Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/24226

Title: Finite-strain low order shell using least-squares strains and two-parameter thickness extensibility
Authors: Areias, P.
Rabczuk, T.
Reinoso, J.
César de Sá, J.
Issue Date: 2017
Abstract: We present a thickness-extensible finite strain quadrilateral element based on least-squares in-plane shear strains and assumed transverse-shear strains. At each node, two thickness parameters are con- nected to the constitutive laws by a linear system. The zero out-of-plane normal stress condition is satisfied at the constitutive level using the normal strain as unknown in all integration points. Assumed in-plane strains based on least-squares are introduced as an alternative to the enhanced-assumed-strain (EAS) formulations and, contrasting with these, the result is an element satisfying ab-initio both the in- plane and the transverse Patch tests. There are no additional degrees-of-freedom, as it is the case with EAS, even by means of static condensation. Least-squares fit allows the derivation of invariant finite strain elements which are shear-locking free and amenable to be incorporated in commercial codes. With that goal, we use automatically generated code produced by AceGen and Mathematica. Full assessment of the element formulation and the two-parameter thickness variation methodology is accomplished. Alternative thickness variation algorithms are tested. All benchmarks show very competitive results, similar to the best available enriched shell elements.
URI: https://www.sciencedirect.com/science/article/pii/S0997753816303503?via%3Dihub
http://hdl.handle.net/10174/24226
Type: article
Appears in Collections:FIS - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica

Files in This Item:

File Description SizeFormat
1-s2.0-S0997753816303503-main(1).pdf5.26 MBAdobe PDFView/OpenRestrict Access. You can Request a copy!
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois