Please use this identifier to cite or link to this item:
http://hdl.handle.net/10174/2982
|
Title: | Tracing the Cadomian magmatism with detrital/inherited zircon ages by in-situ U–Pb SHRIMP geochronology (Ossa-Morena Zone, SW Iberian Massif), |
Authors: | Pereira, M. Francisco Chichorro, Martim Solá, A.M. Rita Silva, Jose B. Sánchez-Garcia, Teresa Bellido, Felix |
Keywords: | Detrital/inherited zircon ages Cadomian magmatic arc Ediacaran Cambrian Northern Gondwana margin |
Issue Date: | 2011 |
Abstract: | U–Pb SHRIMP geochronology on zircon extracted from a granite, a sandstone and a quartzite of the SW Iberian
Massif (Ossa-Morena Zone), was used in order to investigate the contribution of Late Neoproterozoic
(Cadomian) tectonothermal history to the crustal growth of northern Gondwana. The analysed Cambrian
rocks were sampled along the southern margin of the Coimbra–Cordoba shear zone (Barquete granite and
Crato sandstone), and within this shear zone (Ouguela quartzite). The Barquete granite yielded a
crystallization age of 526±4 Ma and evidence for Neoproterozoic and Paleoproterozoic inherited ages. The
geochemical signature of the Barquete granite matches the igneous activity of the initial magmatic flooding of
the Ossa-Morena Zone during the Early Cambrian. The petrography and geochemical signature of the
Crato and Ouguela sandstones indicate that these clastic rocks were mainly derived from felsic igneous
rocks. The youngest detrital zircon grain extracted from the Crato sandstone, dated at 552.7±5.5 Ma, has a
zircon overgrowth that yielded 532±5.6 Ma. In the Ouguela quartzite, the youngest concordant age yielded
556.4±5.7 Ma, but we also found a zircon overgrowth dated at 536.2±5.6 Ma. The ages of the youngest
detrital zircon in each sedimentary rock place an upper limit on the deposition age of Early Cambrian (c. 536–
532 Ma). Four main Late Neoproterozoic age clusters at c. 640–638 Ma, c. 612–613 Ma, c. 590–585 Ma and
c. 560 Ma were recognized in the populations of detrital zircons from both sandstones. These ages of zirconforming
events seem to represent four successive thermal/magmatic pulses that overlap the Cadomian and
Pan-African orogenies. These findings match other results published for the OMZ. Our U–Pb results show that
detrital zircons in siliciclastic sediments and inherited zircon in granites are dominated by Neoproterozoic
ages and few Paleoproterozoic and Archean ages. Those ages reported in the Ossa-Morena Zone rocks,
together with a remarkable lack of Mesoproterozoic ages suggest that the clastic rocks in this peri-Gondwana
basin were derived from the West African craton. The large population of Late Cryogenian and Ediacaran ages
indicates denudation of the Cadomian basement during the Early Cambrian. A potential source for the detrital
and inherited zircons found in this study is a long-lived magmatic arc that is only partly exposed in the SW
Iberian Massif but is well represented in other peri-Gondwana regions. The large amount of Cadomian ages
obtained in this study (c. 640–560 Ma) reinforces the idea that Cadomian magmatism played a significant role
in the continental crustal growth history of Late Neoproterozoic uplift and erosion in Western and Central
Europe (Cadomia). |
URI: | http://hdl.handle.net/10174/2982 |
Type: | article |
Appears in Collections: | GEO - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica
|
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
|