Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/5636

Title: Difference Equations and Nonlinear Boundary Value Problems for Hyperbolic Systems
Authors: Sharkovsky, Alexander
Severino, Ricardo
Vinagre, Sandra
Issue Date: 2010
Publisher: Discrete Dynamics and Difference Equations - Proceedings of the Twelfth International Conference on Difference Equations and Applications, World Scientific Publishing
Citation: A. N. Sharkovsky, R. Severino and S. Vinagre, Difference Equations and Nonlinear Boundary Value Problems for Hyperbolic Systems, 400-409.
Abstract: It is known that solutions of certain classes of linear hyperbolic systems with nonlinear boundary conditions and consistent initial conditions can be written via the iteration of a map of the interval. In this work we characterize the solutions of such problems, with a vortex as initial condition and the iteration of a bimodal map of the interval, using the bimodal topological invariants.
URI: http://hdl.handle.net/10174/5636
ISBN: 978-981-4287-64-7
Type: article
Appears in Collections:MAT - Artigos em Livros de Actas/Proceedings
CIMA - Artigos em Livros de Actas/Proceedings

Files in This Item:

File Description SizeFormat
Abstract_WSP2010_ASRSSV.pdf228.3 kBAdobe PDFView/OpenRestrict Access. You can Request a copy!
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois