Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/7307

Title: Geometric conditions for regularity in a time-minimum problem with constant dynamics
Authors: Goncharov, Vladimir
Pereira, Fátima
Keywords: time-minimum problem
Hölder continuity
proximal, Fréchet and Clarke subdifferentials
duality mapping
curvature
proximal smoothness
Issue Date: 2012
Publisher: Journal of Convex Analysis
Abstract: Continuing the earlier research on local well-posedness of a time-minimum problem associated to a closed target set C in a Hilbert space H and a convex constant dynamics F we study the Lipschitz (or, in general, Hölder) regularity of the (unique) point in C achieved from x for a minimal time. As a consequence, smoothness of the value function is proved, and an explicit formula for its derivative is given.
URI: http://hdl.handle.net/10174/7307
Type: article
Appears in Collections:CIMA - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica

Files in This Item:

File Description SizeFormat
GonchPereiraRegularityTMP(ConvexAn).pdf318.37 kBAdobe PDFView/Open
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois