Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/6455

Title: Spectral invariants and conductance in iterated maps
Authors: Fernandes, Sara
Sousa Ramos, José
Editors: Forg-Rob, W.
Gardini, L.
Gronau, D.
Reich, L.
Smítal, J.
Keywords: iterated maps
Spectral invariants
Conductance
Discrete Laplacian
Issue Date: 2006
Publisher: Grazer Mathematishe Berichte
Citation: Fernandes, Sara; Sousa Ramos, José; Spectral invariants and conductance in iterated maps. Iteration theory (ECIT '04), 69–81, Grazer Math. Ber., 350, Karl-Franzens-Univ. Graz, Graz, 2006.
Abstract: We present a study about the invariants which can distinguish topologically different dynamics concerned to iterated maps on the interval. We’ve considered a special family of maps through their symbolic trajectories and we’ve studied the spectral invariants topological entropy and mixing rate as well as the quantities conductance and first nonzero eigenvalue of the discrete Laplacian.
URI: http://hdl.handle.net/10174/6455
ISSN: 1016-7692
Type: article
Appears in Collections:CIMA - Artigos em Livros de Actas/Proceedings

Files in This Item:

File Description SizeFormat
2004sfsrecit04.pdf225.7 kBAdobe PDFView/OpenRestrict Access. You can Request a copy!
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois