Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/38846

Title: Leveraging Advanced Prompting Strategies in Llama-8b for Enhanced Hyperpartisan News Detection
Authors: Maggini, Michele Joshua
Marino, Erik Bran
Gamallo, Pablo
Keywords: natural language processing
large language models
hyperpartisan detection
disinformation
prompt engineering
Chain-of-Thought
zero-shot learning
few-shot learning
Issue Date: Dec-2024
Publisher: CEUR Workshop Proceedings
Citation: Maggini, M. J., Marino, E. B., & Otero, P. G. (2024). Leveraging Advanced Prompting Strategies in Llama-8b for Enhanced Hyperpartisan News Detection. In Proceedings of the Tenth Italian Conference on Computational Linguistics (CLiC-it 2024), Pisa, Italy.
Abstract: This paper explores advanced prompting strategies for hyperpartisan news detection using the Llama3-8b-Instruct model, an open-source LLM developed by Meta AI. We evaluate zero-shot, few-shot, and Chain-of-Thought (CoT) techniques on two datasets: SemEval-2019 Task 4 and a headline-specific corpus. Collaborating with a political science expert, we incorporate domain-specific knowledge and structured reasoning steps into our prompts, particularly for the CoT approach. Our findings reveal that some prompting strategies work better than others, specifically on LLaMA, depending on the dataset and the task. This unexpected result challenges assumptions about ICL efficacy on classification tasks. We discuss the implications of these findings for In-Context Learning (ICL) in political text analysis and suggest directions for future research in leveraging large language models for nuanced content classification tasks.
URI: https://ceur-ws.org/Vol-3878/62_main_long.pdf
http://hdl.handle.net/10174/38846
Type: article
Appears in Collections:CIDEHUS - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica

Files in This Item:

File Description SizeFormat
62_main_long.pdf1.06 MBAdobe PDFView/Open
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois