Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/2715

Title: Solvability for a third order discontinuous fully equation with nonlinear functional boundary conditions
Authors: Santos, Ana I.
Cabada, Alberto
Minhós, Feliz M.
Keywords: third order functional problems
Nagumo-type condition
Lower and upper solutions
degree theory
Issue Date: Oct-2006
Publisher: Elsevier
Abstract: We prove an existence and location result for the third order functional nonlinear boundary value problem u′′′(t) = f(t,u,u′(t),u′′(t)), for t∈[a,b], 0 = L₀(u,u′,u(t₀)), 0 = L₁(u,u′,u′(a),u′′(a)), 0 = L₂(u,u′,u′(b),u′′(b)), with t₀∈[a,b] given, f:I×C(I)×R²→R is a L¹- Carathéodory function allowing some discontinuities on t and L₀,L₁, L₂ are continuous functions depending functionally on u and u′. The arguments make use of an a priori estimate on u′′, lower and upper solutions method and degree theory. Applications to a multipoint problem and to a beam equation will be presented.
URI: http://hdl.handle.net/10174/2715
ISSN: 0022-247X
Type: article
Appears in Collections:MAT - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica
CIMA - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica

Files in This Item:

File Description SizeFormat
Cabada+Ana+Minhos-2006.pdfintroducão172.26 kBAdobe PDFView/Open
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois