Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/6131

Title: Conductance, Laplacian and Mixing Rate in Discrete Dynamical Systems
Authors: Fernandes, Sara
Sousa Ramos, José
Keywords: discrete laplacian
graph conductance
Markov chains
mixing rate
spectral invariants
symbolic dynamics
Issue Date: 1-Jun-2006
Publisher: Springer
Citation: S. Fernandes,J. Sousa Ramos; Conductance, Laplacian and Mixing Rate in Discrete Dynamical Systems; Nonlinear Dynamics, June 2006, Volume 44, Issue 1-4, pp 117-126
Abstract: We introduce the notion of conductance in discrete dynamical systems defined by iterated maps of the interval. Our starting point is the notion of conductance in the graph theory. We pretend to apply the known results in this new context.
URI: http://hdl.handle.net/10174/6131
ISSN: 0924-090X
Type: article
Appears in Collections:CIMA - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica

Files in This Item:

File Description SizeFormat
2006_Nonlinear_Dynamics.pdf267.05 kBAdobe PDFView/OpenRestrict Access. You can Request a copy!
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois