Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/37995

Title: Moments and probability density of threshold crossing times for populations in random environments under sustainable harvesting policies
Authors: Brites, Nuno M.
Braumann, Carlos A.
Keywords: Allee effects
constant effort harvesting
Laplace transform
logistic growth
stochastic differential equations
first passage times
Issue Date: 14-Jun-2022
Publisher: Springer
Citation: Brites, Nuno M., Braumann, Carlos A. Moments and probability density of threshold crossing times for populations in random environments under sustainable harvesting policies. Computational Statistics (2022). https://doi.org/10.1007/s00180-022-01237-0
Abstract: Stochastic differential equations are used to model the dynamics of harvested populations in random environments. The main goal of this work is to compute, for a particular fish population under constant effort harvesting, the mean and standard deviation of first passage times by several lower and upper thresholds values. We apply logistic or logistic-like with Allee effects average growth dynamics. In addition, we present a method to obtain the probability density function of the first passage time by a threshold through the numerical inversion of its Laplace transform.
URI: https://doi.org/10.1007/s00180-022-01237-0
https://link.springer.com/article/10.1007/s00180-022-01237-0
http://hdl.handle.net/10174/37995
ISSN: 1613-9658
Type: article
Appears in Collections:CIMA - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica

Files in This Item:

File Description SizeFormat
2022-ComputStatistics-paperBritesBraumann-AcceptedManuscript.pdf11.31 MBAdobe PDFView/Open
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois