Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/38706

Title: Exploring the atmospheric conditions increasing fire danger in the Iberian Peninsula
Authors: Purificação, Carolina
Campos, Cátia
Henkes, Alice
Couto, Flavio Tiago
Keywords: fire danger
Iberian thermal low
megafires
Meso-NH model
orographic effects
Issue Date: 5-Sep-2024
Publisher: Wiley
Citation: Purificação, C., Campos, C., Henkes, A. & Couto, F.T. (2024) Exploring the atmospheric conditions increasing fire danger in the Iberian Peninsula. Quarterly Journal of the Royal Meteorological Society, 150(763), 3475–3494. Available from: https://doi.org/10.1002/qj.4776
Abstract: The fire danger is particularly sensitive to meteorological conditions. The present study discusses the atmospheric conditions during three periods to evaluate how they can increase fire danger. A set of three convection-permitting simulations was configured at 2.5 km resolution using the Meso-NH model. In the first period, the intense surface heating induced by a heatwave favoured the development of the Iberian thermal low in July 2019, leading to the formation of precipitating systems and resulting in convective outflows that affected the central Iberian Peninsula. The outflows were shown to be an important feature in evaluating fire danger during the period; however, the simulation also highlighted the orographic effect as another phenomenon playing an important role in fire development and consequently enhancing the fire danger in some regions such as in the extreme southwest of Portugal. The orographic effect in this specific region was identified and analyzed in detail for two megafire events that occurred in Monchique in August 2003 and 2018. The Monchique Mountain's shape and orientation interacting with the airflow induced upslope and downslope winds that favoured the rapid propagation of the fire fronts in August 2018. The third experiment showed that the circulation of a sea breeze from the southern coast of Portugal may act as an enhancer for fire danger in the region when interacting with the regional mountain, such as verified in the 2003 megafire. The study shows that the fire danger over specific regions can be increased by different atmospheric phenomena and explored from atmospheric modelling. The convective outflows were an important factor enhancing fire danger; however, the orographic effect was confirmed as the main factor producing two megafires events in the extreme southwest of Portugal.
URI: http://hdl.handle.net/10174/38706
Type: article
Appears in Collections:FIS - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica

Files in This Item:

File Description SizeFormat
Purificação_etal_2024_QJRMS.pdf44.15 MBAdobe PDFView/OpenRestrict Access. You can Request a copy!
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois