Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/30972

Title: Natural SU(2)-structures on tangent sphere bundles
Authors: Albuquerque, Rui
Editors: Chan, Raymond
Yau, Shing-Tung
Keywords: tangent bundle
SU(n)-structure
hypo structure
evolution equations
Issue Date: 2020
Publisher: International Press
Citation: Albuquerque, R., Natural SU(2)-structures on tangent sphere bundles, Asian Journal of Mathematics, Vol 24, 3 (2020), pp. 457-482, https://dx.doi.org/10.4310/AJM.2020.v24.n3.a4
Abstract: We define and study natural SU(2)-structures, in the sense of Conti–Salamon, on the total space S of the tangent sphere bundle of any given oriented Riemannian 3-manifold M. We recur to a fundamental exterior differential system of Riemannian geometry. Essentially, two types of structures arise: the contact-hypo and the non-contact and, for each, we study the conditions for being hypo, nearly-hypo or double-hypo. We discover new double-hypo structures on S^3×S^2, of which the well-known Sasaki–Einstein are a particular case. Hyperbolic geometry examples also appear. In the search of the associated metrics, we find a theorem, useful for explicitly determining the metric, which applies to all SU(2)-structures in general. Within our application to tangent sphere bundles, we discover a whole new class of metrics specific to 3d-geometry. The evolution equations of Conti–Salamon are considered, leading us to a new integrable SU(3)-structure on S×ℝ^+ associated to any flat M.
URI: https://www.intlpress.com/site/pub/files/_fulltext/journals/ajm/2020/0024/0003/AJM-2020-0024-0003-a004.pdf
http://hdl.handle.net/10174/30972
Type: article
Appears in Collections:CIMA - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica

Files in This Item:

File Description SizeFormat
AlbuquerqueNaturalSU(2)structures.pdf328.56 kBAdobe PDFView/Open
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois