|
Please use this identifier to cite or link to this item:
http://hdl.handle.net/10174/23525
|
Title: | Outstanding Challenges in the Transferability of Ecological Models |
Authors: | Yates, Katherine L. Bouchet, Phil J. Caley, M. Julian Mengersen, Kerrie Randin, Christophe F. Parnell, Stephen Fielding, Alan H. Bamford, Andrew J. Ban, Stephen Barbosa, A. Márcia Dormann, Carsten F. Elith, Jane Embling, Clare B. Ervin, Gary N. Fisher, Rebecca Gould, Susan Graf, Roland F. Gregr, Edward J. Halpin, Patrick N. Heikkinen, Risto K. Heinänen, Stefan Jones, Alice R. Krishnakumar, Periyadan K. Lauria, Valentina Lozano-Montes, Hector Mannocci, Laura Mellin, Camille Mesgaran, Mohsen B. Moreno-Amat, Elena Mormede, Sophie Novaczek, Emilie Oppel, Steffen Ortuño Crespo, Guillermo Peterson, A. Townsend Rapacciuolo, Giovanni Roberts, Jason J. Ross, Rebecca E. Scales, Kylie L. Schoeman, David Snelgrove, Paul et al. |
Issue Date: | 2018 |
Citation: | Yates, Katherine L.; Bouchet, Phil J.; Caley, M. Julian; Mengersen, Kerrie; Randin, Christophe F.; Parnell, Stephen; Fielding, Alan H.; Bamford, Andrew J.; Ban, Stephen; Barbosa, A. Márcia; Dormann, Carsten F.; Elith, Jane; Embling, Clare B.; Ervin, Gary N.; Fisher, Rebecca; Gould, Susan; Graf, Roland F.; Gregr, Edward J.; Halpin, Patrick N.; Heikkinen, Risto K.; Heinänen, Stefan; Jones, Alice R.; Krishnakumar, Periyadan K.; Lauria, Valentina; Lozano-Montes, Hector; Mannocci, Laura; Mellin, Camille; Mesgaran, Mohsen B.; Moreno-Amat, Elena; Mormede, Sophie; Novaczek, Emilie; Oppel, Steffen; Ortuño Crespo, Guillermo; Peterson, A. Townsend; Rapacciuolo, Giovanni; Roberts, Jason J.; Ross, Rebecca E.; Scales, Kylie L.; Schoeman, David; Snelgrove, Paul; et al.Outstanding Challenges in the Transferability of Ecological Models, Trends in Ecology & Evolution, 33, 10, 790-802, 2018. |
Abstract: | Predictive models are central to many scientific disciplines and vital for informing
management in a rapidly changing world. However, limited understanding of the
accuracy and precision of models transferred to novel conditions (their ‘trans-
ferability’) undermines confidence in their predictions. Here, 50 experts identified
priority knowledge gaps which, if
filled, will most improve model transfers. These
are summarized into six technical and six fundamental challenges, which underlie
the combined need to intensify research on the determinants of ecological
predictability, including species traits and data quality, and develop best prac-
tices for transferring models. Of high importance is the identification of a widely
applicable set of transferability metrics, with appropriate tools to quantify the
sources and impacts of prediction uncertainty under novel conditions. |
URI: | http://hdl.handle.net/10174/23525 |
Other Identifiers: | 01695347 |
Type: | article |
Appears in Collections: | CIBIO-UE - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica
|
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
|