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Abstract— One of the problems in distributed control is that
of establishing a communication network topology between
the intervening controllers that best suits the closed loop
performance of the whole system. In this paper, a particular
view of this problem is analyzed where the optimal actuation is
described probabilistically and assumed to be jointly specified.
The main problem is that of finding a topology having pairwise
communication links that best approaches a joint distribution
of actions at each time instant. The proposed algorithm uses
properties of the natural gradient in the manifold of categorical
distributions to find a mixture of dependency trees under
certain network topology constraints.

I. INTRODUCTION

One central problem in distributed control is to make
controllers act so that, collectively, they attain a certain
desired global behavior. Due to the computational complexity
and memory limitations of the agents, or limitations in the
underlying communication network, the optimal theoretical
behavior often can not be achieved.

One frequently studied scenario in the literature is the
distributed model predictive control problem, where several
model predictive controllers perform local optimizations
while communicating their findings to their neighbors. In this
framework, it is commonly assumed that the network sup-
ports several variable sharing iterations among the controllers
at each time step in order to synchronize the controllers
actions to a common good.

A different scenario occurs when we consider agents
behaving stochastically. In this setting, controllers or agent
actions are described probabilistically given the system state
(see a formulation of probabilistic control in [6]). In this set-
ting, a probabilistic control law is specified by a conditional
distribution p(u|x) that is obtained by a suitable optimiza-
tion process. Assuming that a set of n controllers actuate
simultaneously on the same system, their joint action can
be defined as a new variable u,(u1, . . . , un) and, at least
conceptually, one could now solve the control optimization
to find the collective behavior p(u|x) = p(u1, . . . , un|x).
Despite its probabilistic caracterization, this solution is still
centralized. If a distributed version is sought, each individual
controller should instead be optimized allowing some sharing
of information between them in order to approximate the
optimal centralized solution. If the communication network is
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itself subject to constraints, the optimal centralized solution
may not be achievable.

In this paper, each controller is allowed to receive a single
packet of information at each time step, being the communi-
cated information the action of another agent. The problem
that now arises is the selection of which other controller
should each one listen to such that the collective behavior
is as close as possible to the optimal centralized solution.
In order to avoid waiting deadlocks, the communication
topology is shaped as a tree (to avoid communication loops)
or a forest if several independent roots can be found.

The tree shape problem has been dealt with in the litera-
ture following the celebrated Chow-Liu algorithm [4]. This
algorithm finds the best dependency tree that approximates
a given joint distribution or, alternatively, learns it from data
using the maximum likelihood criteria.

A dependency tree can be used to define a fixed network
topology. Albeit its use is appropriate if the network is
constrained to have a fixed topology, for networks allowing
dynamic links, then a time varying topology can potentially
lead to better results. This leads to a mixture of trees where
each agent can select another agent to listen to, from a set
of available agents according to some mixing probabilities.

Mixture of trees were introduced in [10], [9] where
the mixture coefficients are learned from data via the
expectation-maximization algorithm (EM) following either
a maximum likelihood (ML) or a Bayesian/maximum a pos-
teriori (MAP) criteria. The current work follows a different
path, where it is assumed that the target distribution is a joint
probabilistic controller p(u|x).

The main contributions of the paper are the formulation
of the dynamic topology as a mixture of dependency trees,
and the advantage taken from the use of the natural gradient
to enforce constraints simultaneously on probabilities and on
the network topology.

The paper is organized as follows: section II describes
dependency trees and the Chow-Liu algorithm; section III
motivates the use of mixture of dependency trees and for-
mulates the problem to be solved; section IV introduces the
natural gradient in the probability manifold and proves some
useful properties that are used to impose constraints in the
network topology; finally section VI draws conclusions.

II. PROBLEM FORMULATION

It is assumed that a collection of n controllers generate
a collective actuation signal (u1, . . . , un) depending on the
current system state, which is assumed to be known. This
collective action can be written, at each time instant, as a
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Fig. 1. Dependency tree used to approximate a joint distribution
p(u1, . . . , u6).

conditional probability distribution p(u1, . . . , un|x), where x
is the system state. Knowing the desired closed loop behavior
of the system, it is possible, in principle, to derive an optimal
collective action p(u1, . . . , un|x). We refer to [6], [11] for
such a probabilistic formulation.

In general, the actions (u1, . . . , un) are dependent vari-
ables. This dependency means that, if they are to be im-
plemented separately, they have to communicate with each
other. The dependency can be made explicit using the chain
rule of probabilities

p(u1, . . . , un|x) =
= p(u1|x)p(u2|u1, x) · · · p(un|u1, . . . , un−1, x).

(1)

According to this particular factorization, action u1 is gen-
erated independently, then action u2 is generated depending
on the value u1 communicated by the first agent, then action
u3 is generated according the the two preceding ones, and
so forth. In this communication topology, the complexity
required to represent each control law grows exponentially
with the number of agents. For instance, if each agent has a
finite set A of possible actions, then the nth agent’s behavior
p(un|u1, . . . , un−1, x) is represented by a table with #An
entries for each state x.

To have a realizable implementation, a naive possibility is
to consider independence between agents, i.e. no communi-
cation. In this case, each one acts independently according
to a marginal distribution p(ui|x). These scheme, however
can produce results far from the optimal collective behavior
if coordination is required. The next level of complexity is
to consider pairwise dependencies between controllers.

A. Pairwise dependencies

Using this approach, each controller’s action depends on
a single communicated variable from a different controller,
i.e., the control law for the controller i is described by a
conditional distribution p(ui|uj , x), where uj is the commu-
nicated action from controller j. Under this assumption, the
communication topology is required to be a directed acyclic
graph like the one depicted in figure 1. The joint distribution
obtained from the dependency tree of figure 1 is

pa(u1, . . . , u5) =

= p(u1|u2)p(u2|u3)p(u3)p(u4|u3)p(u5|u2).
(2)

For notational convenience in the current section, the state x
is dropped to simplify the notation, although the controllers

actions depend on it. Generally, for n agents, the obtained
joint probability distribution is

pa(u1, . . . , un) =

n∏
i=1

p(ui|uj(i)), (3)

where j(i) is the ancestor of node i in the dependency tree.
Many such graphs are possible alternatives, each one

rendering a different joint distribution pa(u1, . . . , un). These
approximated distributions are generally different from the
optimal one, p∗(u1, . . . , un).

A problem that know can be posed is that of finding the de-
pendency tree such that its joint distribution pa(u1, . . . , un)
is the closest one to the target distribution p∗(u1, . . . , un).
This is precisely the problem solved in [4].

B. Brief description of the Chow-Liu algorithm

In this algorithm the Kullback-Leibler divergence is used
to assess the quality of the approximation. The Kullback-
Leibler divergence is a nonnegative function that is zero if
and only if p∗ = pa. It is defined by

D(p∗‖pa),
∑

u1,...,un

p∗(u1, . . . , un) log
p∗(u1, . . . , un)

pa(u1, . . . , un)
.

(4)
It can be roughly though as a distance measure between prob-
ability distributions but it’s not strictly a distance since it’s
not symmetric and does not satisfy the triangular inequality.

The Chow-Liu algorithm then finds the tree j(i) that
minimizes the Kullback-Leibler divergence (4) between the
true distribution p∗ and its approximation pa:

min
j(i)

D(p∗‖pa). (5)

It can be shown that the divergence D(p∗‖pa) can be written
as

D(p∗‖pa) =
n∑
i=1

H(ui)−H(u1, . . . , un)−
n∑
i=1

I(ui;uj(i)),

(6)
where H(·) is the entropy function defined by

H(u1, . . . , un) = −
∑

u1,...,un

p(u1, . . . , un) log p(u1, . . . , un)

(7)
and I(ui;uj(i)) is the mutual information between variables
ui and uj(i) defined by

I(ui;uj(i)),D
(
p(ui, uj(i))

∥∥∥p(ui)p(uj(i))). (8)

Since the entropy terms do not depend on the tree, minimiz-
ing (6) with respect to j(i) amounts to maximize the sum
of the mutual information corresponding to the edges of the
tree. The Chow-Liu algorithm then proceeds to find the tree
maximizing this sum using the Kruskal algorithm [8], a well
known algorithm to find minimum spanning trees (see also
[5]).
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III. MIXING DEPENDENCY TREES

The previous section shown that the Chow-Liu algorithm
can be used to find a communication topology so that con-
trollers under a pairwise dependency constraint approximate
the optimal control p∗(u1, . . . , un|x). The solution found
fixes a particular network topology with rigid communication
links that is then used every time the process is run.

If the communication network is not restricted to have
rigid links, each controller selects which one is to be ob-
served at each time instant. We shall assume that this selec-
tion is described probabilistically so that agent i observes
the action uj from agent j with probability pi(j). Then,
the probability distribution for action ui from agent i is the
mixture

p(ui)pi(i) +

n∑
j=1
j 6=i

p(ui|uj)pi(j), (9)

where the left term represents an action taken independently
without communication. Since the probabilities add up to
one, we can write pi(i) = 1−

∑
j 6=i pi(j) and replace it in

(9) to yield the mixture

p(ui) +

n∑
j=1
j 6=i

(
p(ui|uj)− p(ui)

)
pi(j), (10)

where only the n− 1 probabilities pi(j) with j 6= i are now
taken into account.

The joint distribution resulting from this mixture is given
by the product

pa(u1, . . . , un) =

=

n∏
i=1

p(ui) + n∑
j=1
j 6=i

(p(ui|uj)− p(ui)) pi(j)

 . (11)

It can be checked that this model includes the earlier fixed
dependency tree as a particular case by forcing pi(j) to be a
Kronecker delta function centered at j(i) or identically zero
if no communication occurs (root nodes). The problem that
has to be solved in the mixing trees realm is that of finding
the distribution pi(j) for each controller i = 1, . . . , n.

Unfortunately, if all pi(j) are allowed to be positive, a
sampling of this distribution will likely produce a network
topology with dependency loops leading to communication
deadlocks. Figure 2 exemplifies a deadlock situation that can
arise when all communication links are available.

u1

u2

u3

u4

u1

u2

u3

u4

Fig. 2. Unconstrained topology (left) and communication deadlock (right).

To avoid these situations, the allowed topologies are
encoded in pi(j) and are constrained into a lower triangular
matrix 

p1(1) 0 · · · 0

p2(1) p2(2)
. . . 0

...
. . . . . .

...
pn(1) pn(2) · · · pn(n)

 (12)

where each line specifies a probability distribution. Accord-
ing to this arrangement, controller i can only observe j < i
or generate its action independently (Note that the diagonal
elements are not independent parameters. Instead they are
determined so that probabilities add one).

To optimize the mixture parameters pi(j), the Kullback-
Leibler divergence (4) is used to assess the quality of the
approximation. Expanding (4) yields

D(p∗‖pa) = −H(p∗)−
n∑
i=1

∑
u1,...,un

p∗(u1, . . . , un)·

· log

p(ui) +∑
j<i

(
p(ui|uj)− p(ui)

)
pi(j)

 ,

(13)

where the first term is the entropy of the distribution p∗.
This term does not depend on the parameters pi(j) and
can be discarded on an optimization procedure. The second
term can be interpreted as the sum of the expected Kerridge
inaccuracies [7]

K
(
p∗(ui|u−i) : pa

)
,−

∑
ui

p∗(ui|u−i) log pa(ui|u−i)

(14)
and is the function to be optimized. The notation u−i is used
here to indicate all variables u1, . . . , un excluding ui.

To find a minimum of (13), we differentiate with respect
to the mixture probabilities pi(j), relabeled here to pr(s) to
avoid clashing with the summation indices. The stationarity
points are given by

0 =
∂

∂pr(s)
D(p∗‖pa) =

∑
u1,...,un

p∗(u1, . . . , un)·

· p(ur|us)− p(ur)
p(ur) +

∑
j<r

(
p(ur|uj)− p(ur)

)
pr(j)

, (15)

for r = 1, . . . , n and s < r. Since this equation does
not seem to have a simple explicit solution, an iterative
method is employed to solve it. Applying directly the gra-
dient method has the drawback that we are dealing with
probability constraints, namely they are nonnegative, add
up to one, and some of them can be constrained to zero
to avoid communication deadlocks. To deal with all this
constraints, a natural gradient method is used on the manifold
of categorical probability distributions. It is proven next that
this method deals with all of the above constraints implicitly
and can therefore be implemented as an unconstrained opti-
mization algorithm. The next section describes this method
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and proves some of it’s properties that are relevant in the
current problem.

IV. THE NATURAL GRADIENT METHOD

The gradient vector of an arbitrary function f is defined
as the vector ∇f that satisfies the equation

〈∇f,v〉 = df(v), ∀v 6= 0. (16)

In this equation, 〈·, ·〉 denotes an inner product and df is the
differential, or one-form, of f (see [3] for an introduction on
differential geometry and the gradient vector).

For a particular function f , the gradient vector ∇f de-
pends on the specific metric considered. When dealing with
probability manifolds it has long been suggested [1], [2] that
a natural inner product is obtained by

〈v,w〉,
∑
i,j

viwjgij , (17)

where the vi, wj are the components of arbitrary vectors
v and w, and the metric tensor gij is given by the Fisher
information matrix G,[gij ], and computed by

gij ,Eθ

[
∂ log p

∂θi
∂ log p

∂θj

]
. (18)

The symbols θi denote parameters of the probability distribu-
tion p. Specializing for a categorical probability distribution
in column form

p =


p1
...
pi
...
pn

 =



p1
...

1−
∑
j 6=i pj

...
pn

 (19)

having n − 1 independent parameters pj , j 6= i, the Fisher
information matrix (18) is given by

G =
1

1−
∑
j 6=i pj

1 · · · 1
...

...
1 · · · 1

+

p1 0
. . .

0 pn


−1

,

(20)
where the matrices are (n− 1)× (n− 1) and the probability
pi is missing from the diagonal of the second matrix.

The use of the Fisher information matrix G to define the
inner product in (16) leads to a linear system of equations
that in matrix form reads

(∇f)TGv = df(v)

=
[
∂f
∂p1

· · · ∂f
∂pi−1

∂f
∂pi+1

· · · ∂f
∂pn

]
v,

(21)

for all v 6= 0. Its solution is given by

∇f = G−1
[
∂f
∂p1

· · · ∂f
∂pi−1

∂f
∂pi+1

· · · ∂f
∂pn

]T
.

(22)

Using the matrix inversion lemma, the Fisher information
matrix (20) can be inverted and the gradient becomes

∇f =


p1 0

. . .
0 pn

−
p1...
pn

 [p1 · · · pn
]

∂f
∂p1

...
∂f
∂pn

 ,
(23)

again omitting probability pi from the matrices. Distribut-
ing the Jacobian matrix on the right simplifies further the
equation so that the gradient can be computed with linear
computational complexity and without explicitly computing
the Fisher information matrix.

The natural gradient just presented has several useful
properties that can be exploited in the problem studied in
this paper.

Propostition 1: The gradient flow realized as the dynam-
ical system

ṗ = −∇f (24)

satisfies, intrinsically, the probability constraints

pj ≥ 0,

n∑
j=1

pj = 1. (25)

Proof: The equilibrium points of (24) are the solutions
to the equation

0 = G−1(df)T . (26)

The solution of this equation is composed by the zeros of
differential df = 0, plus the points where df is in the kernel
of G−1.

When all probabilities pj are positive, it can be checked
that G−1 is nonsigular and thus, the possible solutions are
the same as the ones obtained with the usual Euclidean
gradient.

If one probability pk becomes zero, the matrix G−1

becomes singular and its null space cancels any deviation
of pk from zero. This cancelation is progressive as the
probability pk approaches zero. To see this, we factorize
p = A

√
p where

A,


√
p1 0

. . .
0

√
pn

 , √
p,


√
p1
...√
pn

 . (27)

Then the following equalities hold

G−1 = AAT −A
√
p
√
p
T
AT

= A(I−√p√pT )AT

= A

(
I− ‖√p‖2

√
p

‖√p‖

√
pT

‖√p‖

)
AT ,

(28)

where the squared Euclidean norm is

‖√p‖2 =
∑
j 6=i

pj = 1− pi (29)

and the vectors
√
p/‖√p‖ are unitary vectors with respect

to the Euclidean norm.
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Finally, we define the matrices

Hi, I− (1− pi)
√
p

‖√p‖

√
pT

‖√p‖
(30)

Hj , I− (1− pj)ejeTj , j 6= i, (31)

where ej denote the standard basis vectors. This matrices
perform projections when pi = 0 and pj = 0, respectively.
Otherwise attenuations are performed along the directions√
p and ej . Then G−1 can be written as the product

G−1 = AHiA
T

= AHiA
−1AAT , pj > 0

= AHiA
−1
∏
j 6=i

Hj .
(32)

Using this factorization we see that G−1(df)T performs
a sequence of scalings Hj of the j-th component of the
differential df . This scalings tend to cancel the components
of the differential df that correspond to probabilities close
to zero. They perform an exact cancelation when a given
probability pk is exactly zero since in this case Hk becomes
a projection

Hk = I− eke
T
k , (33)

into the subspace orthogonal to ek. The factor AHiA
−1

works similarly but for the constraint pi = 1−
∑
j 6=i pj > 0.

In this case, we prove that if pi = 0 then it becomes stuck
at zero, i.e. ṗi = 0. Let ξ,

(∏
j 6=iHj

)
(df)T denote the

factors on the right of the gradient descent equation colapsed
to a single variable ξ. Then

ṗi = −
∑
j 6=i

ṗj

= −
∑
j 6=i

AHiA
−1
(∏
j 6=i

Hj

)
(df)T

= −
[
1 · · · 1

]
AHiA

−1ξ

= −
[
1 · · · 1

]
A(I−√p√pT )A−1ξ

= −
[
1 · · · 1

]
(I− p

[
1 · · · 1

]
)ξ

= −
[
1 · · · 1

]
ξ −

∑
j 6=i

pj
[
1 · · · 1

]
ξ

= − (1−
∑
j 6=i

pj)︸ ︷︷ ︸
=pi=0

[
1 · · · 1

]
ξ

= 0.

(34)

We then conclude that the admissible region for the
probabilities is bounded by an “equilibria” submanifold of
(24). At the boundary, the differential df is projected to the
submanifold and does not allow probability constraints to
be violated. Furthermore, if the optimization starts with any
given null probabilities pk = 0, these will be kept canceled
out while running the steepest descent even when df points
inward into the admissible region.

V. OPTIMIZATION OF THE MIXTURE OF TREES

Returning to the problem of finding the mixture parameters
pi(j), it can be seen that the properties proved in the
previous section can be used to impose the communication
topology constraints at the same time that the usual proba-
bility constraints are met. This is accomplished by a simple
initialization of the mixture probabilities pi(j) to zero, as in
(12), whenever no communication link is allowed.

The admissible trees, encoded in the triangular matrix (12),
lie on a probability simplex since the valid matrices can be
written as convex combinations of basis matrices. Since this
probability simplex is a convex set and since the sum of
expected Kerridge inaccuracies is convex, the solution found
is guaranteed to be global.

VI. CONCLUSION

This paper dealt with the estimation of a mixture of
dependency trees in order to approximate some desired
collective behavior of controller actions specified in a joint
distribution p∗(u1, . . . , un|x). It is assumed that the network
topology is randomized from a set of admissible trees. The
problem formulated here is that of estimating the mixture co-
efficients. To solve this problem a natural gradient algorithm
is employed that takes advantage of its intrinsic properties in
order to enforce constraints on the network topology without
additional effort. The relevant properties are shown to hold
in categorical distributions as is the case of the problem
considered.

There are still open issues to be solved, namely the fact
that the algorithm requires the admissible topologies to be
provided from the start.
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