Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/38695

Title: Simulation of ideal material blocks using cellular automata
Authors: Correia Ramos, C.
El Bouziani, Nada
Tlemçani, Mouhaydine
Fernandes, Sara
Issue Date: 30-Oct-2023
Publisher: Springer
Citation: Nonlinear Dyn (2023) 111:22381–22397
Abstract: We consider deterministic and probabilistic cellular automata to study and describe certain types of patterns in idealized material blocks. We have particular interest in patterns similar to fractures. The internal structure of these material blocks is assumed to be unknown and probabilistic cellular automata are used to obtain distributions for the referred internal structure. We consider the 1D case. Certain deterministic elementary rules are identified as elementary ideal fracture rules and the probabilistic rules are introduced as probabilistic interpolation of these elementary rules. The initial conditions are obtained from the visible borders of the surface (2D block). Therefore, each visible edge is giving additional information and a probabilistic fracture type pattern. Different methods to combine these patterns,int o a final one, are discussed. Moreover, we introduce refinement techniques of the CA rules to improve the probabilities distributions. This refinement process may consider prescribed behaviour or empirical data, and, therefore, the CA rules behaviour becomes adjustable.
URI: http://hdl.handle.net/10174/38695
Type: article
Appears in Collections:CIMA - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica

Files in This Item:

File Description SizeFormat
s11071-023-09016-2.pdf1.83 MBAdobe PDFView/OpenRestrict Access. You can Request a copy!
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois