Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/4594

Title: Local estimates for minimizers of some convex integral functional of the gradient and the Strong Maximum Principle
Authors: Goncharov, Vladimir
Santos, Telma
Keywords: Strong Maximum Principle
comparison theorems
convex variational problems
Minkowski functional
Issue Date: 2011
Abstract: We consider a class of convex integral functionals with lagrangeans depending only on the gradient and satisfying a generalized symmetry assumption, which includes as a particular case the rotational symmetry. Adapting the method by A. Cellina we obtain a kind of local estimates for minimizers in the respective variational problems, which is applied then to deduce some versions of the Strong Maximum Principle in the variational setting.
URI: http://hdl.handle.net/10174/4594
Type: article
Appears in Collections:CIMA - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica

Files in This Item:

File Description SizeFormat
GonchSantosSMP(SetValVarAn).pdf410.8 kBAdobe PDFView/Open
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois