Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/33521

Title: Estimation of the Weibull tail coefficient through the power-mean-of-order p
Authors: Caeiro, Frederico
Gomes, Maria Ivette
Henriques-Rodrigues, Lígia
Editors: Bispo, Regina
Henriques-Rodrigues, Lígia
Alpizar-Jara, Russell
de Carvalho, Miguel
Keywords: Power mean-of-order-p Semi-parametric estimation Statistics of extremes
Semi-parametric estimation
Statistics of extremes
Weibull tail coefficient
Issue Date: 29-Nov-2022
Publisher: Springer
Citation: Caeiro, F., Gomes, M.I., Henriques-Rodrigues, L. (2022). Estimation of the Weibull Tail Coefficient Through the Power Mean-of-Order-p. In: Bispo, R., Henriques-Rodrigues, L., Alpizar-Jara, R., de Carvalho, M. (eds) Recent Developments in Statistics and Data Science. SPE 2021. Springer Proceedings in Mathematics & Statistics, vol 398. Springer, Cham. https://doi.org/10.1007/978-3-031-12766-3_4
Abstract: The Weibull tail coefficient (WTC) is the parameter θ θ in a right-tail function of the type F¯:=1−F F¯:=1−F, such that H:=−ln F¯ is a regularly varying function at infinity with an index of regular variation equal to θ∈R+. In a context of extreme value theory for maxima, it is possible to prove that we have an extreme value index (EVI) ξ=0, but usually a very slow rate of convergence. Most of the recent WTC-estimators are proportional to the class of Hill EVI-estimators, the average of the log-excesses associated with the k upper order statistics, 1≤k<n. The interesting performance of EVI-estimators based on generalized means leads us to base the WTC-estimation on the power mean-of-order-p (MOp) EVI-estimators. Consistency of the WTC-estimators is discussed and their performance, for finite samples, is illustrated through a small-scale Monte Carlo simulation study.
URI: https://doi.org/10.1007/978-3-031-12766-3_4
http://hdl.handle.net/10174/33521
ISBN: 978-3-031-12765-6
Type: bookPart
Appears in Collections:CIMA - Publicações - Capítulos de Livros

Files in This Item:

File Description SizeFormat
capitulo_livro.pdf3.79 MBAdobe PDFView/Open
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois