Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/35363

Title: Semantic relations between sentences: from lexical to linguistically inspired semantic features and beyond
Authors: Fialho, Pedro Miguel Rocha Pereira
Advisors: Quaresma, Paulo
Coheur, Luísa
Keywords: Aspectos lexicais
Estruturas de Representação de Discurso
Identificação de Paráfrases
Inferência em Língua Natural
Similiaridade Semântica em Texto
Vectores Contextuais
Discourse Representation Structures
Embeddings
Lexical features
Natural Language Inference
Paraphrase Identification
Semantic Textual Similarity
Issue Date: 6-Jun-2023
Publisher: Universidade de Évora
Abstract: This thesis is concerned with the identification of semantic equivalence between pairs of natural language sentences, by studying and computing models to address Natural Language Processing tasks where some form of semantic equivalence is assessed. In such tasks, given two sentences, our models output either a class label, corresponding to the semantic relation between the sentences, based on a predefined set of semantic relations, or a continuous score, corresponding to their similarity on a predefined scale. The former setup corresponds to the tasks of Paraphrase Identification and Natural Language Inference, while the latter corresponds to the task of Semantic Textual Similarity. We present several models for English and Portuguese, where various types of features are considered, for instance based on distances between alternative representations of each sentence, following lexical and semantic frameworks, or embeddings from pre-trained Bidirectional Encoder Representations from Transformers models. For English, a new set of semantic features is proposed, from the formal semantic representation of Discourse Representation Structure. In Portuguese, suitable corpora are scarce and formal semantic representations are unavailable, hence an evaluation of currently available features and corpora is conducted, following the modelling setup employed for English. Competitive results are achieved on all tasks, for both English and Portuguese, particularly when considering that our models are based on generally available tools and technologies, and that all features and models are suitable for computation in most modern computers, except for those based on embeddings. In particular, for English, our semantic features from DRS are able to improve the performance of other models, when integrated in the feature set of such models, and state of the art results are achieved for Portuguese, with models based on fine tuning embeddings to a specific task; Sumário: Relações semânticas entre frases: de aspectos lexicais a aspectos semânticos inspirados em linguística e além destes Esta tese é dedicada à identificação de equivalência semântica entre frases em língua natural, através do estudo e computação de modelos destinados a tarefas de Processamento de Linguagem Natural relacionadas com alguma forma de equivalência semântica. Em tais tarefas, a partir de duas frases, os nossos modelos produzem uma etiqueta de classificação, que corresponde à relação semântica entre as frases, baseada num conjunto predefinido de possíveis relações semânticas, ou um valor contínuo, que corresponde à similaridade das frases numa escala predefinida. A primeira configuração mencionada corresponde às tarefas de Identificação de Paráfrases e de Inferência em Língua Natural, enquanto que a última configuração mencionada corresponde à tarefa de Similaridade Semântica em Texto. Apresentamos diversos modelos para Inglês e Português, onde vários tipos de aspectos são considerados, por exemplo baseados em distâncias entre representações alternativas para cada frase, seguindo formalismos semânticos e lexicais, ou vectores contextuais de modelos previamente treinados com Representações Codificadas Bidirecionalmente a partir de Transformadores. Para Inglês, propomos um novo conjunto de aspectos semânticos, a partir da representação formal de semântica em Estruturas de Representação de Discurso. Para Português, os conjuntos de dados apropriados são escassos e não estão disponíveis representações formais de semântica, então implementámos uma avaliação de aspectos actualmente disponíveis, seguindo a configuração de modelos aplicada para Inglês. Obtivemos resultados competitivos em todas as tarefas, em Inglês e Português, particularmente considerando que os nossos modelos são baseados em ferramentas e tecnologias disponíveis, e que todos os nossos aspectos e modelos são apropriados para computação na maioria dos computadores modernos, excepto os modelos baseados em vectores contextuais. Em particular, para Inglês, os nossos aspectos semânticos a partir de Estruturas de Representação de Discurso melhoram o desempenho de outros modelos, quando integrados no conjunto de aspectos de tais modelos, e obtivemos resultados estado da arte para Português, com modelos baseados em afinação de vectores contextuais para certa tarefa.
URI: http://hdl.handle.net/10174/35363
Type: doctoralThesis
Appears in Collections:BIB - Formação Avançada - Teses de Doutoramento

Files in This Item:

File Description SizeFormat
Doutoramento-Informatica-Pedro_Miguel_Rocha_Pereira_Fialho.pdf5.6 MBAdobe PDFView/Open
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois