Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/32015

Title: What Mathematical Models Are Accurate for Prescribing Aerobic Exercise in Women with Fibromyalgia?
Authors: Villafaina, Santos
Biehl-Printes, Clarissa
Parraca, Jose Alberto
Brauner, Fabiane
Tomas-Carus, Pablo
Keywords: heart rate
chronic pain
physical activity
cardiopulmonary exercise testing
predictive equations
Issue Date: 5-May-2022
Publisher: Biology
Citation: Villafaina S, Biehl-Printes C, Parraca JA, Brauner F, Tomas-Carus P. What Mathematical Models Are Accurate for Prescribing Aerobic Exercise in Women with Fibromyalgia? Biology 2022;11. 704. https://doi.org/10.3390/biology11050704
Abstract: Objectives: This article aims to verify the agreement between the standard method to determine the heart rate achieved in the ventilatory threshold 1 in the cardiopulmonary exercise testing (VT1) and the mathematical models with exercise intensities suggested by the literature in order to check the most precise for fibromyalgia (FM) patients. Methods: Seventeen women with FM were included in this study. The VT1 was used as the standard method to compare four mathematical models applied in the literature to calculate the exercise intensity in FM patients: the well-known “220 − age” at 76%, Tanaka predictive equation “208 − 0.7 × age” at 76%, the FM model HRMax “209 – 0.85 × age” at 76%, and Karvonen Formula at 60%. Bland–Altman analysis and correlation analyses were used to explore agreement and correlation between the standard method and the mathematical models. Results: Significant correlations between the heart rate at the VT1 and the four mathematical estimation models were observed. However, the Bland-Altman analysis only showed agreement between VT1 and “220 − age” (bias = −114.83 + 0.868 × x; 95% LOA = −114.83 + 0.868 × x + 1.96 × 7.46 to −114.83 + 0.868 × x − 1.96 × 7.46, where x is the average between the heart rate obtained in the CPET at VT1 and “220 − age”, in this case 129.15; p = 0.519) and “209 − 0.85 × age”(bias = −129.58 + 1.024 × x; 95% LOA = −129.58 + 1.024 × x + 1.96 × 6.619 to −129.58 + 1.024 × x − 1.96 × 6.619, where x is the average between the heart rate obtained in the CPET at VT1 and “209 − 0.85 × age”, in this case 127.30; p = 0.403). Conclusions: The well-known predictive equation “220 − age” and the FM model HRMax (“209 − 0.85 × age”) showed agreement with the standard method (VT1), revealing that it is a precise model to calculate the exercise intensity in sedentary FM patients. However, proportional bias has been detected in all the mathematical models, with a higher heart rate obtained in CPET than obtained in the mathematical model. The chronotropic incompetence observed in people with FM (inability to increase heart rate with increasing exercise intensities) could explain why methods that tend to underestimate the HRmax in the general population fit better in this population.
URI: http://hdl.handle.net/10174/32015
Type: article
Appears in Collections:CHRC - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica

Files in This Item:

File Description SizeFormat
Villafaina et al., 2022.pdf1.3 MBAdobe PDFView/Open
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois