Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/2548

Title: On minima of a functional of the gradient: upper and lower solutions
Authors: Goncharov, Vladimir
Ornelas, António
Keywords: scalar variational problem
nonconvex lagrangian
Baire category theorem
continuous selection
relaxation
Issue Date: 2006
Publisher: Elsevier Ltd.
Abstract: This paper studies a scalar minimization problem with an integral functional of the gradient under affine boundary conditions. A new approach is proposed using a minimal and a maximal solution to the convexified problem. We prove a density result: any relaxed solution continuously depending on boundary data may be approximated uniformly by solutions of the nonconvex problem keeping continuity relative to data. We also consider solutions to the nonconvex problem having Lipschitz dependence on boundary data with the best Lipschitz constant.
URI: http://hdl.handle.net/10174/2548
Type: article
Appears in Collections:CIMA - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica

Files in This Item:

File Description SizeFormat
GonchOrnelUpLow(NA).pdfDocumento principal243.45 kBAdobe PDFView/Open
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois