|
Please use this identifier to cite or link to this item:
http://hdl.handle.net/10174/31826
|
Title: | PCV50 Automatic Classification of Electronic Health Records for a Value-Based Program through Machine Learning |
Authors: | Zanotto, Bruna Etdges, Ana Paula Dal Bosco, Avner Cortes, Eduardo Vieira, Renata Ruschel, R Martins, S Souza, A Valiense, C Viegas, F Canutto, S Gonçalves, M Polanczyk, C |
Issue Date: | 2021 |
Publisher: | Elsevier |
Citation: | B. Zanotto, A.P. Etges, A. Dal Bosco, E.G. Cortes, R. Ruschel, S.O. Martins, A.C. Souza, C. Valiense, F. Viegas, S. Canuto, W. Luiz, R. Vieira, M. Gonçalves, C.A. Polanczyk,
PCV50 Automatic Classification of Electronic Health Records for a Value-Based Program through Machine Learning,
Value in Health,Volume 24, Supplement 1, 2021, Page S76,
ISSN 1098-3015, https://doi.org/10.1016/j.jval.2021.04.389.
(https://www.sciencedirect.com/science/article/pii/S1098301521006069) |
Abstract: | This study presents a comparative assessment of supervised machine learning (ML) methods to capture outcomes and patients' characteristics from electronic health records (EHR). We explored automatic classification of free-text data from EHRs to support a value-based program. |
URI: | http://hdl.handle.net/10174/31826 |
Type: | article |
Appears in Collections: | CIDEHUS - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica
|
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
|