Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/35620

Title: Artinian Gorenstein algebras of embedding dimension four and socle degree three
Authors: Macias Marques, Pedro
Veliche, Oana
Weyman, Jerzy
Keywords: Artinian Gorenstein algebra
Macaulay inverse system
Doubling
Free resolution
Connected sum
Issue Date: 2023
Publisher: Journal of Algebra
Citation: Pedro Macias Marques, Oana Veliche, Jerzy Weyman, Artinian Gorenstein algebras of embedding dimension four and socle degree three, Journal of Algebra, Volume 638, 2024, Pages 788-839, ISSN 0021-8693, https://doi.org/10.1016/j.jalgebra.2023.09.025.
Abstract: We prove that in the polynomial ring ${Q=\kk[x,y,z,w]}$, with $\kk$ an algebraically closed field of characteristic zero, all Gorenstein homogeneous ideals $I$ such that $(x,y,z,w)^4\subseteq I \subseteq (x,y,z,w)^2$ can be obtained by \emph{doubling} from a grade three perfect ideal $J\subset I$ such that $Q/J$ is a locally Gorenstein ring. Moreover, a graded minimal free resolution of the \mbox{$Q$-module} $Q/I$ can be completely described in terms of a graded minimal free resolution of the \mbox{$Q$-module} $Q/J$ and a homogeneous embedding of a shift of the canonical module $\omega_{Q/J}$ into $Q/J$.
URI: https://doi.org/10.1016/j.jalgebra.2023.09.025
http://hdl.handle.net/10174/35620
Type: article
Appears in Collections:MAT - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica

Files in This Item:

File Description SizeFormat
2024JAlgebraMaciasMarquesVelicheWeyman.pdf681.67 kBAdobe PDFView/OpenRestrict Access. You can Request a copy!
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois