Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/9667

Title: Geometric conditions for regularity of viscosity solution to the simplest Hamilton-Jacobi equation
Authors: Goncharov, Vladimir
Pereira, Fátima
Editors: Hömberg, D.
Tröltzsch, F.
Keywords: time-minimum problem
viscosity solution
eikonal equation
duality mapping
proximal normals
proximal regularity
Hölder continuity
Issue Date: 2012
Publisher: Springer
Citation: In D. Hömberg, F. Tröltzsch (eds) System Modeling and Optimization, Proc. of the 25 IFIP TC7 Conf., CSMO 2011, Berlin, Germany, September 2011, 245-254
Abstract: Continuing research <cite>GP1, GP2</cite> on the well-posedness of the time-minimum problem with a constant convex dynamics (in a Hilbert space), we adapt one of the regularity conditions obtained there to a slightly more general problem, where nonaffine additive term appears. We prove existence and uniqueness of a minimizer in this problem as well as continuous differentiability of the value function (it can be seen as the viscosity solution to a Hamilton-Jacobi equation) near the boundary of the domain
URI: http://hdl.handle.net/10174/9667
Type: article
Appears in Collections:CIMA - Artigos em Livros de Actas/Proceedings

Files in This Item:

File Description SizeFormat
GonchPereiraViscosity(Proc.IFIP2011).pdf159.76 kBAdobe PDFView/OpenRestrict Access. You can Request a copy!
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois