Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/27068

Title: Heteroclinic solutions for classical and singular φ-Laplacian non-autonomous differential equations
Authors: Minhós, Feliz
Keywords: ϕ-Laplacian operator
ean curvature operator
heteroclinic solutions
problems in the real line
Issue Date: 15-Feb-2019
Publisher: MDPI
Citation: Minhós, F. Heteroclinic Solutions for Classical and Singular ϕ-Laplacian Non-Autonomous Differential Equations. Axioms 2019, 8, 22.
Abstract: In this paper, we consider the second order discontinuous differential equation in the real line, (a(t,u)ϕ(u′))′=f(t,u,u′),a.e.t∈R,u(−∞)=ν−,u(+∞)=ν+, with ϕ an increasing homeomorphism such that ϕ(0)=0 and ϕ(R)=R, a∈C(R2,R) with a(t,x)>0 for (t,x)∈R2, f:R3→R a L1-Carathéodory function and ν−,ν+∈R such that ν−<ν+. The existence and localization of heteroclinic connections is obtained assuming a Nagumo-type condition on the real line and without asymptotic conditions on the nonlinearities ϕ and f. To the best of our knowledge, this result is even new when ϕ(y)=y, that is for equation (a(t,u(t))u′(t))′=f(t,u(t),u′(t)),a.e.t∈R. Moreover, these results can be applied to classical and singular ϕ-Laplacian equations and to the mean curvature operator.
URI: https://www.mdpi.com/2075-1680/8/1/22
http://hdl.handle.net/10174/27068
ISSN: EISSN 2075-1680
Type: article
Appears in Collections:MAT - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica
CIMA - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica

Files in This Item:

File Description SizeFormat
axioms-08-00022.pdf271.62 kBAdobe PDFView/Open
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois