Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/31429

Title: Physical mechanical consolidation and protection of Miocenic limestone used on Mediterranean historical monuments: the case study of Pietra Cantone (southern Sardinia, Italy)
Authors: Columbu, Stefano
Lisci, Carla
Sitzia, Fabio
Buccellato, Giampaolo
Keywords: Limestone alteration 􏰢 􏰢 􏰢 􏰢
Porosity
Chemical treatment
Mechanical strength
􏰢 Cultural heritage conservation
Vapour permeability
Issue Date: Feb-2017
Publisher: Elsevier
Abstract: The present work aims to study the consolidating and protective chemical treatments of the Pietra Cantone, a Miocenic (lower Tortonian) limestone widely used in important monuments and historical buildings of Cagliari (southern Sardinia, Italy). Similar limestones of the same geological period have also been used in several important monuments of Mediterranean area, i.e., Malta and Gozo Islands, Matera (central Basilicata, Italy), Lecce (southern Puglia, Italy) and Balearic Islands (Spain). The Pietra Cantone limestone shows problems of chemical–physical decay, due to their petrophysical and compositional char- acteristics: high porosity (on average 28–36 vol%), low cemented muddy-carbonate matrix, presence of phyllosil- icates and sindepositional sea salts (\3%). So, after placed in the monument, this stone is easily alterable by weath- ering chemical processes (e.g., carbonate dissolution and sulfation) and also by cyclic mechanisms of crystalliza- tion/solubilization of salts and hydration/dehydration of hygroscopic phases of the clay component. To define the mineralogical-petrographic features (composition, texture) of limestone, the clay and salt crystalline phases, the optical microscope in polarized light and diffraction anal- ysis were used. To define the petrophysical characteristics (i.e., shape and size distribution of porosity, surface area(SBET), matrix microstructures, rock composition) and interactions of chemical treatments with rock, SEM–EDS analysis and N2 porosimetry with BET and BJH methods were used. To evaluate the efficacy of Na/K-silicates, ethyl silicate consolidants and protective nano-molecular silane monomer water repellent, the mechanical strengths (uni- axial compressive strength, point load and flexural resis- tance), water/helium open porosity, water absorption and vapour permeability data determined before and after the chemical treatments of the Pietra Cantone samples from monument were compared.
URI: http://dx.doi.org/10.1007/s12665-017-6455-6
http://hdl.handle.net/10174/31429
Type: article
Appears in Collections:HERCULES - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica

Files in This Item:

File Description SizeFormat
Physical-mechanical.pdf6.49 MBAdobe PDFView/Open
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois