Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/21880

Title: Singular and regular second order φ-Laplacian equations on the half-line with functional boundary conditions
Authors: Fialho, João
Minhós, Feliz
Carrasco, Hugo
Keywords: Half line problems
functional boundary conditions
unbounded upper and lower solutions
Schauder fixed point theory
Issue Date: 2017
Publisher: Bolyai Institute, University of Szeged
Citation: J. Fialho, F. Minhós, H. Carrasco, Singular and regular second order φ-Laplacian equations on the half-line with functional boundary conditions, Electronic Journal of Qualitative Theory of Differential Equations, 2017, No. 10, 1–15
Abstract: This paper is concerned with the existence of bounded or unbounded solutions to regular and singular second order boundary value problem on the half-line with functional boundary conditions. These functional boundary conditions generalize the usual boundary assumptions and may be applied to a broad number of cases, such as, nonlocal, integro-differential, with delays, with maximum or minimum arguments,... The arguments are based on the Schauder fixed point theorem and lower and upper solutions method.
URI: http://emis.library.cornell.edu/journals/EJQTDE/
http://hdl.handle.net/10174/21880
ISSN: HU ISSN 1417-3875
Type: article
Appears in Collections:MAT - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica
CIMA - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica

Files in This Item:

File Description SizeFormat
Phi-laplacian_functional_halflineFM_HC_JF_Teste1.pdf181.61 kBAdobe PDFView/OpenRestrict Access. You can Request a copy!
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois