Please use this identifier to cite or link to this item: http://hdl.handle.net/10174/20007

Title: Homotheties and topology of tangent sphere bundles
Authors: Albuquerque, Rui
Keywords: tangent sphere bundle
homothety
characteristic class
Issue Date: 29-Jan-2014
Publisher: Springer
Citation: Albuquerque, R. J. Geom. (2014) 105: 327--342.
Abstract: We prove a Theorem on homotheties between two given tangent sphere bundles SrM of a Riemannian manifold (M,g) of dim ≥ 3, assuming different variable radius functions r and weighted Sasaki metrics induced by the conformal class of g. New examples are shown of manifolds with constant positive or with constant negative scalar curvature which are not Einstein. Recalling results on the associated almost complex structure I^G and symplectic structure ω^G on the manifold TM , generalizing the well-known structure of Sasaki by admitting weights and connections with torsion, we compute the Chern and the Stiefel-Whitney characteristic classes of the manifolds TM and SrM.
URI: http://arxiv.org/abs/1012.4135
http://hdl.handle.net/10174/20007
Type: article
Appears in Collections:CIMA - Publicações - Artigos em Revistas Internacionais Com Arbitragem Científica

Files in This Item:

File Description SizeFormat
1012.4135v3.pdf194.27 kBAdobe PDFView/Open
FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Dspace Dspace
DSpace Software, version 1.6.2 Copyright © 2002-2008 MIT and Hewlett-Packard - Feedback
UEvora B-On Curriculum DeGois