Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/6555

Title: Seismic Source Directivity from Doppler Effect Analysis, Part I: Theory
Authors: Caldeira, B
Bezzeghoud, M
Borges, JF
Keywords: Rupture Velocity
Directivity
Doppler Effect
Issue Date: 2004
Citation: Caldeira B., M. Bezzeghoud and J. Borges, 2004. Seismic Source Directivity from Doppler Effect Analysis, Part I: Theory. XXIX General Assembly of the European Seismological Commission (ESC), 13-17 September, Potsdam, Germany.
Abstract: The directivity effects, a characteristic of finiteness seismic sources, are generated by the rupture in preferential directions. Those effects are manifested through different cadencies in the seismological measures from azimuthally distributed stations. The apparent durations are expressed as (e.g. Aki and Richards, 1980), (1), where L, v, c and ??are, respectively, the fault length, the rupture velocity, the wave velocity and the angle between rupture direction and ray. This time duration can be measured directly from waveform or indirectly from Relative Source Time Function (RSTF). Equation (1) is deduced from a simple source model (Haskell model) that considers unidirectional uniform rupture propagation and a homogeneous elastic isotropic media. If we consider a more general propagation model, with spherical concentric layers, we obtain (2), where p is the ray parameter and the earth radius. Similar equation can be obtained through physical considerations about a model composed by a sequence of subevents unilater- ally distributed along a line (Doppler Effect). Based on the same considerations we can do a more detailed analysis through (3), where is the time interval between 2 identified pulses in the rupture referential and j indicate the number of station. Based on this theory, we have developed a computational code DIRDOP (DIRectivity DOPpler effect) which determines the rupture direction and velocity from pulse durations observed in waveforms or RSTF. We used this code to analyse recent major seismic events including the unilateral 23 June, 1999 Arequipa (Peru, Mw=8.2) earthquake and the bilateral 21 May 2003 Boumerdes (Algeria, Mw=6.7) earthquake amongst others. The results are similar to those obtained by other methods.
URI: http://hdl.handle.net/10174/6555
Type: lecture
Appears in Collections:CGE - Comunicações - Em Congressos Científicos Internacionais

Files in This Item:

File Description SizeFormat
ESC_2004_caldeira.pdf118 kBAdobe PDFView/Open
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois