Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/26124

Title: Time series analysis of Luanda road accidents, deaths and injureds
Authors: Alberto, Manuel
Gomes, Dulce
Filipe, Patrícia A.
Editors: Meira-Machado, Luís
Soutinho, Gustavo
Keywords: Road accidents
Outliers
time series
Seasonal ARIMA models
decomposition
Issue Date: Jul-2019
Publisher: International Workshop on Statistical Modelling
Citation: Proceeding of the 34th International Workshop on Statistical Modelling (Luís Meira-Machado and Gustavo Soutinho, editors), vol.2, pp. 401-4. 2019. Guimarães, Portugal. ISBN 978-989-20-9630-8
Abstract: In this work, time series models are applied to explain and forecast the rate of traffic accidents, deaths and injureds in Luanda, Angola. Monthly Luanda data from 2002 to 2015 are used to fit models and to make predictions. Road accidents in Angola are currently one of the major causes of death in the country. Particularly Luanda, the capital, is the province that shows the highest rate in terms of accidents, deaths and injureds. However, in recent years there has been a decrease in the accidents rate, with average growth rates of -6.73%, 0.19% and -2.54% for accidents, deaths and injureds respectively. We have used classic Seasonal ARIMA models (SARIMA) in two different approaches, the first one treat all observations the same way. The second approach identifies outliers, taking into account its magnitude and estimates SARIMA models for the series excluding the significant outliers. A Seasonal-Trend decomposition based on a locally-weighted regression smoothing (Loess) approach was also applied. The SARIMA models that take into account the extreme values revealed to fit and predict better than the pure SARIMA models time series of traffic accident data.
URI: http://hdl.handle.net/10174/26124
ISBN: 9789892096308
Type: article
Appears in Collections:CIMA - Artigos em Livros de Actas/Proceedings

Files in This Item:

File Description SizeFormat
IWSM-proc-ManuelAlberto.pdf176.36 kBAdobe PDFView/Open
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois