Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/30980

Title: New Hsiung-Minkowski identities
Authors: Albuquerque, Rui
Keywords: Exterior differential system
hypersurface
ith-mean curvature
Einstein metric
Issue Date: 2021
Publisher: Springer
Citation: Albuquerque, R., New Hsiung-Minkowski identities, Jour. of Geometric Analysis, 31, 9915–9927 (2021)
Abstract: We find the first three most general Minkowski or Hsiung–Minkowski identities relating the total mean curvatures 𝐻𝑖, of degrees 𝑖=0,1,2,3, of a closed hypersurface N immersed in a given orientable Riemannian manifold M endowed with any given vector field P. Then we specialize the three identities to the case when P is a position vector field. We further obtain that the classical Minkowski identity is natural to all Riemannian manifolds and, moreover, that a corresponding 1st degree Hsiung–Minkowski identity holds true for all Einstein manifolds. We apply the result to hypersurfaces with constant 𝐻1,𝐻2.
URI: http://arxiv.org/abs/2102.08720
http://hdl.handle.net/10174/30980
Type: article
Appears in Collections:CIMA - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica

Files in This Item:

File Description SizeFormat
2102.08720.pdf148.77 kBAdobe PDFView/OpenRestrict Access. You can Request a copy!
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois