Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/37064

Title: Aboveground biomass mapping by integrating ICESat-2, SENTINEL-1, SENTINEL-2, ALOS2/PALSAR2, and topographic information in Mediterranean forests
Authors: Guerra-Hernández, Juan
Narine, Lana
Pascual, Adrian
Gonzalez-Ferreiro, Eduardo
Botequim, Brigite
Malambo, Lonesome
Neuenschwander, Amy
Popescu, Sorin
Godinho, Sérgio
Issue Date: 22-Sep-2022
Publisher: Taylor & Francis
Abstract: The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) provides an extraordinary opportunity to support global large-scale forest carbon mapping, but further research is needed in order to obtain wall-to-wall forest aboveground biomass (AGB) maps with this technology. The effects of vegeta tion structure on the performance of canopy height and AGB modeling using ICESat-2 photon- counting light detection and ranging (LiDAR) data in Mediterranean forest areas have not been previously studied in the literature. In this study, we combined recent ICESat-2 vegetation (ATL08) data, Airborne Laser Scanning (ALS)- and field-based estimates, and a multi-sensor earth observa tion composite for extrapolation of AGB estimates and AGB mapping. A diverse gradient of forest Mediterranean ecosystems, distributed over 19,744.15 km2 of forest area in the region of Extremadura (Spain), with different species and structural complexity forming 5 different forest types (3 Quercus spp. dominated and 2 Pinus spp. dominated forests), was used to (i) evaluate the precision of ICESat-2 canopy height estimations, (ii) develop ICESat-2-based AGB models, and (iii) generate a spatially continuous prediction of AGB by using data from the satellite missions Sentinel-1 (S1), Sentinel-2 (S2), Phased Array L-band Synthetic Aperture Radar (ALOS2/PALSAR2), and Shuttle Radar Topography Mission (SRTM). First, ALS- and ICESat-2-derived metrics that best described canopy height (p98 and rh98, respectively) were compared at the ATL08 segment level. Second, ALS-based AGB values were derived at the ATL08 segment scale. Third, ALS-based AGB estimates at the ICESat-2 segment level were used as dependent variables to fit ICESat-2-based AGB models. Fourth, a multi-sensor approach was then implemented to predict ICESat-2-derived AGB, by means of a Random Forest (RF) modeling technique, with predictors retrieved from S1, S2, ALOS2/PALSAR2, and SRTM. Finally, RF was used to generate wall-to-wall AGB maps that were compared with field-, ALS- and ICESat-2-based observations. The agreement between the ALS- and ICESat-2-derived metrics related to the canopy height distribution was higher for Pinus spp. forest than for the Quercus spp-dominated forests. The ICESat-2-based AGB models yielded model efficiency (Mef) values between 0.56 and 0.80, with a RMSE ranging from 7.76 to 17.71 Mg ha−1 and rRMSE from 19.04 to 55.21%. The multi-sensor RF models provided the following results when compared with the ICESat-2- and ALS-based AGB observations: R2 values of 0.63 and 0.64, and RMSE values of 11.10 Mg ha−1(rRMSE = 28.15%) and 12.28 Mg ha−1 (rRMSE = 31.45%), respectively, and an approximately unbiased result (0.03 Mg ha−1 and 0.09 Mg ha−1). When applied to the field- based validation data set (4th Spanish National Forest Inventory (SNFI-4) plots = 508), the RF- derived AGB model showed a relatively lower predictive capacity (R2 = 0.45), a higher RMSE value (25.88 Mg ha−1) and slightly biased results (−1.47 Mg ha−1), especially for larger field-derived AGB intervals. The results of this study serve to provide an initial quantitative assessment of the ICESat-2 ATL08 data for large-scale AGB estimation. The findings suggest that a multi-sensor approach may be feasible for extrapolating ICESat-2-derived AGB estimates over areas where field or ALS reference data are not available.
URI: http://hdl.handle.net/10174/37064
Type: article
Appears in Collections:FIS - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica

Files in This Item:

File Description SizeFormat
Guerra-Hernández_et_al_2022_Aboveground biomass mapping integrating ICESat-2, Sentinel-1, Sentinel-2, ALOS2_PALSAR2.pdf16.23 MBAdobe PDFView/Open
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois