Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/23795

Title: Breeze effects at a large artificial lake: summer case study
Authors: Iakunin, Maksim
Salgado, Rui
Potes, Miguel
Editors: Thiery, Wim
Keywords: lake breeze
impact of reservoir
Issue Date: 5-Oct-2018
Publisher: Copernicus Publications on behalf of the European Geosciences Union.
Citation: Iakunin, M., Salgado, R., and Potes, M., 2018: Breeze effects at a large artificial lake: summer case study. Hydrol. Earth Syst. Sci., 22, 5191-5210, https://doi.org/10.5194/hess-22-5191-2018.
Abstract: Natural lakes and big artificial reservoirs can affect the weather regime of surrounding areas but, usually,consideration of all aspects of this impact and their quantification is a difficult task. The Alqueva reservoir, the largest artificial lake in western Europe, located on the south-east of Portugal, was filled in 2004. It is a large natural laboratory that allows the study of changes in surface and in landscape and how they affect the weather in the region. This paper is focused on a 3-day case study, 22–24 July 2014, during which an intensive observation campaign was carried out. In order to quantify the breeze effects induced by the Alqueva reservoir, two simulations with the mesoscale atmospheric model Meso-NH coupled to the FLake freshwater lake model has been performed. The difference between the two simulations lies in the presence or absence of the reservoir on the model surface. Comparing the two simulation datasets, with and without the reservoir, net results of the lake impact were obtained. Magnitude of the impact on air temperature, relative humidity, and other atmospheric variables are shown. The clear effect of a lake breeze (5–7 m s −1 ) can be observed during daytime on distances up to 6 km away from the shores and up to 300 m above the surface. The lake breeze system starts to form at 09:00 UTC and dissipates at 18:00-19:00 UTC with the arrival of a larger-scale Atlantic breeze. The descending branch of the lake breeze circulation brings dry air from higher atmospheric layers (2–2.5 km) and redistributes it over the lake. It is also shown that despite its significant intensity the effect is limited to a couple of kilometres away from the lake borders.
URI: https://www.hydrol-earth-syst-sci.net/22/5191/2018/
http://hdl.handle.net/10174/23795
Type: article
Appears in Collections:ICT - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica

Files in This Item:

File Description SizeFormat
Iakunin_et_al_2018_hess-22-5191-2018.pdf5.2 MBAdobe PDFView/Open
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois