Please use this identifier to cite or link to this item:
http://hdl.handle.net/10174/20007
|
Title: | Homotheties and topology of tangent sphere bundles |
Authors: | Albuquerque, Rui |
Keywords: | tangent sphere bundle homothety characteristic class |
Issue Date: | 29-Jan-2014 |
Publisher: | Springer |
Citation: | Albuquerque, R. J. Geom. (2014) 105: 327--342. |
Abstract: | We prove a Theorem on homotheties between two given tangent sphere bundles SrM of a Riemannian manifold (M,g) of dim ≥ 3, assuming different variable radius functions r and weighted Sasaki metrics induced by the conformal class of g. New examples are shown of manifolds with constant positive or with constant negative scalar curvature which are not Einstein. Recalling results on the associated almost complex structure I^G and symplectic structure ω^G on the manifold TM , generalizing the well-known structure of Sasaki by admitting weights and connections with torsion, we compute the Chern and the Stiefel-Whitney characteristic classes of the manifolds TM and SrM. |
URI: | http://arxiv.org/abs/1012.4135 http://hdl.handle.net/10174/20007 |
Type: | article |
Appears in Collections: | CIMA - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica
|
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
|