|
Please use this identifier to cite or link to this item:
http://hdl.handle.net/10174/33442
|
Title: | Iberia: insights from the Lower Mondego River terraces (central Portugal) |
Authors: | Martins, António Cunha, Pedro Gouveia, Margarida Gomes, Alberto Falguères, Christophe Stokes, Martin Voinchet, Pierre Cabral, João Bahain, Jean-Jacques de Vicente, Gerardo |
Issue Date: | 11-Sep-2022 |
Citation: | Martins, A.; Cunha, P. P.; Gouveia, M.; Gomes, A.; Falguères,C.; Stokes, M.; Voinchet, P.; Cabral, J.; Bahain, J.-J.; De Vicente, G. (2022) – Geomorphic markers of Quaternary tectonics in Westernmost Iberia: insights from the Lower Mondego River terraces (central Portugal), ICG2022-283, Fluvial Geomorphology, 10th International Conference on Geomorphology (Abstract Book), 12-16 Setembro 2022, Coimbra; comunicação oral. |
Abstract: | The Lower Mondego Valley (LMV), located in the Western Iberian passive margin which is under
compressive tectonic reactivation since ca. 80 Ma, is used for deciphering long-term landscape
evolution during the Quaternary and the control played by active tectonics, eustasy and climate.
The elaboration of a detailed geomorphological map allowed the establishment of the spatial and
temporal distribution of the different geomorphological units and morphogenetic systems operating
in the LMV. The culminant unit of the Mondego Cenozoic Basin (allostratigraphic unit UBS13,
recording an Atlantic fan-delta and adjacent shallow marine siliciclastic environments) and terrace
levels (river and marine) are used as geomorphic markers to quantify fluvial development and
tectonic activity. The main stages of evolution are a transition of endorheic to exorheic (Atlantic
base level) drainage in the Mondego Cenozoic Basin, ca. 3.7 Ma ago, followed by onset of the fluvial
incision stage (valley entrenchment) by ca. 1.8 Ma.
Electron spin resonance (ESR) dating is used to improve the chronological framework for the terrace
staircases of the LMV and to decipher the response of the river to the regional uplift and other longterm
controls (resistance of the substratum to erosion, eustasy and climate). Six river terrace levels
(T1, the older, to T6, the younger), inset in the UBS13 and previous to the modern alluvial plain,
were characterized and correlated with marine terraces represented at Cape Mondego, near the river
mouth. The fluctuating eustatic and climate controls are superimposed on a long-term crustal uplift.
The data show marked compartmentalization of fluvial system behaviour with changes in incision
rates (acting as a proxy of uplift rates) from east to west, creating distinctly different sectors.
Differential uplift is inferred between the valley sides and between the four main reaches in which
the LMV is subdivided by major faults. Differential uplift is mainly related to regional fault sets
trending N-S to NNW-SSE, NNE-SSW, ENE-WSW, and E-W to WNW-ESE. Using as geomorphic
references the topmost deposits of the UBS13 unit and river terraces located above the alluvial
plain, average long term incision rates were estimated ranging from 0.03 to 0.16 m/ka, depending |
URI: | https://doi.org/10.5194/icg2022-283 http://hdl.handle.net/10174/33442 |
Type: | lecture |
Appears in Collections: | ICT - Comunicações - Em Congressos Científicos Internacionais
|
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
|