reproduction. With the 

loss of temporary ponds due to agricultural pressure, there is no alternative 

habitat to support the diversity of this amphibian community.  

The loss of the ponds is not random across the study area (Figure 1). Ponds 

occur generally in clusters and agricultural fields are managed by the parcel. 

When a parcel is chosen to be intensified, all ponds present in the parcel are 

destroyed. Parcels selected to be intensified are usually inside the irrigation 

perimeter. If the rate of destruction of ponds inside the irrigation perimeter does 

not halt soon, several species will disappear from the coastal plateau, or at least 

will see their breeding habitat severely reduced. With the loss of the ponds 

inside of the PRM, the two populations outside, north of the river Mira and Vila 

do Bispo, will become more isolated and therefore more susceptible stochastic 

extinctions and inbreeding depression. 

The conservation of this community of amphibians passes by conserving the 

remaining temporary ponds of this region and by recovering the ponds that 

were lost inside the irrigation perimeter. The amphibians respond well to 

restoration of wetlands as long as some aspects are taken to account: maintain 

a temporal characteristic, avoid the introduction of fish and other predators, 

maintain a terrestrial habitat that allows the wintering and dispersal of adults 

and a small distance to source population (reviewed in  Brown et al. 2012).  The 

construction of ponds should be in clusters, and every cluster should have 

ponds with different depths and margins configurations, as the requirement of 

each species is not fully know this will create a gradient of hydroperiod and a 

diversity of aquatic mesohabitat to satisfy every species (Rannap et al. 2009). 

Cattle should not access the ponds during the flooded season, to avoid an 

increase of nitrogen in the ponds and to prevent diseases in cattle (Knutson et 

al. 2004). The conservation efforts should be concentrated in the remaining 

clusters of ponds inside the irrigation perimeter and in recovering of clusters of 

ponds nearby. 
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Appendix 1 – WinBUGS code 

The WinBUGS code for fitting our model is given below. The code closely 
follows the notation used in the body of the text, though this might not be 
immediately apparent since we did not use the WinBUGS function, logit. 
Instead, we use the log function to calculate the logit explicitly. Similarly, we use 
the exp function to compute the inverse of the logit explicitly. The logit function 
can produce incorrect results for some models; therefore, we avoided use of 
this built-in function at the expense making the code slightly less clear. 

model { 
 # community-level priors 
 
psiMean ~ dunif(0,1) #mean initial occupation 
pMean ~ dunif(0,1) #mean detection probability 
 
lambpsi <- 1/psiMean 
lambp <- 1/pMean 
 
for (k in 1:(nseason-1)) { 
 gamMean[k] ~ dunif(0,1) #mean colonization probability 
 phiMean[k] ~ dunif(0,1) #mean persistence probability 
 lambgam[k] <- 1/gamMean[k] 
 lambphi[k] <- 1/phiMean[k] 
} 
  
for (m in 1:ncovs) { 
 bMean[m] ~ dunif(0,1) #mean effects of habitats in the initial occupation 
 lambb[m] <- 1/bMean[m] 
 cMean[m] ~ dunif(0,1) #mean effects of habitats in the colonization 
probability 
 lambc[m] <- 1/cMean[m] 
 dMean[m] ~ dunif(0,1) #mean effects of habitats in the persistence 
probability 
 lambd[m] <- 1/dMean[m] 
 aMean[m] ~ dunif(0,1) #mean effects of habitats in the detection 
probability 
 lamba[m] <- 1/aMean[m] 
} 
 
# Beginning of model 
#Observation model 
for (l in 1:nsp) { 
 for (m in 1:ncovs) { 
  pa[l,m] ~ dexp(lamba[m])I(0,1) 
  a[l,m] <-  log(pa[l,m]) - log(1-pa[l,m]) 
 } 
  
 for (k in 1:nseason) {# estimating probabilities of detection 
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  pa0[l,k] ~ dexp(lambp)I(0,1) 
  a0[l,k] <-  log(pa0[l,k]) - log(1-pa0[l,k]) 
  for (i in 1:nsite) { 
   lp[l,i,k] <- a0[l,k] + inprod(a[l, ], x[i, ]) 
   limp[l,i,k] <- min(99,max(-99,lp[l,i,k])) 
   p[l,i,k] <- 1/(1+exp(-limp[l,i,k])) 
  } 
 } 
  
# Initial occupancy state (at k=1) 
  
 pb0[l] ~ dexp(lambpsi)I(0,1) 
 b0[l] <-  log(pb0[l]) - log(1-pb0[l]) 
  
 for (m in 1:ncovs) { 
  pb[l,m] ~ dexp(lambb[m])I(0,1) 
  b[l,m] <-  log(pb[l,m]) - log(1-pb[l,m]) 
 } 
 
 for (i in 1:nsite) { 
  lpsi[l,i,1] <- b0[l] + inprod(b[l, ], x[i, ]) 
  psi[l,i,1] <- 1/(1 + exp(-lpsi[l,i,1])) 
  mu.z[i,1,l] <- St[i,1] * psi[l,i,1] 
  z[i,1,l] ~ dbern(mu.z[i,1,l]) 
  mu.y[i,1,l] <- p[l,i,1]*z[i,1,l] 
  for (j in 1:J[i,1]) { 
   y[i,j,1,l] ~ dbern(mu.y[i,1,l]) 
  } 
 } 
 
# model of changes in occupancy state (for k=2, ..., nseason) 
 
 for (m in 1:ncovs) { 
  pc[l,m] ~ dexp(lambc[m])I(0,1) 
  c[l,m] <-  log(pc[l,m]) - log(1-pc[l,m]) 
  pd[l,m] ~ dexp(lambd[m])I(0,1) 
  d[l,m] <-  log(pd[l,m]) - log(1-pd[l,m]) 
 } 
 
 for (k in 1:(nseason-1)) { 
  pc0[l,k] ~ dexp(lambgam[k])I(0,1) 
  c0[l,k] <-  log(pc0[l,k]) - log(1-pc0[l,k]) 
  pd0[l,k] ~ dexp(lambphi[k])I(0,1) 
  d0[l,k] <-  log(pd0[l,k]) - log(1-pd0[l,k]) 
   
  for (i in 1:nsite) { 
   lgam[l,i,k] <- c0[l,k] + inprod(c[l, ], x[i, ]) 
   gam[l,i,k] <- 1/(1+exp(-lgam[l,i,k])) 
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   lphi[l,i,k] <- d0[l,k] + inprod(d[l, ], x[i, ]) 
   phi[l,i,k] <- 1/(1+exp(-lphi[l,i,k])) 
 
   psi[l,i,k+1] <- phi[l,i,k]*psi[l,i,k] + gam[l,i,k]*(1-psi[l,i,k]) 
 
   mu.z[i,k+1,l] <- St[i,k+1] * (phi[l,i,k]*z[i,k,l] + gam[l,i,k]*(1-
z[i,k,l])) 
   z[i,k+1,l] ~ dbern(mu.z[i,k+1,l]) 
   mu.y[i,k+1,l] <- p[l,i,k+1]*z[i,k+1,l] 
   for (j in 1:J[i,k+1]) { 
    y[i,j,k+1,l] ~ dbern(mu.y[i,k+1,l]) 
   } 
  } 
 } 
} 
# Derived quantities 
for (i in 1:nsite) { 
 for (l in 1:nsp) { 
  Zk[i,l] <- max(z[i,1,l],max(z[i,2,l],max(z[i,3,l],z[i,4,l])))  
 } 
} 
for (i in 1:nsite) { 
 Rq[i] <- sum(Zk[i,]) #Richness per site 
 for (k in 1:nseason){ 
  Rq.k[i,k] <- sum(z[i,k,]) 
 } 
} 
for (m in 1:ncovs) { 
 m.Rq[m] <- inprod(Rq[], x[,m])/sum(x[,m]) # habitat mean richness 
  for (k in 1:nseason){ 
  m.k.Rq[m,k] <- inprod(Rq.k[,k], x[,m])/sum(x[,m]) #habitat mean 
richness per period 
 } 
} 
for (l in 1:nsp) { 
 for (m in 1:ncovs) { 
  for (k in 1:nseason) { 
   Occ[m,k,l] <-inprod(z[,k,l], x[,m])/sum(x[,m]) #mean 
Occupation probability 
   pmean[m,k,l] <-inprod(p[l,,k], x[,m])/sum(x[,m]) #mean 
detection probability 
  } 
 } 
} 
}# end of model 
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Appendix 2 – Mean detection probability graphics 

The circles represent the ponds; the squares, the reservoirs; the diamonds, the 
streams; triangles represent ditches and inverted triangles, the irrigation channels. 
The gray bars represent the 95% credible intervals. 
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Appendix 3 – Mean occupation probability graphics 

The circles represent the ponds; the squares, the reservoirs; the diamonds, the 
streams; triangles represent ditches and inverted triangles, the irrigation channels. 
The full shapes represent the median of the model estimates and the void shapes 
the observed values. The gray bars represent the 95% credible intervals. 
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