Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/6748

Title: LAPLACIANS AND THE CHEEGER CONSTANTS FOR DISCRETE DYNAMICAL SYSTEMS
Authors: Grácio, Clara
Fernandes, Sara
Ramos, José Sousa
Editors: Elaydi, Saber
Keywords: laplacian-cheeger
Issue Date: 2007
Publisher: World Scientific
Citation: SARA FERNANDES, CLARA GRÁCIO, and J. SOUSA RAMOS (2007) LAPLACIANS AND THE CHEEGER CONSTANTS FOR DISCRETE DYNAMICAL SYSTEMS. SARA FERNANDES, CLARA GRÁCIO, and J. SOUSA RAMOS (2007) LAPLACIANS AND THE CHEEGER CONSTANTS FOR DISCRETE DYNAMICAL SYSTEMS. Difference Equations, Special Functions And Orthogonal Polynomials: pp. 213-223. : pp. 213-223.
Abstract: We consider discrete laplacians for iterated maps on the interval and examine their eigenvalues. We have introduced a notion of conductance (Cheeger constant) for a discrete dynamical system, now we study their relations with the spectrum. We compute the systoles and the first eigenvalue of some families of discrete dynamical systems.
URI: http://hdl.handle.net/10174/6748
Type: article
Appears in Collections:MAT - Artigos em Livros de Actas/Proceedings

Files in This Item:

File Description SizeFormat
2007_Proceedings_ICDEA05_LaplacianCheegerConstDiscreteDynSystems.pdf124.59 kBAdobe PDFView/Open
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois