Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/8401

Title: A symptotic Bias for GMM and GEL Estimators with Estimated Nuisance Parameter
Authors: Newey, Whitney K.
Ramalho, Joaquim J.S.
Smith, Richard J.
Keywords: GMM
Empirical Likelihood
Exponential Tilting
Continuous Updating
Bias
Stochastic Expansions
Issue Date: 2003
Citation: Newey, W.K., J.J.S. Ramalho e R.J. Smith (2003), Asymptotic Bias for GMM and GEL Estimators with Estimated Nuisance Parameters, Documento de Trabalho nº 2003/05, Universidade de Évora, Departamento de Economia.
Abstract: This papers studies and compares the asymptotic bias of GMM and generalized empirical likelihood (GEL) estimators in the presence of estimated nuisance parameters. We consider cases in which the nuisance parameter is estimated from independent and identical samples. A simulation experiment is conducted for covariance structure models. Empirical likelihood offers much reduced mean and median bias, root mean squared error and mean absolute error, as compared with two-step GMM and other GEL methods. Both analytical and bootstrap bias-adjusted two-step GMM estima-tors are compared. Analytical bias-adjustment appears to be a serious competitor to bootstrap methods in terms of finite sample bias, root mean squared error and mean absolute error. Finite sample variance seems to be little affected.
URI: http://hdl.handle.net/10174/8401
Type: workingPaper
Appears in Collections:ECN - Working Papers (RePEc)

Files in This Item:

File Description SizeFormat
wp_2003_05.pdf519.72 kBAdobe PDFView/Open
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois