Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/5344

Title: Evolution and distribution of the periodic critical values of iterated differentiable functions
Authors: Correia, Maria de Fátima
Ramos, Carlos
Vinagre, Sandra
Keywords: Symbolic dynamics
Infinite dimensional dynamical system
Iteration theory
Critical value
Growth rate
m-modal interval map
Issue Date: 2012
Publisher: Nonlinear Analysis
Citation: M. F. Correia, C. C. Ramos and S. Vinagre, Evolution and distribution of the periodic critical values of iterated differentiable functions, 6343–6359.
Abstract: We consider the dynamical system (A,T), where A is a class of differentiable functions defined on some interval and T:A→A is the operator Tφ:=foφ, where f is a differentiable m-modal map. For the particular case of f being a topologically exact map we study the growth rate of critical points of the iterated functions. Considering functions in A whose critical values are periodic points for f, we analyze the evolution as well as the distribution of the periodic critical values of the iterated functions. For this, using only the kneading invariant of f , we developed an algorithm for computing the itineraries of the critical values of these functions.
URI: http://hdl.handle.net/10174/5344
ISSN: 0362-546X
Type: article
Appears in Collections:CIMA - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica
MAT - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica

Files in This Item:

File Description SizeFormat
Abstract_NA2012_FCCRSV.pdf177.66 kBAdobe PDFView/OpenRestrict Access. You can Request a copy!
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois