Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/26893

Title: A fundamental differential system of Riemannian geometry
Authors: Albuquerque, Rui
Editors: Ros, Antonio
Vega, Luis
Cordoba, Antonio
Martínez, Consuelo
Keywords: espaço tangente
variedade riemanniana
sistemas diferenciais
hipersuperfície
Issue Date: Dec-2019
Publisher: European Mathematical Society Publishing House
Citation: Albuquerque Rui: A fundamental differential system of Riemannian geometry. Rev. Mat. Iberoam. 35 (2019), 2221-2250. doi: 10.4171/rmi/1118
Abstract: We discover a fundamental exterior differential system of Riemannian geometry; indeed, an intrinsic and invariant global system of differential forms of degree n associated to any given oriented Riemannian manifold M of dimension n + 1. The framework is that of the tangent sphere bundle of M. We generalise to a Riemannian setting some results from the theory of hypersurfaces in flat Euclidean space. We give new applications and examples of the associated Euler-Lagrange differential systems.
URI: http://hdl.handle.net/10174/26893
Type: article
Appears in Collections:CIMA - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica

Files in This Item:

File Description SizeFormat
Thenaturaleds.pdf374.27 kBAdobe PDFView/Open
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois